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Treatment of macrophages with lipopolysaccharide
(LPS) from Gram-negative bacteria or peptidoglycan
(PGN) from Gram-positive bacteria activates multiple
intracellular signaling pathways and a large, diverse
group of nuclear transcription factors. The signaling
receptors for PGN and LPS are now known to be the
Toll-like receptors 2 and 4 (TLR2 and -4, respectively).
While a large body of literature indicates that the mem-
bers of the TLR family activate nearly identical cyto-
plasmic signaling programs, several recent reports have
suggested that the functional outcomes of signaling via
TLR2 or TLR4 are not equivalent. In the current studies,
we compared the responses of the secretory IL-1 recep-
tor antagonist (sIL-1Ra) gene to both LPS and PGN.
Both LPS and PGN induced IL-1Ra gene expression;
however, the combination of both stimuli synergisti-
cally increased sIL-1Ra mRNA expression and promoter
activity, suggesting that the signals induced by PGN and
LPS are not equivalent. While both LPS and PGN uti-
lized the PU.1-binding sites in the proximal sIL-1Ra pro-
moter region to generate a full response, additional dis-
tinct promoter elements were utilized by LPS or PGN.
Activation of p38 stress-activated protein kinase was
required for LPS- or PGN-induced IL-1Ra gene expres-
sion, but the p38-responsive promoter elements local-
ized to distinct regions of the sIL-1Ra gene. Addition-
ally, while the LPS-induced, p38-dependent response
was dependent upon PU.1 binding, the PGN-induced,
p38 response was not. Collectively, these data indicated
that while some of the intracellular signaling events by
TLR2 and TLR4 agonists are similar, there are clearly
distinct differences in the responses elicited by these
two bacterial products.

The molecular mechanisms involved in the regulation of

cytokine genes in macrophages and monocytes in response to

stimulation with bacterial products has been a topic of intense

interest. Treatment of monocytes and macrophages with li-

popolysaccharide from Gram-negative bacteria or peptidogly-

can from Gram-positive bacteria leads to the production of a

vast array of cytokines and chemokines (1) and activates mul-

tiple intracellular signaling pathways including the extracel-

lular signal-regulated kinase, c-Jun N-terminal kinase, and

p38 mitogen-activated protein kinase families (2). Likewise, a

large and diverse group of nuclear transcription factors are also

activated, including NF-�B, AP-1, PU.1, and interferon regu-

latory factors (2). In the past few years, our understanding of

the events occurring following the interaction of microbes with

cells of the innate immune response has expanded remarkably.

The Toll-like receptors (TLRs)1 are an evolutionarily con-

served family of cell surface molecules that participate in in-

nate immune recognition of pathogen-associated molecular

patterns (PAMPs) (3). PAMPs are generally unique, chemically

diverse products with conserved motifs that are produced by

microorganisms. PAMPs often have an essential role in the

structure of bacteria and generally cannot be subtly modified

as a result of mutation. Examples include LPS (specifically

lipid A), peptidoglycan (PGN), lipoproteins, bacterial DNA, and

bacterial flagella. At least nine different TLRs have been iden-

tified. In some cases, the bacterial ligand has also been identi-

fied. For example, TLR2 recognizes peptidoglycan (4) and my-

cobacterial lipoarabinomannan (5), TLR4 recognizes LPS from

most Gram-negative species, TLR5 reacts with flagellin (6),

and TLR9 is a receptor for bacterial CpG DNA (7).

The signaling events occurring downstream of the TLRs are

rapidly being elucidated and appear to have many common

features. In general, the cascade of events occurring following

ligation of the different TLRs involves the activation of a com-

mon set of adapter proteins and protein kinases, the best char-

acterized of which leads to the activation of NF-�B (reviewed in

(8). Whereas a large body of literature indicates that the mem-

bers of the TLR family activate a nearly identical intracyto-

plasmic signaling program, several recent reports have begun

to suggest that the functional outcomes of signaling via TLR2

or TLR4 are not equivalent. As early as 1996, Dziarski et al. (9)

demonstrated that stimulation of RAW 264.7 macrophages

with LPS or PGN resulted in similar, but not identical activa-

tion of mitogen-activated protein kinases. More recently,

Hirschfeld et al. demonstrated that LPS derived from Porphy-

romonas gingivalis (a TLR2 ligand) or E. coli (a TLR4 ligand)

induced differential expression of a number of genes in murine

macrophages (10). Likewise, Jones, et al. demonstrated that a

secreted TLR2 agonist from culture filtrates of Mycobacterium

tuberculosis and Escherichia coli LPS induced distinct patterns

of cytokine production by RAW 264.7 macrophages (11).
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Interleukin-1 is one of the most highly inflammatory cyto-

kines produced by monocytes/macrophages in response to stim-

ulation with LPS. The discovery of a naturally occurring IL-1

receptor antagonist (IL-1Ra) has suggested a means of modu-

lating the IL-1-induced inflammatory response (12–14). IL-1Ra

is structurally related to IL-1 (13–15) but specifically blocks the

binding of IL-1� and IL-1� to cell surface receptors without

itself activating target cells (16, 17). The term IL-1Ra actually

refers to three closely related proteins. The first form to be

described, secretory or sIL-1Ra, was cloned from IgG-stimu-

lated human monocytes and encodes a protein of 177 amino

acids, including a 25-amino acid hydrophobic leader sequence,

which is subsequently cleaved, resulting in a secreted 152-

amino acid mature protein (14). An alternative form of IL-1Ra,

intracellular or icIL-1Ra, was cloned from an adherent mono-

cyte cDNA library (18). This structural variant is created when

an alternative first exon is spliced into an internal acceptor site

in the first exon of the sIL-1Ra RNA within the region encoding

for the secretory leader sequence. Thus icIL-1Ra is identical to

the mature sIL-1Ra protein except for seven additional amino

acids at the amino-terminal end, and icIL-1Ra lacks the hydro-

phobic leader sequence required for secretion. At the genomic

level, distinct promoters separated by nearly 10 kb of DNA

control the expression of sIL-1Ra and icIL-1Ra. Both forms of

IL-1Ra are equally effective at inhibiting IL-1-induced cellular

responses in vitro. However, given the strictly cell-associated

nature of icIL-1Ra, its role in modulating extracellular inflam-

matory responses remains to be determined. A third, low mo-

lecular weight form of IL-1Ra, termed icIL-1RaII, is derived

from an alternative translation initiation at the second ATG of

either the sIL-1Ra or icIL-1Ra mRNA (19). The biological role

of this form is unknown.

Previously, we have demonstrated that both isoforms of the

human IL-1Ra genes are transcriptionally activated in macro-

phages in response to LPS. Our own studies on the regulation

of the human secretory IL-1Ra promoter have demonstrated

that NF-�B, CCAAT/enhancer-binding protein, STAT6, and

most recently PU.1 and GABP are involved in regulating gene

expression in macrophages (20, 21). Of these, PU.1 appears to

be the most critical for the response of the sIL-1Ra gene to LPS.

The response of the sIL-1Ra gene to PGN has not previously

been evaluated. In the current studies, we have compared the

responses of the sIL-1Ra gene to both LPS and PGN. Here we

report that both LPS and PGN can induce sIL-1Ra gene ex-

pression; however, the combination of both stimuli synergisti-

cally up-regulated sIL-1Ra gene expression and promoter ac-

tivity, suggesting that the signals induced by PGN and LPS are

not equivalent. Both LPS and PGN utilized the PU.1-binding

sites in the proximal promoter region to generate a full re-

sponse; however, additional distinct promoter elements were

utilized by LPS or PGN. We determined that the activation of

p38 SAPK was an important component of the response elicited

by LPS and PGN but that the p38-responsive promoter ele-

ments localized to distinct regions of the sIL-1Ra gene. Addi-

tionally, while the LPS-induced p38-dependent response was

dependent upon PU.1 binding, the PGN-induced, p38 response

was not. Collectively, these data indicated that while some of

the intracellular signaling events induced by TLR2 and TLR4

agonists are similar, there are clearly distinct differences in the

responses elicited by these two TLR ligands.

EXPERIMENTAL PROCEDURES

Reagents

LPS (E. coli serotype 055:B5) was obtained from Sigma. Prior to use,

LPS was subjected to an additional purification procedure as described

by Hirschfeld et al. (22). This procedure resulted in LPS that was free

from contaminating endotoxin protein and is a specific TLR4 agonist.

Peptidoglycan purified from Staphyloccous aureus was purchased from

Fluka. The selective p38 inhibitor SB203580 was obtained from Alexis

Pharmaceuticals (San Diego, CA).

Quantitative Real Time Reverse Transcription (RT)-PCR Analysis

Total RNA was purified using the Trizol reagent (Invitrogen).

Briefly, RT of 0.5 �g of total cellular RNA was performed in a final

volume of 20 �l containing 5� first strand buffer (Invitrogen), 1 mM

concentration of each dNTP, 20 units of placental RNase inhibitor, 5 �M

random hexamer, and 9 units of Moloney murine leukemia virus re-

verse transcriptase (Invitrogen). After incubation at 37 °C for 45 min,

the samples were heated for 5 min at 92 °C to end the reaction and

stored at �20 °C until PCR use. 2 �l of cDNA was subjected to real time,

quantitative PCR using the iCycler (Bio-Rad) with SYBR Green I (Mo-

lecular Probes, Inc., Eugene, OR) as a fluorescent reporter. sIL-1Ra and

GAPDH cDNAs were amplified in separate reactions. Threshold cycle

number was determined using the iCycler software, and levels of sIL-

1Ra expression were normalized to GAPDH levels using the formula

2(Rt � Et), where Rt represents the threshold cycle for the reference gene

(GAPDH) and Et is the threshold cycle for the experimental gene

(sIL-1Ra). Data are thus expressed as arbitrary units. Primer se-

quences were as follows: sIL-1Ra F, AAATCTGCTGGGGACCCTAC;

sIL-1Ra R, TCCCAGATTCTGAAGGCTTG; GAPDH F, GTGTGAACG-

GATTTGGCCGT; GAPDH R, GAGGTCAATGAAGGGGTCGT.

DNA Constructs

Human TLR2, TLR4, and MD-2 Expression Plasmids—Human

TLR2 and TLR4 cDNAs corresponding to the entire coding regions were

generated by RT-PCR using primers corresponding to the published

sequences and cloned into pcDNA3.1Zeo (Invitrogen). The human MD-2

expression construct was generated by RT-PCR and cloned into pEF6/

myc-His (Invitrogen) to generate a molecule containing amino-terminal

c-Myc and His6 tags. Sequences of all clones were confirmed by auto-

mated sequencing.

IL-1Ra Genomic Clone Isolation—A gridded array of P1 clones that

was approximately 2 times representative of the human genome was a

kind gift of Drs. Fiona Watt and Hans Lehrach (Imperial Cancer Re-

search Fund, London, UK). The library was screened by hybridization

with a cDNA probe for exon 2 of human IL1RN, and clone

ICRF700G13105 was identified. The clone contained �80 kb of genomic

DNA. DNA was isolated and digested with various rare cutters. BstZI

was used to generate a fragment that contained the entire ILRN gene,

as determined by hybridization with oligonucleotides derived from exon

1 and the 3�-end of exon 4. A 23-kb BstZI fragment was subcloned into

a pUC9 derivative that had been modified to replace its linker with a

NotI site containing a stuffer sequence.2 The stuffer sequence was

removed with NotI, and the cohesive BstZI fragments from the P1 clone

were ligated. Recombinant plasmids were screened by hybridization.

Sequencing of the 5�-end of the insert indicated that the entire IL1RN

gene was present. This construct was termed pRNZ1.

IL-1Ra Promoter/Luciferase Reporter Constructs—A 7.1-kb sIL-1Ra

promoter/luciferase reporter plasmid was constructed by cloning a

6.8-kb KpnI genomic fragment derived from pRNZ1 into the unique

KpnI site at �294 of the human sIL-1Ra promoter in pA3Luc (20).

Promoter deletions from the 5�-end were created by standard subclon-

ing techniques using convenient restriction enzyme sites or PCR. Site-

directed mutants were initially generated in the 294-bp proximal pro-

moter construct by recombinant PCR and verified by sequencing. A

3.1-kb genomic fragment, corresponding to sequences from approxi-

mately �3400 to �294, was subcloned into pBS-SK and then inserted

into the KpnI site as above to generate mutants in the context of the

full-length 3.4-kb sIL-1Ra promoter.

The human CD14 expression vector was a gift of R. Ulevitch (Scripps

Research Institute, La Jolla, CA), and dominant negative MKK3 and

MKK6 plasmids were gifts of R. J. Davis (University of Massachusetts,

Worcester, MA). NF-�BLuc was from CLONTECH. All plasmid DNAs

were isolated by using endotoxin-free preparation kits from Qiagen

(Valencia, CA) or Stratagene (La Jolla, CA).

Cell Culture and Transfection

The RAW 264.7 murine macrophage cell line and HEK293 cells were

obtained from ATCC and maintained in RPMI 1640 containing 10%

heat-inactivated fetal bovine serum (Hyclone, Logan, UT). RAW 264.7

cells were cultured and transfected, and luciferase activities were meas-

ured as previously described (21). HEK293 cells were transfected in

2 M. Nicklin, unpublished observations.
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24-well plates using LipofectAMINE (Invitrogen). Each transfection

contained 500 ng of NF-�BLuc, 50 ng of TLR2 or TLR4, 50 ng of

pEF6-MD2, 100 ng of pRc/RSVCD14, 200 ng of pTK-renilla (Promega),

and 4 �l of LipofectAMINE. Transfections were performed in triplicate,

cultured for 40 h, and then stimulated as indicated for an additional 8 h.

Luciferase activities were determined using the dual luciferase kit from

Promega, and all activities were normalized to the activity of the co-

transfected TK-renilla plasmid.

Western Blot Analysis

Antibodies were obtained as follows: p38 from Santa Cruz Biotech-

nology, Inc. (Santa Cruz, CA); phospho-p38 from New England Biolabs;

and anti-FLAG (M2) from Sigma. For analysis of p38 phosphorylation,

RAW 264.7 cells were seeded into six-well tissue culture plates. Cells

were stimulated for the indicated time with LPS or peptidoglycan,

washed one time with cold phosphate-buffered saline, and lysed in situ

with 100 �l of SDS sample buffer. DNA was sheared by passage through

a 25-gauge needle; lysates were boiled for 5 min and iced; and 10 �l was

loaded onto a 12.5% SDS-polyacrylamide gel. Separated proteins were

electroblotted unto nitrocellulose, and phosphorylated p38 was detected

with a 1:1000 dilution of the antibody according to the manufacturer’s

recommendation. Detection was carried out using the ECL reagent

from Amersham Biosciences. Blots were stripped of antibodies by wash-

ing in 62.5 mM Tris-HCl (pH 6.7), 100 mM 2-mercaptoethanol, 2% SDS

for 50 min at 50 °C. The filters were then washed in Tris-buffered saline

plus 0.05% Tween 20 and reprobed for total p38.

For detection of FLAG-tagged dominant negative MKK3 or MKK6,

equal amounts of protein from cell lysates of RAW 264.7 cells trans-

fected with expression vectors for the dominant negatives or control

empty vector were immunoprecipitated using the M2 antibody, electro-

phoresed through a 10% SDS-polyacrylamide gel, blotted to nitrocellu-

lose, and detected using the anti-FLAG antibody according to the man-

ufacturer’s recommendations.

RESULTS

Highly Purified LPS and Peptidoglycan Are TLR4- and

TLR2-specific Agonists, Respectively—Hirschfeld et al. (22)

have demonstrated that commercially available preparations

of LPS may be contaminated with endotoxin-associated pro-

teins and as such are not pure TLR4 ligands. In order to

establish that the reagents used in the following studies are

TLR2- and TLR4-specific agonists, we tested their abilities to

activate an NF-�B reporter plasmid in HEK293 cells engi-

neered to express either TLR2 or TLR4. We constructed human

TLR2 and TLR4 expression plasmids by cloning the coding

regions for the two genes, generated by RT-PCR from human

monocyte mRNA, into the pcDNA3.1 eukaryotic expression

plasmid (Invitrogen). To validate this system, the experiment

shown in Fig. 1 was performed. HEK293 cells were transiently

transfected with the NF-�B/luciferase reporter, Rc/RSV-CD14,

and either pcDNA3-TLR2 or pcDNA3-TLR4. 40 h after trans-

fection, cultures were stimulated for 8 h with the indicated

ligands.

As shown in Fig. 1, unextracted, commercially prepared LPS

and peptidoglycan but not highly purified LPS were able to

activate NF-�B in TLR2-transfected cells. In contrast, NF-�B

was activated in TLR4-transfected cells by purified or unpuri-

fied LPS but not by peptidoglycan. These results confirmed

that HEK293 cells engineered to express either TLR2 or TLR4

responded appropriately when stimulated with TLR2-specific

(peptidoglycan) or TLR4-specific (repurified E. coli LPS) li-

gands. The dual specificity of the commercially prepared LPS

for TLR2 and TLR4 suggests contamination of the preparations

with endotoxin-associated proteins. However, as predicted, re-

extraction of the LPS according to the previously described

method (22) eliminated signaling via TLR2. These results

therefore confirmed that the LPS and PGN preparations used

in the following studies are pure TLR4 and TLR2 agonists,

respectively.

LPS and Peptidoglycan Induce IL-1Ra Gene Expression—In

earlier studies, we and others have demonstrated that the

human IL-1Ra gene is transcriptionally up-regulated in macro-

phages in response to LPS (20, 24–26). The response of the

IL-1Ra gene to Gram-positive bacterial products has not pre-

viously been examined. In Fig. 2A, we assessed the ability of

LPS, PGN, or the combination to induce sIL-1Ra mRNA in

RAW 264.7 macrophages. Cultures were stimulated for 4 h

with 1 �g/ml LPS and/or 10 �g/ml PGN, total RNA was puri-

fied, and sIL-1Ra mRNA expression was assessed by quantita-

tive RT-PCR. As expected, treatment with LPS resulted in a

robust enhancement of sIL-1Ra mRNA expression. Peptidogly-

can at 10 �g/ml was somewhat less effective in inducing mRNA

expression. Surprisingly, the combination treatment with LPS

and PGN resulted in a very large increase in sIL-1Ra mRNA

expression that was greater than either LPS or PGN alone.

This response occurred despite using quantities of LPS and

PGN that were previously determined to result in maximal

IL-1Ra expression (data not shown).

Previously, we have demonstrated that the proximal 294 bp

of the human sIL-1Ra promoter contained DNA elements re-

quired for the tissue-specific and LPS-inducible activity of the

promoter (21). However, studies in which the �-galactosidase

gene was placed under the control of a 1680-bp IL-1Ra pro-

moter fragment and used to create a transgenic mouse demon-

strated that, in fact, this region did not contain all promoter

elements required for appropriate tissue- and stimulus-specific

expression (27). In order to determine whether other, more

distal, cis-acting DNA sequences were contained within the

5�-flanking region of the human sIL-1Ra gene, we generated

luciferase reporter constructs containing up to �7100 bp of

sIL-1Ra DNA sequence upstream of the transcriptional start

site. When transfected into RAW 264.7 cells, LPS induced

approximately a 15-fold increase in promoter activity from the

7.1-kb promoter compared with 4-fold from the 294-bp pro-

moter. Furthermore, deletions from the 5�-end of this region

demonstrated that the minimal fully LPS- and PGN-responsive

sIL-1Ra promoter consisted of 3400 bp of 5�-flanking sequence

(data not shown).

In the experiment shown in Fig. 2B, this 3.4-kb sIL-1Ra

promoter/luciferase reporter construct was transiently trans-

fected in RAW 264.7 cells and the response to LPS, PGN, or the

combination was assessed. Similar to what we observed for

steady state mRNA expression, the human sIL-1Ra promoter

FIG. 1. Highly purified LPS and peptidoglycan are TLR4- and
TLR2-specific agonists, respectively. HEK 293 cells were tran-
siently transfected with NF-�BLuc, pRc/RSVCD14, pEF6MD2, and ei-
ther pcDNA3.1-TLR2 or pcDNA3.1-TLR4 plasmids. Triplicate transfec-
tions were stimulated with 1 �g/ml LPS or 10 �g/ml PGN as indicated
for 8 h prior to assay for luciferase activity as described under “Exper-
imental Procedures.” Data are from a single representative experiment
of three performed.
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was activated approximately equally by LPS or PGN. The

combination of LPS and PGN resulted in a synergistic 37-fold

increase in promoter activity. This result suggested that dis-

tinct signals may be induced by PGN and LPS, which result in

the activation of distinct transcription factors that regulate

IL-1Ra promoter activity.

To determine whether the signals by PGN and LPS do indeed

result in the regulation of IL-1Ra promoter activity through

different cis-acting promoter elements, we assessed the re-

sponses of a series of 5� promoter deletions to LPS or PGN. In

the studies shown in Fig. 3, RAW 264.7 cells were transiently

transfected with human sIL-1Ra promoter constructs ranging

from 294-bp up to 3400 bp, and the activation of each was

determined in response to stimulation of the cells with LPS or

PGN. The results in Fig. 3A indicated the presence of two

previously unidentified LPS-responsive promoter elements:

one between �3.4 and �2.8 kb and a second between �1680

and �294 bp. Fig. 3B shows the results of experiments assess-

ing the response of the same constructs to PGN. In this case,

the PGN response also required sequences between �3.4 and

�2.8 kb; however, there was no loss in response when the

region between �1680 and �294 was deleted, suggesting that

this region does not contain promoter sequences required for

the response of the sIL-1Ra promoter to PGN. However, dele-

tion of sequences between �294 and �250 resulted in a de-

crease in the response to PGN without a corresponding loss of

LPS-induced promoter activity. Taken together, these results

indicated that the response of the human sIL-1Ra gene to PGN

or LPS is dependent on the activation of different groups of

transcription factors, the implication of this result being that

the treatment of cells with TLR2 or TLR4 ligands may result in

the activation of different signal transduction programs.

Role of p38 SAPK in LPS- and PGN-induced IL-1Ra Gene

Expression—LPS treatment of macrophages has been demon-

strated to activate multiple mitogen-activated protein kinase

family members including extracellular signal-regulated ki-

nases 1 and 2, c-Jun N-terminal kinase, and p38 (reviewed in

Ref. 28). In addition, Dziarski et al. (9) have demonstrated that

LPS and PGN activate similar but not identical signal trans-

duction pathways in macrophages. In particular, they indi-

cated that p38 SAPK was strongly activated by LPS but only

weakly activated by PGN. In the experiments shown in Fig. 4,

we assessed the activation of p38 in RAW 264.7 cells treated

with LPS and/or PGN using a phospho-p38-specific antibody,

which only recognizes the tyrosine-phosphorylated and hence

activated form of p38. Fig. 4A shows the results of an experi-

ment in which the activation of p38 was assessed following a

10-min stimulation with LPS and/or PGN. Consistent with the

results of Dziarski’s study, we observed that LPS was a stron-

ger activator of p38 than PGN. Additionally, treatment of cells

with a combination of LPS and PGN resulted in a level of p38

phosphorylation that was equivalent to that observed with LPS

alone. To more closely examine the activation of p38 SAPK

following LPS or PGN stimulation, the time course experiment

shown in Fig. 4B was performed. LPS induced a very rapid (�5

min) phosphorylation of p38 that was maximal by 15 min and

decreased to a lower steady state level by 45 min. In contrast,

the activation of p38 in response to PGN was reproducibly

delayed by 10–15 min compared with LPS. Similar to LPS,

PGN-activated p38 decreased to a low steady state level, al-

though, like the induction phase of the response, it was also

delayed compared with LPS. Notably, both LPS and PGN were

capable of activating p38 to comparable levels albeit with dif-

ferent kinetics.

In the following studies, we assessed the role of p38 SAPK on

the regulation of sIL-1Ra gene expression in response to PGN

FIG. 2. LPS and PGN induce sIL-1Ra gene expression. A, quan-
titative RT-PCR analysis of sIL-1Ra gene expression in RAW 264.7 cells
stimulated with 1 �g/ml LPS, 10 �g/ml PGFN, or the combination for
4 h prior to isolation of total cellular RNA. sIL-1Ra mRNA expression
was normalized to GAPDH expression as described under “Experimen-
tal Procedures” and is expressed as arbitrary units. B, RAW 264.7 cells
were transiently transfected with the 3.4-kb IL-1Ra/luciferase reporter
and stimulated for 8 h with LPS, PGN, or the combination of both.
Results indicate relative light units � S.D. of triplicate transfections.
One representative experiment of three performed is shown.

FIG. 3. 5�-Deletional mapping of LPS- and PGN-responsive
promoter elements. RAW 264.7 cells were transiently transfected
with luciferase reporter constructs containing human sIL-1Ra promoter
fragments of the indicated length. Cells were stimulated with either 1
�g/ml LPS (A) or 10 �g/ml PGN (B) for 8 h prior to harvest and assay
for luciferase activity. Results indicate -fold response � S.D. over un-
stimulated cells for each construct. n � 4 for each construct. p values
are derived from Student’s t test.
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and LPS. Cultures of RAW 264.7 cells were treated with a 1 �M

concentration of the highly selective p38 inhibitor SB203580

for 30 min prior to stimulation with 1 �g/ml LPS, 10 �g/ml

PGN, or the combination for 4 h. Total RNA was isolated, and

sIL-1Ra mRNA accumulation was analyzed by quantitative

RT-PCR. As shown in Fig. 5A, pretreatment with SB203580

inhibited the accumulation of LPS- or PGN-induced IL-1Ra

mRNA. As demonstrated in Fig. 2, the combination of LPS plus

PGN resulted in a synergistic induction of sIL-1Ra mRNA,

which was also decreased by inhibition of p38. One possible

explanation for this finding is that p38 SAPK affects the sta-

bility of the IL-1Ra mRNA. However, the IL-1Ra mRNA does

not contain the typical AUUUA sequences found in other labile

cytokine mRNAs that are regulated by p38. Thus, we examined

the role of LPS- or PGN-activated p38 in the activation of the

human sIL-1Ra promoter. In the transient transfection exper-

iment shown in Fig. 5B, RAW 264.7 cells were transfected with

the full-length 3.4-kb IL-1Ra promoter/luciferase reporter con-

struct. 30 min prior to stimulation, cultures were treated with

1 �M SB203580 followed by stimulation with LPS and/or PGN

for an additional 8 h. Consistent with the results from the

Northern blot experiment, SB203580 was able to inhibit the

activation of the sIL-1Ra promoter in response to LPS, PGN, or

the combination of LPS and PGN. Taken together, these data

indicate that both LPS and PGN regulate sIL-1Ra gene expres-

sion, in part, through the activation of p38 SAPK.

LPS- and PGN-activated p38 Regulate the sIL-1Ra Promoter

through Different Cis-acting Elements—The studies shown in

Fig. 3 indicated that LPS and PGN regulate sIL-1Ra gene

expression through the use of different cis-acting promoter

regions. In the following studies, we sought to determine

whether the responses to LPS-activated and PGN-activated

p38 SAPK map to the same regions within the sIL-1Ra pro-

moter. RAW 264.7 cells were transiently transfected with the

same series of promoter deletion constructs used in the exper-

iments shown in Fig. 3, and the responses to LPS or PGN were

determined in the presence or absence of 1 �M SB203580. As

shown in Fig. 6A, the LPS-induced responses of all of the

constructs, with the exception of the �294 promoter, were

decreased as a result of inhibition of p38. This result therefore

indicates that the region of the IL-1Ra promoter between

�1680 and �294 contains a p38-responsive cis-acting element

that probably binds transcription factors that are acted upon

either directly or indirectly by p38. This region of DNA contains

putative binding sites for several potential targets of p38 in-

cluding CCAAT/enhancer-binding protein and AP-1. Interest-

ingly, when cloned upstream of a minimal herpes simplex virus

thymidine kinase promoter, the region between �1680 and

�294 did not demonstrate any LPS-inducible activity, suggest-

ing that other promoter elements are required for the ability of

these sites to induce sIL-1Ra gene expression (data not shown).

In contrast, the PGN-induced responses of all of the con-

structs, except for the �250 bp promoter construct, were

equally inhibited by SB203580 (Fig. 6B). This result suggests

that the PGN-induced, p38-dependent cis-acting element is

distinct from the LPS-induced element and lies between �294

and �250. These surprising results thus suggest that, although

both LPS and PGN activate p38 SAPK, the functional outcomes

of those events are distinct.

LPS and PGN Induce IL-1Ra Expression via MKK3 in RAW

264.7 Macrophages—In order to more closely examine the

mechanism through which LPS and PGN induce IL-1Ra ex-

pression, we sought to determine the roles of MKK3 and MKK6

in activating p38 SAPK and subsequently the IL-1Ra gene. The

following experiments were also undertaken to confirm that

the results with SB203580 were in fact due to its ability to

inhibit p38 and not to due other potential effects such as

inhibition of protein kinase B as previously described (29). To

inhibit activation specifically via MKK3 or MKK6, RAW 264.7

cells were cotransfected with either the 3.4-kb or 294-bp sIL-

FIG. 4. Activation of p38 SAPK by LPS and PGN. RAW 264.7
cells were stimulated with LPS (1 �g/ml), PGN (10 �g/ml), or the
combination of both for 10 min (A) or for the indicated time (B). Whole
cell lysates were run on a 12% SDS-PAGE gel. Western analysis was
performed using an antibody specific for the phosphorylated form of p38
(pp38). Blots were stripped and reprobed with an antibody that recog-
nizes total p38 (Total p38). Immunoreactive bands were visualized by
chemiluminescence.

FIG. 5. SB203580 inhibits LPS-, PGN-, and LPS plus PGN-in-
duced sIL-1Ra gene expression. A, quantitative RT-PCR analysis of
sIL-1Ra mRNA expression from RAW 264.7 cells that were treated with
1 �g/ml LPS, 10 �g/ml PGN, or LPS plus PGN for 4 h with or without
a 30-min pretreatment with 1 �M SB203580. sIL-1Ra mRNA expression
was normalized to GAPDH expression as described under “Experimen-
tal Procedures” and is expressed as arbitrary units. B, RAW 264.7 cells
were transiently transfected with the 3.4-kb sIL-1Ra promoter/lucifer-
ase reporter construct. Triplicate cultures were treated with LPS, PGN,
or PGN plus LPS for 8 h with or without a 30-min pretreatment with 1
�M SB203580. Results are from one representative experiment of three
performed.

Regulation of sIL-1Ra by LPS and PGN17452



1Ra promoter/luciferase reporter constructs and dominant neg-

ative MKK3 or MKK6 expression plasmids. As shown in Fig.

7A, LPS-induced IL-1Ra promoter activity was inhibited by

cotransfection of dominant negative MKK3 but not MKK6.

This inhibition was equal to that observed when the cells were

treated with SB203580. Consistent with the experiments

shown in Fig. 6, the LPS-induced activity of the 294-bp pro-

moter was not inhibited by dominant negative MKK3 or

MKK6. Likewise, in Fig. 7B we examined the effect of dnMKK3

or dnMKK6 on PGN-induced activity of the 294-bp IL-1Ra

promoter. Again, consistent with results shown in Fig. 6,

dnMKK3 but not dnMKK6 inhibited PGN-induced sIL-1Ra

promoter activity. Immunoprecipitates of lysates from trans-

fected cells using an anti-FLAG antibody demonstrated that

the epitope-tagged MKK3 and MKK6 proteins were in fact both

expressed (Fig. 7C).

Role of PU.1-binding Sites in LPS- and PGN-induced Gene

Expression—The proximal 294-bp sIL-1Ra promoter contains

two PU.1-binding sites that we previously demonstrated to be

critical for the response of the proximal promoter to LPS (21).

One of these sites, located at �81 to �93, is a composite

NF-�B/PU.1/GABP binding site. Our earlier studies demon-

strated that GABP did not participate in the LPS response of

the IL-1Ra promoter; however, NF-�B and PU.1 did. To assess

the role of PU.1 in regulating the activity of the full-length

sIL-1Ra promoter in response to LPS- and PGN-activated p38,

a series of site-directed mutants at the two proximal PU.1-

binding sites were generated in the context of the 3.4-kb pro-

moter fragment.

As shown in Fig. 8A, mutation of the downstream PU.1/

NF-�B site (Fig. 8B) resulted in a loss of LPS responsiveness

that could be further inhibited by SB203580. Likewise, muta-

tion of the upstream PU.1 site located at �225 (C) resulted in

an �40% decrease in the LPS response, consistent with our

previously published studies and was significantly inhibited by

treatment with SB203580. However, mutation of both sites (D)

resulted in a further loss of LPS responsiveness that was not

affected by inhibition of p38. Since the LPS responsive element

between �81 and �93 is a composite NF-�B/PU.1-binding site,

we wanted to clarify the role of PU.1 or NF-�B in regulating

p38-responsive IL-1Ra promoter activity. Site-directed mu-

tants, in the context of the full-length 3400-bp promoter, were

generated, which contained a mutation within the �225 PU.1

site as well as specifically blocked PU.1 or NF-�B binding to the

�81 to �93 site (21). Mutation of the PU.1 half-site (E) resulted

in a promoter construct with the same functional characteris-

tics as the double mutant: low response to LPS and no inhibi-

tion by SB203580. However, mutation of the NF-�B half-site

(F) resulted in a promoter construct with increased LPS re-

sponsiveness that was also inhibited by treatment with

SB203580. Taken together, these results demonstrated that, in

FIG. 6. LPS- and PGN-activated p38 regulate the sIL-1Ra pro-
moter through different cis-acting elements. RAW 264.7 cells were
transiently transfected with the indicated IL-1Ra promoter/luciferase
reporter construct and stimulated with 1 �g/ml LPS or 10 �g/ml PGN in
the presence or absence of 1 �M SB203580 for 8 h. A, -fold response to
LPS � S.D. of at least four transfections with each construct. B, -fold
response to PGN � S.D. of at least four transfections with each con-
struct. C, percent inhibition of the response to LPS or PGN by pretreat-
ment with SB203580. Data represent means � S.D. from at least four
experiments with each construct.

FIG. 7. LPS and PGN induce sIL-1Ra promoter activity via
MKK3. RAW 264.7 cells were transiently transfected with sIL-1Ra
promoter/luciferase reporters and expression vectors for dominant neg-
ative MKK3, MKK6, or empty vector. Cultures were stimulated with 1
�g/ml LPS or 10 �g/ml PGN for 8 h prior to assay for luciferase activity.
Results are means � S.D. of three separate experiments. p values were
determined by paired t test. A, LPS response. Cells were transfected
with either the 3400- or 294-bp IL-1Ra promoters. B, PGN response.
Cells were transfected with the 294-bp IL-1Ra promoter reporter. C,
immunoblot of whole cell lysates from transfected cells demonstrating
the expression of the FLAG-tagged dominant negative MKK proteins as
described under “Experimental Procedures.”
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the context of the full-length 3.4-kb sIL-1Ra promoter, PU.1

binding is critical for full responsiveness to LPS. Additionally,

the p38-dependent promoter activity also requires PU.1. How-

ever, the ability of PU.1 alone to regulate LPS-inducible ex-

pression of the sIL-1Ra gene does not appear to be directly

dependent on p38, since the LPS response of the intact proxi-

mal 294-bp promoter, which contains both PU.1-binding sites,

was unaffected by treatment with SB203580 (Fig. 6, A and C).

The role of the proximal PU.1 sites in the control of PGN-

induced promoter activity was also examined (Fig. 8B). The

response of the sIL-1Ra promoter to PGN was also dependent

upon the presence of the PU.1 sites; however, this dependence

was clearly less than that of LPS as evidenced when both PU.1

sites are mutated (Fig. 8B, lanes D and E). Mutation of both

PU.1 sites reduced the response of the promoter to LPS by

�75%, but the PGN response was only reduced �50%. More

striking was the lack of a requirement for PU.1 in response of

the sIL-1Ra gene to PGN-activated p38. Unlike LPS, which had

an absolute requirement for at least one PU.1-binding site in

order to respond via p38, mutation of the PU.1 sites had no

effect on the ability of SB203580 to inhibit PGN-induced pro-

moter activity. Collectively, these results indicated that 1)

PU.1 is not likely to be a direct target of p38 action; 2) the

transcription factor activated by LPS-induced p38 may require

the presence of PU.1 for its function; and 3) the PGN-induced,

p38-responsive factor works independently of PU.1

DISCUSSION

Over the past few years, our understanding of the molecular

mechanisms involved in the response of cells of the innate

immune system to microbial products has increased dramati-

cally. The identification of mammalian Toll-like receptors as

the cell surface proteins that distinguish between different

bacterial products and transduce signals to the responding cell

was a highly significant finding. Interestingly, although the

different TLRs recognize a wide variety of chemically diverse

bacterial products, most studies have indicated that they acti-

vate a similar series of intracellular signaling molecules (re-

viewed in Ref. 30). Several recent papers have suggested that

the signals generated by TLR2 and TLR4 are not equivalent.

Hirschfeld et al. (10) compared the responses of 11 different

genes in macrophages to LPS derived from E. coli or P. gingi-

valis (TLR4 and TLR2 ligands, respectively). While the induc-

tion of mRNA for genes such as macrophage inflammatory

protein-1� and IL-1� was equivalent for E. coli or P. gingivalis

LPS, other genes such a IL-6 and IL-12p40 were at best only

weakly induced by the TLR2-specific LPS. Likewise, Jones et

al. (11) demonstrated that whereas both LPS and a soluble

TLR2 agonist from culture filtrates of M. tuberculosis (manno-

sylated phophatidylinositol) could induce tumor necrosis fac-

tor-� production, only LPS was capable of inducing IL-1� and

nitric oxide secretion. One possible molecular mechanism for

the differential signaling downstream of TLR2 and TLR4 has

been provided by the recent identification of a second, receptor-

proximal adapter protein (in addition to MyD88) that partici-

pates in TLR4 but not TLR2 signaling (31, 32).

In this report, we have provided evidence that different Toll-

like receptor ligands can activate the same gene through dif-

ferent mechanisms. We studied the regulation of the gene for

the secreted IL-1 receptor antagonist in response to the TLR2

agonist PGN and the TLR4 agonist E. coli LPS. While both

PGN and LPS could induce sIL-1Ra gene expression and pro-

moter activity to approximately equal levels, the combination

of the two stimuli resulted in a synergistic increase in both

mRNA accumulation and promoter activity. This result sug-

FIG. 8. Role of PU.1-binding sites in LPS- or PGN-induced sIL-1Ra promoter activity. RAW 264.7 cells were transfected with the
indicated site-directed mutant sIL-1Ra promoter/luciferase reporter. Cultures were stimulated with 1 �g/ml LPS or 10 �g/ml PGN in the presence
or absence of 1 �M SB203580 as described in Fig. 6. Results represent means � S.D. of at least three separate experiments with each construct.
p values were determined by paired t test. A, LPS response. Responses that were not significantly inhibited by SB203580 are indicated. B, PGN
response. The responses of all constructs were significantly inhibited by SB203580 (p � 0.05).
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gested that stimulation of macrophages with PGN or LPS did

not generate equivalent intracellular signals. These findings

were confirmed when we determined that different regions of

the human sIL-1Ra promoter were required for full responsive-

ness to LPS or PGN. Whereas the responses to both LPS and

PGN required the previously identified PU.1-binding sites in

the proximal promoter region, the response to LPS also utilized

at least two more distally located promoter elements. The re-

sponse to PGN required an additional element within the prox-

imal 300-bp and an additional region located between 3400 and

2800 bp upstream of the transcription start site. The most

distal response element for PGN co-localized with a region

required for full LPS-responsiveness. Although we have not yet

identified the transcription factors that are differentially acti-

vated by LPS and PGN, these are the first studies that we

know of that clearly indicate that activation of macrophages via

LPS and PGN can result in the activation of different DNA-

binding proteins. Studies are currently in progress to defini-

tively identify the transcription factors that are differentially

activated in response to LPS and PGN.

In these studies, we also examined the role of p38 SAPK in

the regulation of IL-1Ra gene expression induced by PGN and

LPS. Treatment of macrophages with either LPS or PGN re-

sulted in the activation of p38 SAPK, albeit with somewhat

different kinetics (Fig. 4). Our results are generally consistent

with those previously published by Dziarski et al. (9), who

demonstrated that LPS was a more potent inducer of p38

activity than PGN. The reason for the delayed activation of p38

in response to PGN is unclear but could relate to receptor

density or the requirement for other TLRs, such as TLR6, to be

recruited into the complex (33).

Northern blot analysis of LPS and/or PGN treated RAW

264.7 cells demonstrated that pretreatment with the p38-in-

hibitory pyridinyl imidazole compound SB203580 resulted in a

decrease in IL-1Ra mRNA expression. The mode of action of

p38 in the regulation of LPS-induced gene expression is very

much gene-dependent. In some instances (e.g. tumor necrosis

factor-�, IL-6, and macrophage inflammatory protein-1�), in-

hibition of p38 activity was demonstrated to result in acceler-

ated mRNA decay (34). However, inhibition of p38 activity

blocked LPS-induced neuroleukin and interferon-stimulated

gene 15 gene expressions without affecting mRNA stability,

suggesting a role for p38 in the transcriptional regulation of

those genes (35). The ability of p38 to regulate mRNA stability

is likely to relate to the presence of AU-rich elements found

within the 3�-untranslated regions of many cytokine genes (34,

36, 37). The sequence of the IL-1Ra 3�-untranslated region does

not contain the typical AUUUA sequences found in other labile

cytokine mRNAs that are regulated by p38 and is unlikely to be

regulated by p38-dependent post-transcriptional mechanisms.

This hypothesis was confirmed in transient transfection assays

with IL-1Ra promoter constructs. Similar to the mRNA analy-

sis, pretreatment of RAW 264.7 cells with SB203580 prior to

LPS and/or PGN stimulation significantly inhibited promoter

activity. Thus, both TLR2-induced and TLR4-induced IL-1Ra

expression have as a requirement the activation of p38 SAPK.

Surprisingly, the LPS- and PGN-induced p38 responses

mapped to different regions of the IL-1Ra promoter and dis-

played differing requirements for the previously identified

PU.1-binding sites.

The mechanism through which PU.1 regulates LPS-induci-

ble gene expression is unclear. Earlier studies determined that

PU.1 can be inducibly phosphorylated by casein kinase II in

response to LPS stimulation of macrophages, and this phos-

phorylation appears to be required for the transactivation func-

tion of PU.1 (38). In the studies presented here, the LPS-

responsive 294-bp IL-1Ra promoter, which contains two PU.1-

binding sites, was not sensitive to inhibition of p38 SAPK,

suggesting that PU.1 was not a target of the p38 signaling

cascade. However, the data presented in Fig. 8 indicate that

PU.1 is critical for the ability of the IL-1Ra gene to respond to

LPS-induced p38 SAPK. These data would suggest that a func-

tional interaction of PU.1 with transcription factors that bind

to the distal promoter is critically dependent on the activity of

p38 SAPK. Such a result would be consistent with the notion

that a major role for PU.1 is to recruit other factors into the

transcription complex (39–44). Additionally, these are the first

data indicating a role for PU.1 in the regulation of gene expres-

sion induced by PGN.

The p38 SAPK family contains four distinct isoforms, p38�,

p38�, p38�, and p38�; however, only p38� and p38� are sensi-

tive to inhibition by SB203580 (45). The activities of the p38

family members are regulated by phosphorylation of a con-

served TGY motif in kinase subdomain VIII by MKK6 or, with

the exception of p38�, by MKK3 (46). Our studies using

SB203580 to inhibit p38 activity therefore indicated that LPS-

or PGN-induced sIL-1Ra gene expression was regulated by

either p38� or p38�. In the experiments shown in Fig. 7, we

demonstrated that only MKK3 was involved in the regulation

of IL-1Ra promoter activity. Since MKK3 cannot activate p38�,

these results indicate that LPS- or PGN-induced IL-1Ra gene

expression is controlled, at least in part, via the MKK3-depend-

ent activation of p38�.

A major question to arise from these studies is: How is it

that, although both LPS and PGN share a common group of

signaling intermediates and indeed are both capable of activat-

ing p38 SAPK, the two stimuli appear to activate different

transcription factors? Given the large number of known TLRs

that respond to a wide variety of ligands and the apparent

similarities in the signaling mechanisms thus far identified for

them, it would seem as if a mechanism would need to be in

place in order for an organism to generate a response appro-

priate for and specific to a given pathogen. At least two differ-

ent mechanisms can be envisioned for this.

One possible explanation is that the TLR2 and TLR4 signal-

ing complexes are ultimately linked to different transcription

factors through as yet unidentified scaffolding proteins. Re-

cently, the role of scaffolding proteins in the control of the

specificity of activation and function of the mitogen-activated

protein kinase modules has been a topic of keen interest (re-

viewed in Refs. 23, 47, and 48). Although a clear demonstration

of a transcription factor being included in a “signalsome” com-

plex has not as yet been provided, such a mechanism cannot as

yet be excluded. Having the different TLRs linked to specific

transcription factors through scaffolding proteins could provide

a mechanism to generate such specificity.

A second and perhaps more plausible explanation may be

that although both receptors activate p38, each activates a

different second signal, and it is the second signal that deter-

mines where the p38 response maps to. The studies reported

herein and in the recent literature (10, 11, 31, 32) clearly

indicate that the signals transmitted via different TLRs are not

equivalent. Thus far, a significant amount of work has focused

on signaling mechanisms that the different TLRs have in com-

mon (e.g. NF-�B). These recent studies now indicate that we

need to look more closely at the differences.

REFERENCES

1. Wang, Z. M., Liu, C., and Dziarski, R. (2000) J. Biol. Chem. 275, 20260–20267
2. Guha, M., and Mackman, N. (2001) Cell Signal. 13, 85–94
3. Medzhitov, R., and Janeway, C., Jr. (2000) Trends Microbiol. 8, 452–456
4. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., and Kirschning, C. J.

(1999) J. Biol. Chem. 274, 17406–17409
5. Means, T. K., Lien, E., Yoshimura, A., Wang, S., Golenbock, D. T., and Fenton,

M. J. (1999) J. Immunol. 163, 6748–6755

Regulation of sIL-1Ra by LPS and PGN 17455



6. Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R.,
Eng, J. K., Akira, S., Underhill, D. M., and Aderem, A. (2001) Nature 410,
1099–1103

7. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H.,
Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S. (2000)
Nature 408, 740–745

8. Bowie, A., and O’Neill, L. A. (2000) J. Leukocyte Biol. 67, 508–514
9. Dziarski, R., Jin, Y. P., and Gupta, D. (1996) J. Infect. Dis. 174, 777–785

10. Hirschfeld, M., Weis, J. J., Toshchakov, V., V, Salkowski, C. A., Cody, M. J.,
Ward, D. C., Qureshi, N., Michalek, S. M., and Vogel, S. N. (2001) Infect.
Immun. 69, 1477–1482

11. Jones, B. W., Means, T. K., Heldwein, K. A., Keen, M. A., Hill, P. J., Belisle,
J. T., and Fenton, M. J. (2001) J. Leukocyte Biol. 69, 1036–1044

12. Arend, W. P. (1993) Adv. Immunol. 54, 167–227
13. Carter, D. B., Deibel, M. R., Jr., Dunn, C. J., Tomich, C.-S. C., LaBorde, A. L.,

Slightom, J. L., Berger, A. E., Bienkowski, M. J., Sun, F. F., McEwan, R. N.,
Harris, P. K. W., Yem, A. W., Wasak, G. A., Chosay, J. G., Sieu, L. C.,
Hardee, M. M., Zurcher-Neely, H. A., Reardon, I. M., Heinrikson, R. L.,
Truesdell, S. E., Shelly, J. A., Eessalu, T. E., Taylor, B. M., and Tracey, D. E.
(1990) Nature 344, 633–638

14. Eisenberg, S. P., Evans, R. J., Arend, W. P., Verderber, E., Brewer, M. T.,
Hannum, C. H., and Thompson, R. C. (1990) Nature 343, 341–346

15. Eisenberg, S. P., Brewer, M. T., Verderber, E., Heimdal, P. L., Brandhuber,
B. J., and Thompson, R. C. (1991) Proc. Natl. Acad. Sci. U. S. A. 88,
5232–5236

16. Arend, W. P., Joslin, F. G., Thompson, R. C., and Hannum, C. H. (1989)
J. Immunol. 143, 1851–1858

17. Dripps, D. P., Brandhuber, B. J., Thompson, R. C., and Eisenberg, S. P. (1991)
J. Biol. Chem. 266, 10331

18. Haskill, S., Martin, G., Van Le, L., Morris, J., Peace, A., Bigler, C. F., Jaffe,
G. J., Hammerberg, C., Sporn, S. A., Fong, S., Arend, W. P., and Ralph, P.
(1991) Proc. Natl. Acad. Sci. U. S. A. 88, 3681–3685

19. Malyak, M., Guthridge, J. M., Hance, K. R., Dower, S. K., Freed, J. H., and
Arend, W. P. (1998) J. Immunol. 161, 1997–2003

20. Smith, M. F., Jr., Eidlen, D., Arend, W. P., and Gutierrez-Hartmann, A. (1994)
J. Immunol. 153, 3584–3593

21. Smith, M. F., Jr., Carl, V. S., Lodie, T. A., and Fenton, M. J. (1998) J. Biol.
Chem. 273, 24272–24279

22. Hirschfeld, M., Ma, Y., Weis, J. H., Vogel, S. N., and Weis, J. J. (2000)
J. Immunol. 165, 618–622

23. Whitmarsh, A. J., and Davis, R. J. (1998) Trends Biochem. Sci. 23, 481–485
24. Andersson, J., Björk, L., Dinarello, C. A., Towbin, H., and Andersson, U. (1992)

Eur. J. Immunol. 22, 2617–2623
25. Smith, M. F., Eidlen, D., Brewer, M. T., Eisenberg, S. P., Arend, W. P., and

Gutierrez-Hartmann, A. (1992) J. Immunol. 149, 2000–2007
26. Arend, W. P., Smith, M. F., Jr., Janson, R. W., and Joslin, F. G. (1991)

J. Immunol. 147, 1530–1536
27. Gabay, C., Smith, M. F., Jr., and Arend, W. P. (1999) Cytokine 11, 561–570
28. Rao, K. M. (2001) J. Leukocyte Biol. 69, 3–10
29. Lali, F. V., Hunt, A. E., Turner, S. J., and Foxwell, B. M. (2000) J. Biol. Chem.

275, 7395–7402
30. Means, T. K., Golenbock, D. T., and Fenton, M. J. (2000) Cytokine Growth

Factor Rev. 11, 219–232
31. Fitzgerald, K. A., Palsson-McDermott, E. M., Bowie, A. G., Jefferies, C. A.,

Mansell, A. S., Brady, G., Brint, E., Dunne, A., Gray, P., Harte, M. T.,
McMurray, D., Smith, D. E., Sims, J. E., Bird, T. A., and O’Neill, L. A. (2001)
Nature 413, 78–83

32. Horng, T., Barton, G. M., and Medzhitov, R. (2001) Nat. Immunol. 2, 835–841
33. Ozinsky, A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D.,

Wilson, C. B., Schroeder, L., and Aderem, A. (2000) Proc. Natl. Acad. Sci.
U. S. A. 97, 13766–13771

34. Wang, S. W., Pawlowski, J., Wathen, S. T., Kinney, S. D., Lichenstein, H. S.,
and Manthey, C. L. (1999) Inflamm. Res. 48, 533–538

35. Manthey, C. L., Wang, S. W., Kinney, S. D., and Yao, Z. (1998) J. Leukocyte
Biol. 64, 409–417

36. Winzen, R., Kracht, M., Ritter, B., Wilhelm, A., Chen, C. Y., Shyu, A. B., ller,
M., Gaestel, M., Resch, K., and Holtmann, H. (1999) EMBO J. 18,
4969–4980

37. Brook, M., Sully, G., Clark, A. R., and Saklatvala, J. (2000) FEBS Lett. 483,
57–61

38. Lodie, T. A., Savedra, R. J., Golenbock, D. T., Van Beveren, C. P., Maki, R. A.,
and Fenton, M. J. (1997) J. Immunol. 158, 1848–1856

39. Egan, B. S., Lane, K. B., and Shepherd, V. L. (1999) J. Biol. Chem. 274,
9098–9107

40. Yamamoto, H., Kihara-Negishi, F., Yamada, T., Hashimoto, Y., and Oikawa, T.
(1999) Oncogene 18, 1495–1501

41. Eklund, E. A., Jalava, A., and Kakar, R. (1998) J. Biol. Chem. 273,
13957–13965

42. Yang, Z., Wara-Aswapati, N., Chen, C., Tsukada, J., and Auron, P. E. (2000)
J. Biol. Chem. 275, 21272–21277

43. Eklund, E. A., and Kakar, R. (1999) J. Immunol. 163, 6095–6105
44. Stutz, A. M., and Woisetschlager, M. (1999) J. Immunol. 163, 4383–4391
45. Davies, S. P., Reddy, H., Caivano, M., and Cohen, P. (2000) Biochem. J. 351,

95–105
46. Enslen, H., Raingeaud, J., and Davis, R. J. (1998) J. Biol. Chem. 273,

1741–1748
47. Garrington, T. P., and Johnson, G. L. (1999) Curr. Opin. Cell Biol. 11, 211–218
48. Burack, W. R., and Shaw, A. S. (2000) Curr. Opin. Cell Biol. 12, 211–216

Regulation of sIL-1Ra by LPS and PGN17456


