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For many years, heat shock or stress proteins have been regarded as
intracellular molecules that have a range of housekeeping and cytoprotective
functions, only being released into the extracellular environment in pathological
situations such as necrotic cell death. However, evidence is now accumulating
to indicate that, under certain circumstances, these proteins can be released
from cells in the absence of cellular necrosis, and that extracellular heat shock
proteins have a range of immunoregulatory activities. The capacity of heat shock
proteins to induce pro-inflammatory responses, together with the phylogenetic
similarity between prokaryotic and eukaryotic heat shock proteins, has led to
the proposition that these proteins provide a link between infection and
autoimmune disease. Indeed, both elevated levels of antibodies to heat shock
proteins and an enhanced immune reactivity to heat shock proteins have been
noted in a variety of pathogenic disease states. However, further evaluation of
heat shock protein reactivity in autoimmune disease and after transplantation
has shown that, rather than promoting disease, reactivity to self-heat shock
proteins can downregulate the disease process. It might be that self-reactivity
to heat shock proteins is a physiological response that regulates the
development and progression of pro-inflammatory immunity to these
ubiquitously expressed molecules. The evolving evidence that heat shock
proteins are present in the extracellular environment, that reactivity to heat
shock proteins does not necessarily reflect adverse, pro-inflammatory
responses and that the promotion of reactivity to self-heat shock proteins can
downregulate pathogenic processes all suggest a potential role for heat shock
proteins as therapeutic agents, rather than as therapeutic targets.
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It was in 1962 that Ritossa and co-workers first
discovered that subjecting Drosophila melanogaster
larvae to temperature shock induced specific
gene activation (Ref. 1); however, it was not
until 1974 that the first products of these genes
were identified and the term ‘heat shock protein’
was adopted (Ref. 2). Subsequent work has
demonstrated that heat shock proteins are
present, and can be induced, in all species and
that they are among the most phylogenetically

conserved proteins. Heat shock proteins are
categorised into several families that are named
on the basis of their approximate molecular
mass (e.g. the 70 kDa Hsp70; Table 1). Under
physiological conditions, some of these proteins
function as molecular chaperones or proteases
that have a number of intracellular functions.
Chaperones are involved in the assembly and
folding of oligomeric proteins, whereas proteases
such as the ubiquitin-dependent proteasome

Table 1. Major mammalian heat shock proteins and their function (tab001gps)

Major family
and members Cellular localisation Cellular function

Small

αB-crystallin Cytoplasm Cytoskeletal stabilisation
Hsp27 Cytoplasm/nucleus Actin dynamics

Heme oxygenase, Hsp32 Cytoplasm Haeme catabolism, antioxidant properties

Hsp60 or chaperonins

Hsp60 Mitochondria Both: bind to partially folded polypeptides and assist
TCP-1 Cytoplasm correct folding; assemble multimeric complexes

Hsp70

Hsp70 (inducible) Cytoplasm/nucleus All: bind to extended polypeptides; prevent

Hsc70 (cognate) Cytoplasm/peroxisome aggregation of unfolded peptides; dissociate some
Grp78/BiP ER oligomers; bind ATP and show ATPase activity

mtHsp70/Grp75 Mitochondria

Hsp70 is involved in regulation of HSF1 activity and
the repression of heat shock protein gene transcription

Hsp90

Hsp90 (α and β) Cytoplasm All: bind to other proteins; regulate protein activity;

Grp94/gp96/Hsp100 ER prevent aggregation of re-folded peptide; correct
assembly and folding of newly synthesised protein

Hsp90 appears to be involved in maintaining the
HSF1 monomeric state in non-stressful conditions;

represents 1–2% of total protein

Hsp110

Hsp110 (human) Nucleolus/cytoplasm Thermal tolerance
Apg-1 (mouse) Cytoplasm Protein refolding

Hsp105 Cytoplasm

Abbreviations: ER, endoplasmic reticulum; TCP-1, tailless complex polypeptide; Grp, glucose-regulated
protein; Hsp, heat shock protein; BiP, immunoglobulin heavy chain binding protein; mtHsp70, mitochondrial
Hsp70; HSF1, heat shock factor 1; Apg-1, protein kinase essential for autophagy.
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mediate the degradation of damaged proteins
(Refs 3, 4).

The term heat shock proteins is somewhat
of a misnomer, as they are not induced solely
by heat shock. Indeed, in addition to being
constitutively expressed (making up 5–10% of
the total protein content under normal growth
conditions), these proteins can be markedly
induced (up to 15% of the total cellular protein
content) by a range of cellular insults including
increased temperature,  oxidative stress,
nutritional deficiencies, ultraviolet irradiation,
exposure to chemicals (e.g. ethanol), viral
infection, and ischaemia–reperfusion injury
(Refs 5, 6). Stressors that cause protein unfolding,
misfolding or aggregation trigger a stress
response that leads to the induction of gene
transcription for proteins with the capacity to
stabilise and re-fold proteins, thereby re-
establishing the balance between protein
synthesis, assembly and degradation.

Regulation of heat shock protein gene
transcription is mediated by the interaction of
the heat shock factor (HSF) transcription factors
(of which the principal one in vertebrates is HSF1)
with heat shock elements (HSEs) in the heat shock
protein gene promoter regions (Refs 7, 8). In the
unstressed state, HSF1 is present in the cytoplasm
as a latent monomeric molecule that is unable to
bind to DNA. Under stressful conditions, HSF1
is hyperphosphorylated in a ras-dependent
manner by members of the mitogen-activated
protein kinase (MAPK) subfamilies (e.g. ERK1,
JNK/SAPK, p38 protein kinase; Refs 9, 10). HSF1
is converted to phosphorylated trimers with the
capacity to bind DNA, and translocates from the
cytoplasm to the nucleus (reviewed in Ref. 11; see
Fig. 1). The signal that activates HSF1 is thought
to be a flux of newly synthesised non-native
proteins (Ref. 8). The consequences of HSF
binding to its target, and the events that result in
the ensuing transcription of heat shock genes,
have been reviewed previously (Ref. 12).

The generation of heat shock proteins must be
only transient, even if exposure to stress is over a
prolonged period, as a continued presence of heat
shock proteins would adversely influence protein
homeostasis and a variety of intracellular
functions. One mechanism by which the activity
of HSF1 is regulated is via the binding of Hsp70
to its transactivation domain, thereby leading
to repression of heat shock gene transcription
(Ref. 13). The interaction between Hsp70 and

HSF1 has no effect on DNA binding or the stress-
induced phosphorylation state of HSF1 (Ref. 13).
A second mechanism that regulates heat shock
protein synthesis is the interaction between heat
shock protein binding factor 1 (HSBP1) and the
active trimeric form of HSF1 and Hsp70, thereby
inhibiting the capacity of HSF1 to bind to DNA
(Ref. 14). HSBP1 is predominantly localised in the
nucleus and levels of HSBP1 mRNA have been
shown to be present at high levels in a variety of
cell lines and animal tissues and to be unaffected
by heat shock (Ref. 14).

This article reviews the current literature on
heat shock proteins and their influence on
pathogenic processes such as autoimmunity,
organ allograft rejection and vascular disease. It
highlights the evolving evidence that rather than
being exclusively intracellular, heat shock proteins
are present in, and can be released into, the
extracellular compartment under physiological
conditions and elicit a range of functions. Given
the functional versatility of heat shock proteins
and their capacity to mediate both induction and
regulation of immunity, further studies aimed at
understanding the mechanisms underlying these
functions might reveal strategies by which heat
shock proteins can be used as therapeutic agents
either for the generation of protective immunity
or for the downregulation of deleterious
inflammatory conditions.

Heat shock proteins as molecular
chaperones

Molecular chaperones are defined as ‘proteins
that assist the correct non-covalent assembly
of other protein-containing structures in vivo
but are not permanent components of these
structures when they are performing their normal
biological functions’ (Ref. 15). An alternative
definition is that ‘a molecular chaperone is a
protein that binds to and stabilises an otherwise
unstable conformer of another protein, and by
controlled binding and release of the substrate
protein facilitates its correct fate in vivo, be it
folding, oligomeric assembly, transport to another
subcellular compartment, or controlled switching
between active/inactive conformations’ (Ref. 16).
The precise nature of peptide binding and the
factors involved appear to be chaperone-
dependent. Whereas ATP binding is important for
the release of peptides from Hsp70, BiP
(immunoglobulin heavy chain binding protein;
reviewed in Ref. 17) and Hsp90 (Ref. 18), its role
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in peptide binding to and unloading from gp96,
the endoplasmic reticulum paralogue of Hsp90,
is unclear (Ref. 19). Not all stress proteins function
as molecular chaperones; however, those that do
fulfil an essential intracellular role and, in the
extracellular compartment, have the capacity to
mediate the induction of peptide-specific
immunity, as is described later.

Potential pathogenic role for
heat shock proteins

Heat shock proteins, particularly those of the
Hsp60 and Hsp70 families, are immunodominant
molecules, and a significant element of the
immune response to pathogenic microorganisms
is directed towards peptides derived from heat
shock proteins (Refs 20, 21). This phenomenon,
together with the ubiquitous nature of human
heat shock proteins and the high degree of
sequence homology between mammalian and

bacterial heat shock protein cognates (~50–60%
identical residues in the case of the Hsp60
family) has led to debate as to whether the
immune system recognises heat shock proteins
as dominant microbial antigens or potentially
harmful self-antigens (Ref. 20). It has also been
suggested that heat shock proteins might provide
a link between infection and autoimmunity,
either through recognition of conserved epitopes
or via cross-reactivity/molecular mimicry (Ref. 22).
Evidence for a link between heat shock protein
reactivity and disease pathogenesis, particularly
autoimmune disease, vascular disease and organ
allograft rejection, has arisen from several studies.

Heat shock proteins and heat shock
protein reactivity in autoimmune disease
Hsp60
Several investigations have implicated Hsp60
and immune reactivity to members of the

Figure 1. Regulation of transcription of heat shock protein genes by heat shock factor. Heat shock

factor (HSF) is present in the cytoplasm as a latent monomeric molecule that is unable to bind to DNA.

Under stressful conditions, the flux of non-native proteins (which are non-functional, prone to aggregation,
protease-sensitive, and bind to chaperones) leads to phosphorylation (P) and trimerisation of HSF. The trimers

translocate to the nucleus, bind the promoter regions of heat shock protein (hsp) genes and mediate hsp

gene transcription. The activity of HSF trimers is downregulated by hsps (e.g. Hsp70) and the heat shock
binding protein 1 (HSBP1) that is found in the nucleus. Diagrams are based on those included in Refs 11

and 14 (fig001gps).
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Hsp60 family in autoimmune diseases, the best
studied of which are arthritis and diabetes.
Hsp60 is expressed in the synovial tissue of
patients with rheumatoid arthritis (RA) and
juvenile chronic arthritis (Ref. 23), and T cells
derived from the synovial fluid are activated by
mycobacterial Hsp65 (Refs 24, 25). T-cell reactivity
to self-Hsp60 has been reported in patients
with RA (Ref. 26); immortalised B cells from
the synovial tissue of RA patients show
specificity for bacterial Hsp60 (Ref. 27); and
elevated levels of circulating antibodies to Hsp60
are present in children with juvenile chronic
arthritis (Ref. 28). T-cell-mediated responses to
mycobacterial Hsp65 have also been implicated
in experimental models of arthritis ,  and
disease can be initiated in rats by the transfer
of T-cell clones specific for mycobacterial Hsp65
(Ref. 29). In addition, antibodies to Hsp65 are
elevated in mice with pristane-induced arthritis
(Ref. 30).

Evidence of a role for Hsp60 in type 1 diabetes
[insulin-dependent diabetes mellitus (IDDM)]
is somewhat equivocal (Ref. 31). Supporting
such a role is evidence that naive T cells from
non-obese diabetic (NOD) mice can be activated
by both self-Hsp60 and mycobacterial Hsp60
(Ref. 32), that anti-Hsp60 T cells can mediate
insulitis and hyperglycaemia in the NOD mouse
(Ref. 33), and that peripheral blood T cells from
patients with IDDM demonstrate a heightened
proliferative response to human Hsp60 and
Hsp60 peptides (Ref. 34). However, in NOD
mice, immunity to autoantigens other than
heat shock proteins, such as glutamic acid
decarboxylase 65 (GAD), appears much earlier
than responsiveness to mycobacterial Hsp65 (Ref.
35), thereby arguing against an essential role for
heat shock proteins in disease induction in this
model. In addition, no evidence for serological
immunity to islet cell heat shock proteins has been
reported in IDDM (Ref. 36).

Evidence of a role for Hsp60 in the
pathogenesis of multiple sclerosis (MS) is less
apparent. Hsp60 expression has been identified
in chronic MS plaques (Refs 37, 38), and a
humoral response to Hsp60 has been detected
in the cerebrospinal fluid of patients with MS;
however, the latter is not specific for MS and is
also present in a number of chronic degenerative
conditions (Ref. 39). Nor is peripheral blood
lymphocyte reactivity to Hsp60 altered in MS
patients (Ref. 40).

Hsp70
In contrast to the findings for Hsp60, Hsp70 has
been implicated as a potential autoantigen in
MS (Refs 41, 42). In IDDM, the preferential
expression of Hsp70 by β cells, but not α  cells,
in the islets of Langerhans might be important
for the understanding of autoimmune destruction
of β cells in this disease (Ref. 43). Autoantibodies
to the constitutive form of Hsp70 (Hsc70) have
been identified in a proportion of patients with
primary biliary cirrhosis (45.7%) and patients with
autoimmune hepatitis patients (52.9%), but not in
patients with chronic hepatitis B or C infection
(Ref. 44). Reactivity to Hsp70 has also been
implicated in the induction of disease in toxin-
induced interstitial nephritis (Ref. 45).

Heat shock proteins and heat shock
protein reactivity in transplantation
In addition to autoimmune disease, heat shock
proteins and reactivity to heat shock proteins
have been associated with allograft rejection.
Heat shock proteins are induced during graft
preservation, ischaemia–reperfusion and surgery
(Refs 46, 47, 48), and by the inflammatory process
of the rejection response, including the localised
production of cytokines by infiltrating leukocytes
(Ref. 49). In rats, Hsp70 gene and protein
expression are increased in rejecting cardiac
allografts, and graft-infiltrating lymphocytes
proliferate in response to recombinant
mycobacterial Hsp65 and Hsp71 (Refs 50, 51,
52, 53). Heat shock protein expression is also
induced in the intestinal epithelium and lamina
propria after rat small-bowel transplantation
and appears, in part at least, to be resistant to
immunosuppression with tacrolimus (Ref. 54).
In humans, heat shock protein expression is
increased in rejecting lungs (Ref. 55); T cells
from rejected renal grafts respond to Hsp72
(Ref. 56); and mycobacterial Hsp65-induced
growth of graft-infiltrating lymphocytes from
endomyocardial biopsies correlates with cardiac
graft rejection (Ref. 52).

These findings have led to the proposition
that heat shock protein expression in allograft
tissue induces heat shock protein reactivity,
thereby promoting the development of acute
and chronic graft rejection (Refs 57, 58, 59).
However, heat shock proteins are cytoprotective
molecules and their induction in the peri- and
immediate post-transplantation periods is likely
to be a protective response targeted towards the
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maintenance of cell and tissue integrity. This is
supported by reports that heat shock proteins
attenuate preservation and ischaemia–reperfusion
injury (Refs 57, 60, 61, 62, 63), and that they protect
endothelial cells from neutrophil-mediated
necrosis (Ref. 64) and a variety of cell types from
oxidative injury (Refs 65, 66, 67). In addition,
lower levels of Hsp70 in pre-liver-transplant
biopsies and organ perfusates are associated with
early graft loss (Ref. 68).

The precise influence of heat shock proteins
on allograft survival is currently unclear. A
direct involvement of Hsp60 in the rejection
process has been suggested by the observations
that skin from transgenic mice overexpressing
Hsp60 transplanted into allogeneic recipients is
rejected more rapidly than skin transplanted
from wild-type donors (Ref. 69). By contrast,
skin transplanted into Hsp60-transgenic mice,
in which spontaneous autoimmunity to Hsp60
is reduced, is rejected more slowly than skin
grafted into wild-type recipients (Ref. 69).
However, further studies are required to define
more clearly a direct role for heat shock proteins
in the induction and progression of allograft
rejection.

Heat shock proteins and heat shock
protein reactivity in vascular disease
I t  i s  now apparent  that  there  i s  an
inflammatory component to vascular disease
that involves the accumulation of monocytes
and activated T cells in atherosclerotic lesions
and the localised presence of pro-inflammatory
cytokines (Refs 70, 71). Evidence also suggests
that the immunological component of the
development of atherosclerosis might, at least
in part, involve the expression of, and reactivity
to, heat shock proteins (Ref. 70). The evidence
for this proposition has arisen from three findings.
First, the intensity of heat shock protein
expression positively correlates with the severity
of atherosclerosis; second, there is a localised
enrichment of γδ T cells in the lesion (Ref. 72),
and this is of particular interest given the capacity
of γδ T cells to directly recognise and respond
to autologous heat shock proteins (Ref. 73);
and third, immunisation with recombinant
mycobacterial Hsp65 can induce atherosclerotic
lesions in normocholesterolaemic rabbits
(Ref. 74).

A role for Hsp60 in the induction of the
inflammatory response that characterises

atherosclerosis has also been suggested. Lipid-
laden cells formed from the uptake of oxidised
low-density lipoprotein (LDL), via a ‘scavenger’
receptor that does not recognise native LDL, are
a principal component of the atherosclerotic
plaque.  Exposure of the monocytic cell lines U937
and HL60 to oxidised LDL induces marked
expression of Hsp60 (Ref. 75). These findings
suggest that the inflammatory response associated
with atherosclerosis might in part be promoted
by the activation of T cells reactive with the Hsp60
that is expressed on monocytes within the lesion
or released locally. Localised expression of heat
shock proteins might also be influenced by
haemodynamic factors, as raised blood pressure
has direct effects on the vasculature (Refs 76, 77)
and vessels subjected to greater mechanical and
shear stress express heat shock proteins and are
more prone to the development of atherosclerosis
(Refs 72, 77, 78, 79).

Humoral responses to heat shock proteins
have also been implicated in vascular disease.
Elevated levels of circulating antibody to the
mycobacterial 65 kDa heat shock protein have
been reported in carotid atherosclerosis (Ref. 80),
coronary heart disease (Ref. 81) and borderline
hypertension (Ref. 82). Levels of antibodies to
human Hsp60 are also raised in peripheral
vascular disease (Ref. 83). The in vivo
physiological significance of antibodies to heat
shock proteins in the pathogenesis of vascular
disease has yet to be clearly established. However,
they have been shown to mediate endothelial cell
cytotoxicity (Ref. 79), and the observation that
anti-Hsp65/60 antibodies in individuals with
atherosclerosis recognise three distinct, self-
Hsp65/60 sequences might implicate them in the
initiation of atherosclerosis via an autoimmune-
type mechanism (Ref. 84). Levels of anti-Hsp65
antibodies might have diagnostic value as titres
have recently been shown to predict the 5-year
mortality of patients with carotid atherosclerosis
(Ref. 85).

Heat shock proteins in normal aging
Increasing age is associated with a reduced
capacity to maintain homeostasis in all
physiological systems and it might be that this
results, in part at least, from a parallel and
progressive decline in the ability to produce
heat shock proteins. If this is so, an attenuated
heat shock protein response could contribute to
the increased susceptibility to environmental
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challenges and the more prevalent morbidity and
mortality seen in aged individuals (Refs 86, 87).

In vitro studies have shown that Hsp70
expression in heat-stressed lung cells (Ref. 88),
hepatocytes and liver (Refs 89, 90), splenocytes
(Ref. 91), myocardium (Ref. 92) and mononuclear
cells is reduced with increasing age (Ref. 86), as is
the induction of Hsp70 expression in response to
ischaemia (Ref. 93) and mitogenic stimulation
(Ref. 94). Hsp70 gene expression declines during
normal aging in human retina (Ref. 95), and heat
shock-induced Hsp70 expression is decreased in
senescent and late-passage cells, both of which
suggest that the process of aging itself might
be associated with reduced Hsp70 production
(Refs 96, 97, 98).

Although currently uncertain, possible
mechanisms underlying an attenuated stress
response during aging might include a reduced
availability of HSF (Ref. 86) or age-associated
increases in abnormal or denatured proteins that
could interfere with HSF binding to HSEs (Ref.
99). Alternatively, age-related decreases in the
capacity of HSF to undergo the oligomerisation
that is essential for binding to HSEs might be
involved.

Heat shock protein release
Heat shock proteins are typically regarded as
intracellular molecules; however, it is now
apparent that heat shock proteins can be released
into the extracellular compartment. It was
reported in the late 1980s that heat shock proteins
could be released from cultured rat embryo cells
(Ref. 100). Heat treatment of the cells broadened
the spectrum of proteins released, from a small
set of proteins including Hsc70 to a larger set
including Hsp70 and Hsp110. It was suggested
that the release of heat shock proteins might have
resulted from changes in pH and gas tension,
disruption of the diffusion layer at the cell surface
or mechanical stresses associated with in vitro
manipulations (Ref. 100). The release of heat shock
proteins did not appear to be mediated via the
common secretory pathway, as it was not blocked
by the inhibitors colchicine and monensin (Ref.
100). Nor did it result from cell lysis, as exposure
of cells to low concentrations of non-ionic
detergents indicated that Hsp70 is not readily
released from damaged cells. Instead, a selective
mechanism has been suggested. Evidence cited
in favour of this is the fact that Hsp70 synthesised
in the presence of the lysine amino acid analogue

aminoethyl cysteine was not released from cells,
probably due to an altered structure or function
preventing its correct interaction with the specific
release mechanism (Ref. 100). The precise
mechanism(s) by which heat shock proteins are
actively released by viable cells has yet to be
elucidated.

Subsequent studies have shown heat shock
proteins to be released from a variety of cells
including cultured human islet cells (Ref. 101),
rat glial cells and a human neuroblastoma cell
line (Ref. 102), as well as cultured vascular smooth
muscle cells exposed to reactive oxygen species
(Ref. 103). In these studies, release did not appear
to be a result of cellular necrosis. Myocardial
injury induces Hsp60 release from rat hearts in
organ culture; however, this most probably
resulted from myocardial necrosis (Ref. 104). A
selective release of heat shock proteins from
necrotic, but not apoptotic, cells has also been
described (Ref. 105). The physiological basis
for heat shock protein release from intact (non-
necrotic) cells has yet to be fully understood.
Glia–axon transfer proteins, which include
Hsp70, Hsc70 and Hsp100, are transferred from
adjacent glial cells to the squid giant axon (Ref.
106), and heat shock protein release might be an
altruistic response on the part of one cell for the
protection of adjacent cells (Ref. 100).

Hsp60 and Hsp70 can be detected in the serum
of normal individuals (Refs 107, 108), and in
keeping with a reduced capacity to generate stress
responses with aging, serum levels of heat shock
proteins also decline with age (Ref. 109). Elevated
levels of heat shock proteins have been observed
in subjects with borderline hypertension (Ref.
110), as well as in patients with peripheral and
renal vascular disease (Ref. 83). It is interesting to
note that, in the borderline hypertension study,
levels of Hsp60 correlated with the presence of
atherosclerosis (Ref. 110), and a similar finding in
a population-based study of clinically normal
subjects has been reported (Ref. 111). Hsp70
release into the serum following myocardial
infarction has also been reported in patients who
have experienced preceding angina (Ref. 112).

Although it is clear that heat shock proteins
are present and can be released into the peripheral
circulation in response to several conditions,
the physiological role of these proteins has yet
to be defined. The identification of heat shock
proteins and antibodies directed against heat
shock proteins in normal individuals (Refs 107,
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108, 111) indicates that their presence is not
limited to disease. The emerging evidence that
stress proteins can interact with cell-surface
receptors and elicit a range of biological activities
including the downregulation of autoimmune
disease (see below) suggests that they might
be involved in regulating immunity to the
ubiquitously expressed and highly conserved heat
shock proteins, and in the maintenance of the
‘normal’ state.

Heat shock proteins as
immunomodulators and intercellular

signalling molecules
Heat shock proteins have been shown to have
a number of immunological effects (Fig. 2).
Bacterial and mycobacterial heat shock proteins
induce pro-inflammatory cytokine expression
(Refs 113, 114, 115), and bacterial heat shock
proteins induce intercellular cell adhesion
molecule 1 (ICAM-1) and vascular cell adhesion
molecule 1 (VCAM-1) expression on human
vascular endothelial cells (Ref. 113). Chlamydial

and human Hsp60 activate human vascular
endothelial cells to express E-selectin, ICAM-1
and VCAM-1, and activate vascular endothelial
cells, smooth muscle cells and macrophages to
secrete interleukin 6 (IL-6) (Ref. 116). With kinetics
similar to those induced by lipopolysaccharide
(LPS), mammalian Hsp60 has also been
demonstrated to induce a rapid release of tumour
necrosis factor α (TNF-α) and nitric oxide from
macrophages, as well as the expression of IL-12
and IL-15 (Ref. 117).

Evidence that heat shock proteins can elicit a
range of biological and pro-inflammatory effects
has stimulated interest in finding cell-surface
receptors for these molecules. The existence of
specific receptors for heat shock proteins was
initially confirmed in studies demonstrating that
the presentation of heat shock protein-associated
peptides by major histocompatibility complex
(MHC) class I molecules required receptor-
mediated endocytosis (Refs 118, 119, 120), and
the identities of receptors for heat shock proteins
are now becoming apparent.

Hsp60

VCAM-1
ICAM-1

E-selectin

Cytokine
and mediator
production:

Receptor
induction:

IL-1α
IL-6
IL-12
IL-15
TNF-α
Nitric oxide

IL-6 IL-6

Monocytes and
macrophages

Vascular
endothelial cells

Smooth muscle cells

Expert Reviews in Molecular Medicine © 2001 Cambridge University Press

The heat shock protein Hsp60 is an intercellular signalling molecule

Figure 2. The heat shock protein Hsp60 as an intercellular signalling molecule. Hsp60 has been

shown to have several immunological effects, including the induction of pro-inflammatory cytokine secretion

from, and adhesion molecule expression on, a number of myeloid and vascular cell types, including smooth
muscle cells. Abbreviations: ICAM-1, intercellular adhesion molecule 1; IL, interleukin; TNF-α, tumour necrosis

factor α; VCAM-1, vascular cell adhesion molecule 1 (fig002gps).
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Human Hsp60 activates human peripheral
blood mononuclear cells and monocytes through
the CD14 antigen, using the signalling pathway
also utilised by LPS (Ref. 121; see Fig. 3). Signalling
is also mediated by the Toll-like receptor 4 (Ref.
122), which is an important mediator of innate
immunity and LPS signalling in murine cells
(Ref. 123). Hsp70 has also been shown to bind with
high affinity to human monocytes and the CD14
molecule is involved in Hsp70-induced activation
(Ref. 124). There appears to be a CD14-dependent
interaction leading to intracellular calcium fluxes
and the induction of pro-inflammatory cytokines
(IL-1β, IL-6, TNF-α), and a CD14-independent, but
calcium-dependent, response that leads to TNF-
α production (Ref. 124; see Fig. 3).

The cell-surface receptor for gp96 on
dendritic cells (DCs) is downregulated as they
undergo maturation (Ref. 125). This receptor
has now been identified as the CD91 molecule
(which is also known as the α2-macroglobulin
receptor or the LDL-related protein), to which it
binds directly (Ref. 126). In addition to gp96,

the CD91 molecule has since been shown to be
a common receptor for Hsp70, Hsp90 and
calreticulin, all of which can mediate the induction
of peptide-specific immunity as summarised
below (Ref. 127).

It is now clear that heat shock proteins have
an intercellular signalling role as well as a
chaperone function, and Asea and colleagues
have coined the term ‘chaperokine’ for these
ubiquitously expressed and versatile families of
molecules (Ref. 124).

The potential therapeutic value
of heat shock proteins

Some of the earliest evidence that heat shock
proteins might have a therapeutic potential
arose from the observations that exogenous
members of the Hsp70 family protect spinal
sensory neurons from axotomy-induced death
and cultured aortic cells from heat stress (Refs
128, 129). Subsequent work demonstrated that
exogenous Hsp70 could also protect rabbit
arterial smooth muscle cells subjected to serum

Uncharacterised receptor

IL-6

TNF-α
Nitric oxide TNF-α

IL1-β, IL-6,
TNF-α

Hsp60

CD14

Tlr4

Expert Reviews in Molecular Medicine © 2001 Cambridge University Press

The heat shock proteins Hsp60 and Hsp70 induce pro-inflammatory cytokine
secretion from monocytes

Human
monocyte

Hsp70

CD14

Human
monocyte

Figure 3. The heat shock proteins Hsp60 and Hsp70 induce pro-inflammatory cytokine secretion from
monocytes. Hsp60 induces several pro-inflammatory cytokines, and the signalling pathways responsible are
yet to be fully clarified. It induces the secretion of interleukin 6 (IL-6) from human monocytes via signalling

through CD14 and p38 mitogen-activated protein kinase, and binds to the Toll-like receptor 4 complex (Tlr4),

for which CD14 is a co-receptor, to induce the expression of TNF-α and nitric oxide. It also induces the expression
of a range of cytokines, including IL-12 and IL-15, through as yet uncharacterized pathways. Hsp70 acts

through a CD14-dependent pathway to stimulate IL-1β, IL-6 and TNF-α production, and also a CD14-independent

pathway that leads to TNF-α production, suggesting that CD14 is also a co-receptor for an as yet uncharacterised
Hsp70 receptor. Both Hsp70 pathways are calcium dependent (fig003gps).
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deprivation, by a mechanism that involved cell
association but not internalisation (Ref. 130).

There are a number of indications in which
heat shock proteins might be of therapeutic value.
To date, the majority of studies have focused on
either their capacity to regulate inflammatory
responses in autoimmune disease or their ability
to induce peptide-specific immune responses
against tumours and pathogenic organisms.

Modulation of inflammatory disease
Despite the association of heat shock protein
expression and heat shock protein reactivity with
autoimmunity, several observations question the
proposition that self-heat shock protein reactivity
has a direct pro-inflammatory role in autoimmune
disease. Although the literature on the subject is
less comprehensive, the situation might also be
the same in the case of transplantation.

The normal T-cell repertoire includes cells
reactive against autologous heat shock proteins
(Refs 20, 131, 132). Although heat shock
proteins have been considered to be intracellular
proteins and therefore normally shielded from
self-reactive T cells, it is now known that they are
released from a variety of normal cells in culture
(Refs 100, 101, 102, 103), expressed on the cell
surface (Ref. 133) and present in the peripheral
circulation of normal individuals (Refs 107,
108, 111). As discussed below, it appears that
T-cell reactivity to self-heat shock proteins is a
protective phenotype, and it is interesting to
note that peripheral blood T-cell responsiveness
to self- and non-self-heat shock proteins
segregates with their expression of CD45
isotypes. Human Hsp60 activates CD45RA+RO−

(naive) T cells, bacterial-specific peptides
activate CD45RA−RO+ (memory) T cells and
bacterial Hsp60 activates both CD45RA+RO−

and CD45RA−RO+ T cells (Ref .  132) .  The
observation that both types of T-cell subset
are activated by bacterial Hsp60 indicates that T
cells can recognise and respond to conserved
(self) epitopes on the whole bacterial molecule.
What is currently not known is the cytokine-
secreting profiles of cells responding to the
different heat shock proteins or specific
peptides derived from them. This is of particular
importance given the evidence from autoimmune
disease that self-heat shock protein reactivity
appears to induce a regulatory phenotype,
whereas reactivity to non-self induces a pro-
inflammatory phenotype, as is discussed below.

Autoimmune disease
In contrast to their proposed capacity to promote
pathogenic processes such as autoimmune
disease, T-cell reactivity to heat shock proteins can
also protect against disease, as demonstrated by
the capacity of Hsp60 and Hsp70 to downregulate
autoimmune disease (Refs 30, 134, 135, 136, 137,
138, 139, 140, 141).

An insight into the possible mechanisms by
which self-heat shock proteins might modulate
autoimmune disease has come from the work
of de Graeff-Meeder and co-workers (Ref. 134).
In patients with juvenile chronic arthritis, in
whom the disease follows a relapsing–remitting
rather than progressive course, the presence of
circulating T cells responsive to human (self)
Hsp60 was beneficial. These T cells were of the
regulatory T helper 2 (Th2) phenotype, whereas
T cells reactive with the 65 kDa mycobacterial
antigen Hsp65 displayed the inflammatory Th1
phenotype and their presence correlated with
disease severity (Ref. 142). It has also been
shown that stimulation of T cells from the
synovial fluid of RA patients with human, but
not bacterial, Hsp60 can stimulate regulatory
responses (Ref. 136). The apparent capacity of
self-heat shock protein to modulate
autoimmune disease in the clinical situation
confirms data indicating that protection by Hsp60
in experimental autoimmune disease appears
to be elicited by autoreactive T cells recognising
specific sequences of self-stress proteins (Refs 140,
141). The ability of Hsp60 peptides to modulate
adjuvant arthritis appears to reside in the capacity
of induced regulatory T cells to produce IL-10, as
well as IL-4 and interferon γ (IFN-γ) (Ref. 143).

Members of the Hsp70 family can also elicit
protection from autoimmune disease, and Hsp71
from Mycobacterium tuberculosis can modulate
experimental rat arthritis (Ref. 139). In a similar
way to Hsp60, the capacity of peptides from
mycobacterial Hsp70 to protect against the
subsequent induction of adjuvant arthritis in
Lewis rats appears to be mediated via the
production of suppressive cytokines, including
IL-10 (Refs 144, 145).

Allograft immunity
The capacity of heat shock proteins to modify
allograft rejection responses is less well defined;
however, immunising recipient animals with
self-Hsp60, or Hsp60 peptides that have the
capacity to shift Hsp60 reactivity from a Th1 to
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a Th2 phenotype, can delay murine skin allograft
rejection (Ref. 69). These studies indicate that
rather than being pro-inflammatory, self-Hsp
T-cell reactivity could be part of a normal
immunoregulatory T-cell response that has the
potential to control inflammatory disease (Ref.
146).

Induction of peptide-specific immunity
In addition to their capacity to downregulate
pro-inflammatory conditions the potential value
of heat shock proteins for inducing protective
immunity has been explored by several groups,
primarily in the areas of tumour immunity and
infectious disease.

Tumour immunity
It has been known for some time that heat
shock proteins bind peptide (Refs 4, 147) and
that heat shock proteins purified from cells
chaperone a large number of peptides derived
from the cells from which they are isolated – the
so-called ‘antigenic repertoire’ of that cell (Ref.
148). Early studies showed that fractionated
tumour cell lysates have the capacity to reduce
tumour cell growth in mice (Ref. 149). Since then,
it has been well established that immunisation
of mice with Hsp70, Hsp90 and gp96 isolated
from murine tumour cells induces anti-tumour
immunity and tumour-specific cytolytic T cells,
and that the immunity results from tumour-
derived peptides associated with the heat shock
protein rather than from the heat shock proteins
themselves (Ref. 150). More recently, it has been
reported that calreticulin, Hsp110 and grp170
can also be used in heat shock protein-based
cancer immunotherapy (Refs 151, 152). The
finding that the immunological properties of
heat shock proteins and the capacity of Hsp70
and gp96 to induce tumour protection as shown
in rodent models are also observed in
amphibians (Xenopus) (Ref. 153) indicates the
evolutionary conserved nature of these
functions, and strongly supports the successful
translation of these strategies into the clinical
environment. In that regard, preliminary clinical
trials have demonstrated the induction of
cancer-specific CD8+ T-cell responses in 6/12
patients immunised with gp96–peptide
complexes prepared from their own tumour
(Ref. 154). Clearly, the capacity of tumour-
derived heat shock proteins to induce specific
and protective immunity might have profound

effects on the treatment and management of
patients with malignant disease.

However, the immunological effects of heat
shock proteins purified from tumour cells have
a dual nature. The induction of immunity to
methylcholanthrene-induced fibrosarcoma by
the administration of gp96 purified from the
tumour displays a consistent dose restriction:
two intradermal administrations of <1 µg gp96
is ineffective; two doses of 1 µg induce immunity
and provide optimal protection against tumour
growth; and two doses of 10 µg do not protect
(Ref. 155). The lack of protection at high doses
of tumour-derived gp96 is an active, antigen-
specific downregulation of tumour-specific
immunity that can be adoptively transferred
by CD4+ T cells purified from animals treated
with high doses of tumour-derived gp96 (Ref.
155). These findings are exciting as they suggest
that immunisation with heat shock proteins that
are chaperoning clinically relevant peptides
might be an effective strategy for downregulating
several diseases including autoimmunity. In
that regard, gp96 purified from liver and pancreas
of C57/B6 mice has been shown to elicit
protection from autoimmune damage in NOD
mice that is long term and can be adoptively
transferred (Ref. 156).

The mechanisms by which heat shock proteins
can mediate peptide-specific immunity are yet
to be clearly defined. Antigen-presenting cells
(APCs) such as DCs and monocytes play a key
role, as they have been shown to internalise
heat shock proteins spontaneously by receptor-
mediated endocytosis via the CD91 receptor, and
direct chaperoned proteins/peptides into the
intracellular pathway for MHC class I-restricted
presentation to CD8+ T cells, concomitant with
the induction of DC maturation and cytokine
secretion (Refs 118, 126, 127; see Fig. 4). It is
interesting to note that α2-macroglobulin, the
originally described ligand for CD91, is also
able to channel exogenous antigens into the
endogenous pathway of antigen presentation via
the same receptor (Ref. 157).

The mechanism by which high doses of heat
shock protein can induce immunoregulation
is also unclear. In addition to inducing DC
maturation and the expression of antigen-
presenting and co-stimulatory molecules (Refs
105, 125), gp96 promotes the accumulation of
DCs into the draining lymph node (Ref. 158). It
might be that larger quantities of gp96 lead to a
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greater APC-mediated cytokine signal and the
preferential induction of regulatory CD4+ T cells
(Ref. 155).

Induction of immunity to
infectious agents
The capacity of heat shock proteins to
chaperone antigenic repertoires and induce
specific immunity to them has led to studies
evaluating whether the administration of heat
shock proteins from virally transformed cells, or
cells infected by pathogenic organisms, would
induce specific immunity (Ref. 159). This has
been shown to be the case, and specific immunity
has been induced by the administration of heat

shock proteins isolated from SV40-transformed
and influenza-infected cells (Refs 160, 161).
Peptide-specific cytolytic T cells and protective
anti-viral immunity can also be induced by
immunising mice with a mixture of gp96 or Hsp70
reconstituted with specific cytotoxic T lymphocyte
epitopes from SV40, influenza virus and
lymphocytic choriomeningitis virus (Refs 162,
163, 164). An alternative approach is to covalently
link appropriate antigens to heat shock proteins;
indeed, the immunisation of mice with the human
immunodeficiency virus 1 (HIV-1) p24 protein
covalently linked to mycobacterial Hsp70 elicits
antibody, cytokine and lymphocyte proliferative
responses (Ref. 165). Covalent linking is not

Figure 4. The heat shock protein gp96 delivers antigenic peptides and maturation signals to
antigen-presenting cells, and induces release of cytokines. (a) gp96–peptide complexes bind to CD91

and are taken up by dendritic cells via receptor-mediated endocytosis. (b) Peptides carried on gp96 are
thus delivered to the major histocompatibility complex (MHC) class I presentation pathway and are (c) re-

presented on the cell surface in association with MHC class I antigens for recognition by antigen-specific CD8+

T cells via the T-cell receptor (TCR) and associated molecules. (d) gp96 also delivers maturation signals to the
dendritic cells, and induces the expression of MHC antigens, co-stimulatory molecules such as B7 (which

binds to CD28), and intercellular adhesion molecule 1 (ICAM-1). This, combined with (e) the induction of pro-

inflammatory cytokines, promotes the generation of immune responses to gp96-chaperoned peptides.
Abbreviations: GM-CSF, granulocyte–macrophage colony-stimulating factor; IL-1, interleukin 1, TNF-α, tumour

necrosis factor α (fig004gps).
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necessary for the induction of immunity, as
non-covalently bound MHC class II influenza
virus peptide can also induce immune reactivity
to the Hsp70-binding peptide (Ref. 166).

Summary
There are clearly many aspects of heat shock
protein biology that remain puzzling. On the
one hand, reactivity to heat shock proteins
appears to be associated with several pathological
disease states, yet, on the other hand, heat
shock proteins are ubiquitously expressed and
reactivity to self-derived molecules can confer
protection against a number of pro-inflammatory
conditions. Future work will need to translate
the experimental data on the capacity of heat
shock proteins to induce tumour protection
and immunity to infectious agents into the
clinical environment and more fully evaluate
the mechanisms by which these effects are
induced and regulated. The observations that
heat shock proteins can be released and that
they can directly or indirectly elicit potent
immunoregulatory activities give a new
perspective on the roles of heat shock proteins
and anti-heat shock protein reactivity in
autoimmunity, transplantation, vascular disease
and other conditions. It is the qualitative nature
of the response to heat shock proteins rather
than its presence per se that is important, and

future experimental and clinical studies
attempting to associate heat shock proteins with
disease pathogenesis need to be designed to
address these issues. It is also important to define
definitively the specificity of any responses, so
that the outcome can be attributed to self- or non-
self-reactivity. By doing this, the contribution of
infective agents to pathogenic processes such as
autoimmunity and vascular disease can be truly
evaluated.

Heat shock proteins are extremely versatile
and potent molecules, the importance of which
to biological processes is highlighted by the
high degree to which their structure and
function are phylogenetically conserved. Our
knowledge of the physiological role of heat shock
proteins is currently limited; however, a better
understanding of their function and thereby the
acquisition of the capacity to harness their power
might lead to their use as therapeutic agents and
revolutionise clinical practice in a number of areas
(Fig. 5).
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Figure 5. Potential therapeutic applications for heat shock proteins. The potential therapeutic value
of heat shock proteins (Hsps) purified from appropriate tissues lies in their capacity to induce pro-inflammatory

responses at low concentrations and induce regulatory immunity at high doses. The observations that

recognition of non-self-heat shock proteins leads to inflammatory responses, whereas the recognition of
conserved epitopes induces regulatory responses, indicate that the administration of appropriate heat shock

protein peptides might have clinical efficacy in several conditions (fig005gps).
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Features associated with this article

Figures
Figure 1. Regulation of transcription of heat shock protein genes by heat shock factor (fig001gps).
Figure 2. The heat shock protein Hsp60 is an intercellular signalling molecule (fig002gps).
Figure 3. The heat shock proteins Hsp60 and Hsp70 induce pro-inflammatory cytokine secretion from

monocytes (fig003gps).
Figure 4. The heat shock protein gp96 delivers antigenic peptides and maturation signals to antigen-

presenting cells, and induces release of cytokines (fig004gps).
Figure 5. Potential therapeutic applications for heat shock proteins (fig005gps).

Table
Table 1. Major mammalian heat shock proteins and their function (tab001gps).
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