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Abstract 

Images may be matched as whole images or using shape matching.  Shape matching 

requires: identifying edges in the image, finding shapes using the edges and representing the 

shapes using a suitable metric.  A Laplacian edge detector is simple and efficient for 

identifying the edges of shapes. Chain codes describe shapes using sequences of numbers and 

may be matched simply, accurately and flexibly.  We couple this with the efficiency of a 

binary associative-memory neural network. We demonstrate shape matching using the neural 

network to index and match chain codes where the chain code elements are represented by 

Johnson codes.  
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1 Introduction 

There has recently been an enormous growth in the storage and processing of digital images. 

Examples of image processing applications include: trademark retrieval; medical image 

analysis and diagnosis; and photograph archiving and searching.  Content-based Image 

Retrieval (CBIR) is a sub-area of image processing.  In CBIR the aim is to retrieve stored 

images from an image database that are similar to a query image.  Trademark image 

searching is potentially one of the most important application areas for CBIR   techniques. 

The work described in this paper is aimed primarily at matching and retrieving trademark 

images and other similar images such as clip art images.  

 

Trademark databases are large with millions of stored trademarks which require accurate and 

fast indexing and retrieval to allow the databases to be searched. As new trademarks are 

designed, they need to be matched against existing trademarks to ensure there is no copyright 

conflict.  Searching for potentially conflicting trademarks among databases comprising solely 

of image data is a difficult task [9].  A trademark retrieval system must be able to find all 

stored trademark images which might be judged similar to any new trademark. Current 

trademark retrieval systems rely on relatively low-level features within an image such as 

texture, colour or shape for image matching and retrieval.  They attempt to match a query 

image against stored images in one of two ways: (1) comparing features generated from the 

images as a whole, or (2) matching features from individual image components (shapes) [10]. 



 

In this paper we focus on the latter approach: finding the constituent components (shapes) in 

a figurative image to allow those shapes to be used for image matching.  Most experts in the 

field agree that shape similarity is the single most important determining factor regarding 

human similarity judgement [9].  Systems that compute the image similarity between a query 

image and the database of trademark images using features calculated from the whole image 

similarity are inconsistent when an additional component (shape) is present or when a 

component is missing from the image.  Features such as the invariant moments [17] produce 

rather different statistics when additional components are added or components removed. 

Therefore, such a system will not be robust if the query consists of multiple components. 

 

CBIR systems such as Mojsilovi� et al. [26] and Biederman et al. [7] propose that human 

image recognition works on various levels and that an agglomerative technique is used.  

Mojsilovi� et al.  detect the edges in an image and Biederman uses lines and curves.  Both 

approaches aggregate these primitives following perceptual principles to produce compound 

objects – shapes – that need to be represented and matched quickly, efficiently and 

accurately.   

 

Example trademark systems that compute image similarity using component (shape-based) 

similarity include the STAR system [34] which uses features such as Fourier descriptors, grey 

level projection and moment invariants to represent the shapes identified by human subjects 

in the trademark image database.  In the ARTISAN system [10], the shape boundaries are 

extracted using edge detection and the shapes are compared using a distance measure 

calculated using shape features, size and absolute position. In ARTISAN, each component is 

considered independently and the spatial relation between components within the same image 

is not considered. The trademark retrieval system of Alwis [3] performs multiple components 

matching by categorizing each component into a line, an arc or a closed figure and matching 

images using component similarity.  Peng and Chen [27] represent each shape as a set of 

closed contours and represent each closed contour as a list of angles (chain code).   Our 

proposed approach takes its inspiration from this approach and uses the AURA matching 

system [4] to perform fast shape similarity assessment with chain codes.  Chain codes have 

been widely proposed and investigated in the literature [19, 25, 29, 30, 31] for shape 

matching and many other applications as they are simple with a low storage requirement and 

other shape features may be computed directly from the chain code. 

 

The main contribution of our proposed method is speed of processing.  Using AURA to 

underpin the chain code processing introduces a 15 times speedup compared to a standard 

chain code implementation and the method produces shorter vector representations than grid-

based chain codes [28, 29] for shapes with sides longer than 24 pixels.  Additionally, the 

matching results from the AURA method are identical to the results from a standard method.  

Many techniques proposed in the literature to speed up a standard algorithm do not produce 

identical results to the standard algorithm, for example [15].  Hence, a user cannot be sure 

that they will get the results they expect when they use the faster algorithm.  With the 

speedup proposed in this paper, the user will always get the same matching results from the 

faster approach that they were expecting from the standard approach.  The recall accuracy of 

chain codes has been documented elsewhere in the literature [31] who determined that the 

recall accuracy for chain code shape retrieval was just below Zernike moments and well 

above invariant moments and edge histograms.  Zernike moments are complimentary to chain 

codes as Zernike moments are region-based and represent the features of the whole shape 

whereas chain codes are boundary-based and represent the features of the shape’s outline [25] 

so the two could be used in tandem to represent shapes.  Eakins et al [10] identified that using 



 

combinations of multiple shape measures to represent images outperforms both single image 

representations (such as moments) and single shape measures (such as Fourier descriptors) 

for recall accuracy.  Sanchez-Cruz et al [30] compared various chain code schemes to the 

JBIG compression standard for compression using letters, shapes and molecules.   The chain 

codes generally outperform the JBIG standard with respect to compression in particular the 

A8 chain code scheme described later.  Kato et al [19] demonstrated that the match time for 

face recognition system is seven times faster for a chain code representation compared to an 

image-based template representation. 

 

In this paper we focus on two tasks to identify and represent image shapes.  Firstly, we 

consider edge detection to identify the edges in the image and allow us to find and trace the 

shapes (closed contours) contained in the image.  Secondly, we consider how to represent the 

shapes so they may be matched efficiently.  We focus on speed of retrieval.  As the Johnson 

code chain code produces identical results to a standard chain code, we do not analyse the 

recall but concentrate on the speed up compared to the standard approach through using 

AURA to underpin the method. 

2 Edge Detection 

Initially, we need to identify the shape boundaries to allow us to form the chain code 

representation.  Edge detection is a widely used technique to identify the outlines of image 

shapes.  There are various edge detectors in common use such as Canny [8], Sobel [12] or 

Laplacian [12].  In this paper, we use the simple 3x3 Laplacian kernel given in Table 1 to 

detect edges.  This has the advantages of being simple, efficient and accurate. 

 

Table 1 3x3 Laplacian kernel used for edge detection 

-1 -1 -1 

-1 8 -1 

-1 -1 -1 

 

 

FIGURE 1 HERE 

 

If the edges of the shapes are jagged then this will have an adverse effect on the quality of the 

shape representation.  Jagged edges cause edge representations such as chain codes to reflect 

the small scale irregularities (“jaggies1”) rather than the higher level shapes we need for 

matching.  To improve this, anti-aliasing techniques may be used to tidy the edges [11]. 

 

The Laplacian works well on region-based images such as those in figure 1.  However, it is 

not suitable for processing noisy or textured images.  For these images we recommend a pre-

processing method such as that proposed by [11, 12, 16, 18] to tidy noise and equalise 

textured regions.  We can then run the Laplacian kernel edge detector on these pre-processed 

images to identify the edges. 

 

To process coloured images, we recommend either converting the image to greyscale using 

for example the ImageMagick ‘convert’ utility.  This generally works but may run into 

problems where there are adjacent coloured regions of equal intensity. The identical intensity 

regions will resolve to the same shade of grey and the boundary between them will be lost. 

                                                 
1 Jaggies are “stairlike lines that appear where there should be smooth straight lines or curves” – Wikipedia. 



 

Another alternative is to adapt the Laplacian edge detector to work on the three colour 

channels R, G and B and use the information extracted from all three channels in combination 

to identify the edges in the image [20].  Alternatively, converting a colour image to greyscale 

may be considered a dimensionality reduction problem and the three colour channels may be 

processed using Principal Component Analysis to project the three channels on to a single 

dimension – the principal axis which is effectively a greyscale image.  This axis is very close 

to (but not coincident with) the axis of the intensity of the image.   The resultant image can 

then be processed using conventional Laplacian processing.  

 

Once we have identified the edges, we need to tidy them as the edges detected may be more 

than one pixel wide which prevents chain codes being correctly formulated.  There will be 

multiple direction choices within the multiple pixel regions and we need a unique 

representation hence a single pixel width line. Edge thinning [18] is a morphological 

operation which reduces (thins) the edges to one pixel wide lines from which we can 

correctly then generate the chain code.  

 

3 Shape Representation 

Following edge thinning, we need to link the edge pixels to form shapes as shown in Figure 

2.  A shape representation for figurative image retrieval should be invariant to translation, 

rotation and scale and similar shapes should have similar representations.  Ideally the 

similarity of the representation should decrease monotonically as the similarity of the shapes 

decreases.  Matching in trademark systems is “best matching” rather than exact matching so a 

degree of match score is necessitated to assess the best match.   

 

FIGURE 2 HERE 

 

In figurative image processing systems such as trademark systems, shapes may be 

represented and matched using metrics that are either boundary-based or region-based [25].  

Comparing two shapes using chain-codes requires all chain code elements to be matched and 

for large irregular shapes the chain code may be long.  Therefore, a fast and efficient chain 

code matching implementation is desirable.   However, chain codes are translation invariant, 

have high discriminatory power for matching shapes [9], are flexible and, for regular shapes, 

chain codes are compact.  Chain codes link the edge pixels into chains and represent the 

chains using a numerical coding system.  Chain codes may be 4-directional or 8-directional.  

In this paper we focus on 8-directional C8 chain codes and the variant angular 8-

directional A8 chain codes although our methodology is applicable to any variant – it is 

merely a case of adapting the Johnson code to handle the directionality.  An example C8 8-

directional chain code is shown in Figure 3 & Figure 4.   

 

FIGURE 3 HERE 

 

FIGURE 4 HERE 

 

In the C8 approach, each direction is represented by a number in the range [0-7].  The chain 

code traces the boundary of the shape, representing the direction across each grid cell by the 

appropriate direction number as shown in Figure 3.  We note that the higher the definition of 

the image, the more grid cells, the longer the chain code and hence the more accurate the 

chain code.   

 



 

An example A8 angular 8-directional chain code is shown in Figure 5 & Figure 6.   

 

FIGURE 5 HERE 

 

FIGURE 6 HERE 

 

In the A8 representation, each angular direction is represented by a number in the range  

[0-7].  The chain code traces the angular changes in the boundary of the shape, representing 

the angular change at each corner by the appropriate angular change number as shown in 

Figure 5.  We note again that the higher the definition of the image, the more grid cells, the 

longer the chain code and hence the more accurate the chain code.  The advantage of the A8 

representation compared to the C8 representation is that A8 is rotationally invariant but C8 is 

not.  Rotational invariance is important when matching shapes as an inverted triangle will 

match a standard triangle with rotational invariance but the two shapes would not match 

otherwise. 

 

By using our Advanced Uncertain Reasoning Architecture (AURA) [4] to match the chain 

codes we are able to efficiently match chain codes of long lengths.  If the shape edges are 

complex then the edge pixels may be mapped directly to the edge representation.  If the 

shapes are simple and regular polygons such as triangles, rectangles, rhombi etc then the 

shapes may be simplified to the number of sides and each side represented in the edge 

representation (see Gonzalez and Woods [12] for details of shape simplification).   

 

Johnson Counter codes (also known as switch-tail ring counter codes) are binary reflected 

cyclic codes.  They are used in the electronics industry for controlling operations in digital 

systems [24]. The number of bits in the code is arbitrary.  Johnson Counter codes assign a 

code in which the Hamming distance between two adjacent codes in a contiguous list is 1 and 

the Hamming distance increases monotonically as the distance between the number codes 

increases as shown in Table 2.  The cyclic code effectively “wraps around” so the Hamming 

distance between 0 and 7 in a 4-bit code is also 1.  This is particularly relevant for chain 

codes which are also cyclic.  The C8 and A8 8-directional numbers of the chain code 

correlate to the same 8 decimal numbers of the Johnson code which in turn map to the 4-bit 

Johnson Counter code as shown in Table 2.  For both the chain code directions and the 

Johnson Counter code, 7 is most similar to 0 and 6; and, 0 is most similar to 7 and 1. 

 

Decimal 4-bit Johnson codes 
0 0000 

1 0001 

2 0011 

3 0111 

4 1111 

5 1110 

6 1100 

7 1000 

Table 2 List of 4-bit Johnson codes 

In the next section, we describe a binary neural shape matcher that represents shapes using a 

fusion of chain codes and Johnson Counter codes to allow distance-based matching.  The 

fusion produces binary vectors which are integrated with a binary Random Access Memory-

based (RAM-based) neural network (AURA) to allow rapid, efficient and accurate indexing 

and matching of shapes in shape databases. 



 

4 RAM-based Neural Networks 

RAM-based networks were first developed by Bledsoe & Browning [6] and Aleksander & 

Albrow [1] for pattern recognition and led to the WISARD pattern recognition machine [2].  

RAM neural networks are founded on the twin principles of matrices (usually called 

Correlation Matrix Memories (CMMs)) and n-tupling. For CMMs, each matrix accepts m 

inputs as a vector or tuple addressing m rows and n outputs as a vector addressing n columns 

of the matrix.  During the training phase, the matrix weights M
lk

 are set to 1 if both the input 

row Ij
l
 and output column Oj

k
 are set.  Therefore in CMMs, training is a single epoch process 

with one training step for each input-output association preserving the high speed.  During 

recall from a CMM, the presentation of vector Ij elicits the recall of vector Oj as vector Ij 

contains all of the addressing information necessary to access and retrieve vector Oj. This 

training and recall makes RAMs computationally simple and transparent with well-

understood properties. RAMs are also able to partially match records during retrieval.  

Therefore, they can rapidly match records that are close to the input but do not match exactly.   

4.1 AURA 

AURA may be implemented using a C++ software library or using proprietary hardware 

coupled with a dedicated embedded C++ library [33].  Both the software and hardware 

AURA libraries provide a range of classes and methods for rapid partial matching of large 

data sets [4]. AURA software and hardware has been used in an information retrieval system 

[13], high-speed rule matching systems [5], 3-D structure matching [32] and trademark 

searching [3].  In this paper, we focus on an AURA software chain code matcher though the 

approach could be easily mapped to a hardware implementation.  AURA software techniques 

have demonstrated superior performance with respect to speed compared to conventional data 

indexing approaches [14] such as hashing and inverted file lists which may be used for 

indexing.  AURA software trains 20 times faster than an inverted file list and 16 times faster 

than a hashing algorithm.  It is up to 24 times faster than the inverted file list for recall and up 

to 14 times faster than the hashing algorithm.  We further demonstrate that AURA chain 

coding is up to 15 times faster than a standard chain code approach in this paper. 

 

The rapid training and partial match capability of AURA coupled with encoding numeric 

chain codes as distance-based binary vectors for training and recall make AURA ideal to use 

as the basis of an efficient implementation.  A more detailed definition of AURA, its 

components and methods now follows. 

4.1.1 CMM Training 

Correlation Matrix Memories (CMMs) are the building blocks for AURA systems.  AURA 

uses binary input I and output O vectors to train records in to the CMM as in Equation 1 and 

Figure 7. 

 

Equation 1   ORlogicaliswhereall ∨∨ ×=
T
jjj OICMM . 

 

Training is a single epoch process with one training step for each input-output association 

(each Ij x O
T

j in Equation 1) which equates to one step for each record Ij which is associated 

with a unique identifier vector Oj.  Each Oj has a single bit set.   The first bit is set in the 

identifier vector O0 for the first record to store; the second bit is set in the identifier vector O1 

for the second record to store and so on. 

 

FIGURE 7 HERE 



 

4.1.2 CMM Recall 

To retrieve the matching stored records for a particular query record, AURA effectively 

calculates the dot product of the input vector Ik and the CMM, computing a positive integer-

valued output vector Ok as in Equation 2. Ok is the same dimensionality as the number of 

columns in the CMM and represents the sum of the 1s (set bits) in each CMM column that 

coincide (are in the same row) as a 1 in Ik. 

 

Equation 2 CMMIO •= k

T

k  

 

The integer-valued output vector Ok is thresholded to produce a superimposed binary output 

vector Sk as in Equation 3 which has a bit set for each selected chain code.   

 

Equation 3  Sk = L-Max(Ok) 

 

We use the L-Max thresholding technique (detailed in [4]) to threshold Sk. L-Max 

thresholding essentially retrieves at least L top matches by setting a bit in the superimposed 

output vector Sk for every location in the integer-valued output vector that has a value higher 

than a threshold value. L is set to a value equivalent to the number of chain codes to retrieve.  

The threshold value is set to the highest integer value that will retrieve at least L matches.  

For example, to retrieve the top 2 matches from figure 10, L-Max thresholding would 

threshold the output vector at 44 to retrieve a superimposed binary vector.  This 

superimposed binary vector would have a bit set in the first two positions (1100)as the two 

leftmost columns in the CMM sum to 44 or more  indicating that the chain codes stored in the 

two leftmost columns of the CMM are the two best matches (chain codes A and B from 

figure 10). 

 

5 Chain Codes  

In this section, we focus on how to represent chain codes in AURA.  For the methodology 

described in this paper, we: 

• Train the binary distance-based chain codes and their identifier vectors into the CMM 

allowing them to be matched.   

• Match unseen binary chain codes using the trained CMM.    

 

For C8 chain codes, Lu [23] introduced procedures for normalising the chain codes to ensure 

invariance to rotation and scaling.  He proposes orienting shapes along the principal (major) 

axis of the shape.  The minor axis lies perpendicular to this major axis.  This forms a 

superimposed rectangle which may be subdivided into a grid of cells.  To ensure scale 

normalisation we fix the perimeter-size of this grid so that it is equal for all shapes, for 

example a 4x4, 3x5, 2x6 or 1x7 grids all have equivalent perimeter length of 16.  We thus 

superimpose the most appropriate of these onto the shape.  If we fix the starting point to the 

top right cell then we have normalised for rotation and scale. 

 

For an A8 chain code, we do not need to establish the major axis as the method is rotationally 

invariant already.  Hence, to produce A8 chain codes, the user needs to superimpose the 

normalisation grid to ensure the chain codes is normalised for scale as for the C8 method. 

 

For both A8 and C8, we further enhance Lu’s normalisation procedures to ensure that all 

stored and query chain codes are equivalent length.  We propose counting diagonals twice.  



 

With an 8-directional chain code there are 3 routes from point (1, 1) to point (2, 2).  They are: 

east then north (2 steps and thus 2 codes in a chain); north then east (2 steps and thus 2 codes 

in a chain); or, north-east which is 1 step.  By ensuring that the diagonal counts twice, all 

routes are 2 steps and 2 codes.  The new chain code (with double diagonals) for Figure 4 is 

given in Figure 8. 

 

In the remainder of this section, we employ C8 chain codes which have been normalised 

using Lu’s recommendations and our double diagonal augmentation to illustrate how to 

process chain codes in AURA.  Switching to the alternative A8 chain codes method requires 

revising the representation from figure 4 to the shape representation for figure 6, i.e., 

replacing the direction codes with the angular direction codes.  The processing of the chain 

codes within AURA is equivalent for both C8 and A8.  The differences are all contained in 

the pre-processing which generates the chain code representations.  Both A8 and C8 use the 

chain code numbers 0-7 and are scale, rotation and translation invariant following our 

normalisation procedures.   

5.1 Chain Codes in AURA 

5.1.1 Input Vectors 

AURA requires binary input vectors for training and storage.  Thus, we convert the numeric 

chain code to a binary Johnson code equivalent.  If we take the chain code for Figure 4 then 

we must convert each number in turn to a Johnson code as in Figure 8. 

 

FIGURE 8 HERE 

 

We concatenate all Johnson codes together to form I.  We then take I and negate all vector 

elements to form Î  as shown in Figure 9.   

 

FIGURE 9 HERE 

 

By concatenating I and Î  we produce I’ the distance-based binary chain code (the input 

vector for the CMM training) as in Equation 4. 

Equation 4 ÎII' ⊕= where ⊕ represents concatenation. 

During recall, matching the first half (I) of I’ will count the number of matching 1s between 

the query and stored vectors and matching the second half ( Î ) will count the number of 

matching 0s between the query and stored vectors.  We note that exactly 50% of the elements 

in I’ will be set (active) using this approach.  Each Johnson code element in I is inverted in Î  

so each element will appear twice in I’ as both a 0 (inactive) and a 1 (active) thus 50% of the 

elements are active. Figure 10 shows a trained CMM where the rows are Johnson code bits 

and each column represents a distance-based binary chain code I’j (image shape) stored for 

matching. 

5.1.2 Chain Code Matching (Recall) 

To find the best matches for a particular chain code we initially create an input vector Q as 

per the training input vector so the chain code 112334556770 would be mapped to a Johnson 

code input vector as in Figure 8.  This chain code is 12 elements long and each element 

comprises 4 binary bits so the perfect match would score 48. 

 



 

FIGURE 10 HERE 

 

We then logically negate this binary input vector to produce Q̂ and append Q̂ to the end of 

the query vector Q.  The resultant query input vector is thus given by Equation 5. 

Equation 5 Q  QQ' ˆ⊕=  

We note that 50% of the elements in Q’ will be set so 50% of the CMM rows will be 

activated during recall thus recall is predictable and constant for equivalent length chain 

codes (ignoring extraneous factors). 

 

We input Q’ to the CMM to elicit a summed output vector, O as per Equation 2, which 

effectively counts the number of matching 1s AND 0s between the input and each, stored 

chain code.   

 

The proposed method then calculates the score for each stored chain code using the summed 

output vectors (counting matching 1s and 0s, O). 

 

For each stored chain code (each position j in the summed vectors) we calculate the score as 

given by Equation 6. 

Equation 6 jOScore=  

This is essentially the negated XOR (~XOR or inverse Hamming Distance) of the input with 

each stored binary chain code and counts the number of matching 1s AND 0s between the 

query and the stored code.  This score represents the degree of match and will decrease 

monotonically as the similarity between the input and a stored code decreases.  For best 

matching, we L-Max threshold with L set to 1 and thus store the index (position j in the 

summed output vector) of the chain code(s) with the highest score.   

 

5.1.3 Worked Example 

FIGURE 11 HERE. 

 

Figure 11 shows four example shapes A, B, C & D to be compared to a query shape Q 

(shown in Figure 4).  In the following, we compare the retrieval process of the standard 

technique to the retrieval process of the AURA technique when matching the query against 

the four stored shapes to identify the best matching shape. Figure 12 shows the standard chain 

code for the query Q and the four stored shapes A, B, C & D respectively; the binary codes 

for the query Q and the four stored shapes A, B, C & D respectively and Figure 13 shows the 

inverted binary codes for the query Q̂  and the four stored shapes DCBA ˆ&ˆ,ˆ,ˆ respectively. 

 

FIGURE 12 HERE 

 

FIGURE 13 HERE 

5.2 Standard Chain Code Technique 

To compare two chain codes where chain code X is 1234 and chain code Y is 7654 then the 

standard approach performs an element by element cumulative distance calculation. The 

standard technique firstly compares chain code X element 1 against chain code Y element 1, 



 

For these two elements which are 1 and 7 respectively, the difference is 2 due to the cyclic 

code used in chain coding as shown in figure 3.  The standard technique then compares chain 

code X element 2 against chain code Y element 2.  For these two elements which are 2 and 6 

respectively, the difference is 4 and the cumulative difference after two element comparisons 

between chain codes X and Y is now 4+2=6.  The overall cumulative difference of the two 

chain codes can then be calculated by summing all of the individual element differences. 

 

5.3 Comparison of AURA versus Standard 

For the standard technique the scores for the four shapes A, B, C & D in Figures 10 –12 

compared to the query shape are: 

Score_A = 2 

Score_B = 4 

Score_C = 6 

Score_D = 8 

 

For the standard technique, the lowest score indicates the best match so A is the best match 

(as we would expect) and differs to the query by 2 (i.e. two 1/8 directions are different 

between the query and shape A). The differences are in the first two elements of the chain 

code where the query begins “11” and A begins “20” giving a cumulative difference of 2.   

Shape D is least similar to the query as it scores highest and thus differs in eight 1/8 

directions.  It differs from the query in elements 1, 2, 4, 5, 7, 8, 10 & 11. 

 

For the AURA approach, the scores for the 4 stored chain codes in Figures 10 –12 compared 

to the query shape are: 

 

Score_A = 46/48 

Score_B = 44/48 

Score_C = 42/48 

Score_D = 40/48 

 

For the AURA technique, we are counting matching 1s in Q compared to A, B, C & D and 

matching 1s in Q̂ compared to DCBA ˆ&ˆ,ˆ,ˆ .  In contrast to the standard approach, the shape 

with the highest score is the best match to the query.  For the standard technique we are 

counting differences (hence the lowest score represents the best match).  The standard score 

is the maximum score permissible in AURA minus the actual score, i.e. for shape A, the 

maximum permissible score is 48 and the actual score is 46 so the standard score is 2 (as seen 

above).  Shape A is the most similar to the query as it scores highest.  Shape D is least similar 

to the query as it scores lowest.  Shape A differs from the query by 2 which indicates that it 

differs in two 1/8 directions – those shown by dotted lines in Figure 11.  Shape D differs in 

eight 1/8 directions – those shown by dotted lines in Figure 11. 

 

If we ~XOR the query vector with the best matching vector(s), where the resultant vector is 0 

is where the stored vector differs from the query.  This facility is useful for pinpointing shape 

variations.  

6 Evaluation 

We compare the AURA-based method against a standard chain code representation for speed 

of training and recall.  We also verify that both representations retrieve the same matches.  

All analyses were performed using a 3.4 GHz Pentium 4 PC with 2GB RAM running 



 

Slackware Linux. All code was written in C++ and compiled with the G++ compiler using 

identical optimisations  

 

The standard method is implemented using a lookup table to allow comparison.  Chain codes 

are stored as STL vectors of integers.  Chain code elements (vector elements) are then 

compared using the lookup table. 

   
int lookupTable[8][8] = 
 { 
 {0,1,2,3,4,3,2,1}, 
 {1,0,1,2,3,4,3,2}, 
 {2,1,0,1,2,3,4,3}, 
 {3,2,1,0,1,2,3,4}, 
 {4,3,2,1,0,1,2,3}, 
 {3,4,3,2,1,0,1,2}, 
 {2,3,4,3,2,1,0,1}, 
 {1,2,3,4,3,2,1,0} };  
 

To compare two chain codes where chain code 1 is 1234 and chain code two is 7654 then the 

C++ code indexes the lookup table.  To compare chain code 1 element 1 against chain code 2 

element 1, the C++ indexes the row and column representing the respective chain code 

element values.  For these two chain codes, that is row 1 (the value of chain code 1 element 1 

where rows are numbered from 0-7) and column 7 (the value of chain code 2 element 1 

where columns are numbered from 0-7).  The difference is therefore 2.  The cumulative 

difference of the two chain codes can then be calculated by summing the individual element 

differences. 

 

For the evaluations here, we require a large dataset to enable a thorough test and to 

demonstrate the practicality of the proposed method for trademark retrieval where potentially 

millions of images need to be indexed and matched.  The available image datasets are too 

small.  The UKPTO data set [10] used in various evaluations comprises 10,745 images but 

many are noisy and textured and there is no shape ground truth information with the dataset 

so this set would not be suitable for our chain code comparisons.  The de facto standard shape 

retrieval dataset is the MPEG-7 shape dataset [21] used widely in the literature but this only 

contains 70 classes of shapes with each class containing 20 shape variants giving 1400 shapes 

in total which is insufficient for our evaluation.  [29] use a set of shapes containing shape 

similarity information for their evaluation but this set only contains 3 queries and 22 shapes.  

Therefore, to allow comparisons, we generate synthetic sets of chain codes using a random 

number generator in Java.  The chain codes are formed from the numbers 0-7 and could be 

C8 or A8 as they are both generated from equivalent number sets {0-7}.  The differences 

between C8 and A8 all lie in the pre-processing as described in section 5.  For our first 

analysis, the routine outputs 1.5 million chain codes each with 100 dimensions (100 

numbers).  For the second analysis, the routine outputs 100,000 codes each with 100 

dimensions, 100,000 codes each with 200 dimensions, 100,000 codes each with 300 

dimensions and finally 100,000 codes each with 400 dimensions 

 

In the first part of our evaluation, we compare the training, recall and overall processing 

times of the AURA and the standard method using varying numbers of stored chain codes but 

with each chain code of fixed dimensionality.  We train 250K, 500K, 1.0M and 1.5M chain 

codes of dimensionality 100 into the index for the AURA method and the standard method 

respectively.  We then record the time to retrieve the top match for the first 1000 chain codes 

in each data set for the AURA and standard methods respectively.  The graph in Figure 14 



 

shows the overall time which includes the time to train the respective methods with the full 

database (250K, 500K, 1.0M and 1.5M 100-D chain codes) along with the retrieval time to 

find the best match for the first 10 chain codes and the recall times for the AURA and 

standard methods. 

 

FIGURE 14 HERE 

 

In the second part, we compare the training, recall and overall processing times of the AURA 

and the standard method using a fixed number of stored chain codes but with each chain code 

of varying dimensionality.  We train 100K chain codes of dimensionalities 100, 200, 300, 400 

into the index for the AURA method and the standard method respectively.  We then record 

the time to retrieve the top match for the first 1000 chain codes in each data set for the AURA 

and standard methods respectively.  The graph in Figure 15 shows the recall times for the 

AURA and standard methods. 

 

FIGURE 15 HERE 

 

From both graphs, the AURA method is between 8 and 15 times faster than the standard 

method.  Both methods show linear growth as the number of chain codes increases (while the 

dimensionality remains static) and linear growth as the dimensionality increases (while the 

number of chain codes remains static).  However, the gradient of the standard method is 

much steeper than the gradient of the AURA plot so the total time for the standard method 

increases much more quickly then the AURA method. 

 

The training time is negligible compared to the recall time for the standard method.  For 

example, for 500K 100-D chain codes, the training time for the standard method is 2 seconds 

and the recall time is 6399 seconds giving a total train and recall time of 6401 seconds.  For 

AURA, the recall time forms the bulk of the total time as the inputs have to be processed into 

the AURA binary vector representation which increases the training time compared to the 

standard method which does not process the inputs.  However, this extra pre-processing 

required by AURA is easily offset by the much reduced retrieval time and thus much reduced 

overall time compared to the standard method.  For the same 500K 100-D chain codes, the 

training time for AURA is 82 seconds and the recall time is 436 seconds giving a total train 

and recall time of 518 seconds (compared to 6401 seconds for the standard method).. 

 

The AURA method and the standard method both retrieve the same best matches 100% of the 

time so the AURA method is a faithful implementation of the standard method. 

 

Sajjanhar & Lu [23, 28, 29] introduced a grid-based shape representation based on chain 

codes which uses a binary vector to represent each shape analogous to the binary vector we 

use for our AURA implementation.  During their evaluations Sajjanhar & Lu found that: “the 

efficiency in terms of the storage requirements and the computation costs of the grid-based 

method is comparable to that of the Fourier descriptors method and the moment invariants 

method” [28].  Next, we compare the efficiency of the AURA method to the grid-based 

method.  

 

If we use an A8 chain code representation in AURA then it is rotation invariant.  If we use 

the C8 scheme then we need to normalise to introduce rotational invariance as described.  For 

both A8 and C8 we then need to normalise for scale invariance as described.  The proposed 

grid-based approach [28] is normalised in the same manner as C8 to normalise for rotation 



 

and scale.  The grid-based shape representation is produced by mapping each shape onto a 

fixed-size grid.  The grid is then scanned and each cell is labelled 0 or 1 depending on 

whether the number of shape pixels contained in that cell is below or above a pre-specified 

threshold. The resultant grid of 0 and 1 is then scanned from left to right and top to bottom to 

produce a binary number to represent the enclosed shape. The difference between the query 

shape and the stored shapes is calculated by the difference of the binary vectors (logical 

XOR).   

 

The AURA approach uses 3 bits per chain code element, the vector I’ is double length 

ÎII' ⊕= so the representation requires 3*2*perimeter binary bits.  The grid-based approach 

scans the contents (area) of the bounding box and uses one bit per pixel so the representation 

requires height*width bits.  For a square shape with perimeter 4l and area l
2
, our proposed 

approach for either C8 or A8 will have a smaller bit representation if 3*2*4l < l
2
.  If l < 24 

then the grid-based will have a shorter bit vector but if l > 24 then the AURA-based approach 

will have a shorter bit vector.  A shorter bit vector will process more quickly and we envisage 

that most shapes in trademark images will have sides longer than 24 pixels and hence, the 

AURA method will be the most efficient overall. 

 

7 Multi-Resolution Chain Coding 

We demonstrated that our method can match 1.5 million chain codes of 100 dimensions with 

a training time of 2225 seconds and a recall (match) time of 119 seconds. These times are 

generally practical for such large datasets but the speed may be increased further by 

introducing different matching granularities if a specific application required faster 

processing.  A low resolution coding may be used for rapid, low precision matching to, 

perhaps, narrow the search space in a very large database of chain codes down to a subset of 

candidate matches.  A more precise coding, which is slower to match against, may then be 

used on the reduced set of candidate matches.  To support multi-resolution search, we 

introduce multi-resolution chain codes.  By using a point-region quad-tree2 (PRQ) reduction, 

we can produce a boundary at various levels of resolution.  Each different resolution requires 

a separate CMM for training and matching due to the variation in length of the vectors.  

 

The lowest resolution chain coding uses a grid with few cells as shown in Figure 16.  As the 

resolution increases down the PRQ (as the number of cells in the grid increases 

monotonically by a factor of 4) then the size and precision of the chain code increases by a 

factor of 2 (the perimeter is twice as long) so the number of rows in the CMM would increase 

by a factor of 2 for each layer in the PRQ.   The matching will obviously be slower due to the 

increase in size of the vectors but this will be offset by the increase in precision.   

 

FIGURE 16 HERE 

 

If the lowest resolution storage requires x amount of memory and the memory requirement 

doubles for each step increase in precision, then the total memory for k steps of increase in 

precision would be given by equation 7. 

 

Equation 7  x + 2x + 2
2
x + 2

3
x + … + 2

k
x = x(2

k+1
-1) 

 

                                                 
2 A point region quad-tree is a quad-tree where each node must have exactly four children, or have no children (leaf). 



 

Assuming that the search time of memory is proportional to the memory size  

(time ∝∝∝∝ size) and assuming that on average k/2 steps are required before the target is found, 

then the average memory searched is given by equation 8. 

 

Equation 8  x + 2x + … + 22

k

x = x(
1

22
+

k

-1) 

 

If only the high precision memory was searched rather than a multi-resolution search, this 

high precision search would be 2
k
x. 

 

Therefore, the speedup due to the multi-resolution approach is: 

12

2

1
2 −

+
k

k

 

 

This increases as k increases, i.e., there is more gain when greater precision is required. 

 

Thus, if the database is relatively small, train a single CMM with chain codes at high 

precision (the largest chain code length permissible within the storage available).  This may 

then be used for matching query shapes. 

 

If the database is very large then we propose training the shapes into a low precision CMM 

which will minimise the storage requirements.  If we query this low precision CMM to 

retrieve a set of candidate shapes then these candidates may be trained into a subsequent 

higher precision CMM.  Again, querying this higher precision CMM will retrieve a set of 

better matches.  This cycle of retrieving matches, increasing the precision, training a higher 

precision CMM and then querying can be repeated until the database of shapes has been 

reduced to the requisite number of matches. 

 

8 Conclusion 

In this paper we have introduced a binary neural shape matcher. The technique derives the 

edges in an image using Laplacian edge detection, tidies the edges using edge thinning, traces 

the closed contours within the edges and maps these edge traces onto chain codes.  The shape 

matcher framework uses the AURA binary neural network framework to produce chain code 

storage and matching system allowing us to calculate shape similarity from chain code 

similarity.  The AURA implementation is shown to be much faster than a standard chain code 

technique.  The approach allows us to combine the simplicity, translation, rotation and scale 

invariance and flexibility of chain codes with the speed of AURA to produce fast flexible 

approach.   

 

While some authors have stated that chain codes have high discriminatory power for 

matching shapes [9] other authors have found slightly lower recall for chain code measures 

[31] compared to other shape measures such as Zernike moments.  However, chain codes are 

frequently used in conjunction with other shape matching methods, for example [35] and [10] 

found that combinations of shape measures outperform individual shape measures for recall 

and precision.  Chain codes are boundary-based and capture detailed information about shape 

boundaries.  They form a companion measures to region-based measures [25] such as Zernike 

moments which capture information about the overall shape.  It is also worth noting that 

when chain codes are used in conjunction with other methods, speed is even more important 



 

as the overall speed of a multi-feature system is dependent on the speed of the individual 

measures used.  Therefore, a high speed approach is desirable. Some other shape measures 

may actually be derived from the chain code representation itself such as first and second 

order moments [22].   

 

The main drawback of the chain code representation stems from the ability of chain codes to 

capture fine details of shape boundaries in that they are susceptible to noise particularly in the 

shape boundary where extra black pixels or missing boundary pixels due to salt and pepper 

noise will affect the chain code number produced and thus affect the match score.  Therefore, 

to use chain code matching successfully, the images need to be clean or cleaned prior to 

processing and noise removed using suitable filters such as median filters or dilation/erosion 

filters [12] or using a preprocessing such as [16]. 

 

The proposed approach will be used for shape matching in trademark retrieval system.  We 

feel the technique is flexible and easily extended to other domains/systems where distance-

based numeric code matching is required and also to other application areas where chain 

codes are used such as face recognition, letter comparisons etc.  
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Figures and Captions 

 

Figure 1. Showing four images (top row) and the edges detected by the Laplacian edge 

detector for each of the four images in the bottom row. 

 

 

Figure 2. The original image is processed by the Laplacian edge detection to identify the 

edges.  The closed contours (shapes) within the edges are then identified.  Each of the 

closed contours (shapes) will be mapped to its respective chain code representation. 

 

 

Figure 3. The 8-directions and associated numbers for C8 8-directional chain codes. 



 

 

Figure 4. C8 Chain code for an octagon - starting from the dot, the chain code is 

12345670. 

 

 

Figure 5. The 8-directions and associated numbers for A8 8-directional chain codes. 

 

 

Figure 6. A8 Chain code for an octagon - starting from the dot, the chain code is 

22222222 compared to 12345670 for the A8 chain code 



 

 

Figure 7. Showing a CMM with input vector I and output vector O.  Four matrix 

locations are set following training I0O0, I2On-2, Im-1O0 and ImOn. 

 

 

 

Figure 8. Chain code and its Johnson Counter code representation. 

 

 

 

Figure 9. Chain code and its logically inverted Johnson Counter code representation. 



 

 

Figure 10. Diagram showing a subsection of the CMM recall for a best match.  Each 

column in the CMM (four rightmost columns) is a stored binary chain code 

representing the shapes (A, B, C & D) shown in Figure 11.  The leftmost column is the 

input vector representing the chain code of the octagon from Figure 4 and represents a 

concatenation of Q and Q̂ .  AURA multiplies the input vector by the values in the CMM 

matrix columns, using the dot product and sums each column to produce the summed 

output vector O. 

 

Figure 11.  Showing the four shapes represented by the chain codes stored in the CMM 

in Figure 10.  The dotted lines indicate where each of the shapes differs from the query 

shape in Figure 4. 



 

 

Figure 12.  Showing the chain code & binary code for the query shape represented by 

Figure 4 (top) and the chain codes &  binary codes for the four shapes in Figure 11 (A, 

B, C & D from top to bottom).  The digits in the lighter shade indicate where each of the 

shapes (A, B, C & D from top to bottom) differs from Figure 4. 

 

 

Figure 13. Showing the inverted binary code Q̂  for the query shape  represented by 

Figure 4 (top) and the binary codes ( DCBA ˆ&ˆ,ˆ,ˆ from top to bottom) for the four shapes 

in Figure 11.  The digits in the lighter shade indicate where each of the shapes (A, B, C 

& D from top to bottom) differs from Figure 4. 



 

 

Figure 14. Graph shows the time (in seconds) to find the set of best matches (may be 

more than 1 with equivalent score) for the first 1000 chain codes using a stored database 

with between 250,000 and 1,500,000 chain codes.  The chain codes are all 100 

dimensional produced using a random integer generator where 0<= I <= 7.  The 

standard approach uses integers and a lookup table to calculate the score between two 

chain codes.  The AURA approach operates as described here.  The total time includes 

the training time. The recall time is retrieval for 1000 chain codes only. 



 

 

 

Figure 15.  Graph shows the time (in seconds) to find the set of best matches (may be 

more than 1 with equivalent score) for the first 1000 chain codes using a stored database 

of 100,000 chain codes.  The chain codes vary from 100 to 400 dimension and were 

produced using a random integer generator where 0<= I <= 7.  The standard approach 

uses integers and a lookup table to calculate the score between two chain codes.  The 

AURA approach operates as described here.  The total time includes the training time. 

The recall time is retrieval for 1000 chain codes only. 

 

 

Figure 16. Figure showing a PRQ reduction (from left to right) of the grid in Figure 4.  

There are 36 cells in the centre shape compared to 9 cells in the leftmost shape.  The 

chain code for the centre shape will be twice as long (the perimeter is now twice as long) 

as the leftmost shape.  The rightmost shape has 144 cells and the perimeter is 4 times as 

long as the leftmost shape and twice as long as the centre shape. 

 

 

 


