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ABSTRACT 

This paper presents an analysis of the choice of airport by air-travellers departing from 
the San Francisco Bay area. The analysis uses the mixed multinomial logit model, 
which allows for a random distribution of tastes across decision-makers. To our 
knowledge, this is the first application using this model form in the analysis of airport 
choice. The results indicate that there is significant heterogeneity in tastes, especially 
with respect to the sensitivity to access-time, characterised by deterministic variations 
between groups of travellers (business/leisure, residents/visitors) as well as random 
variations within groups of travellers. The analysis reinforces earlier findings showing 
that business travellers are far less sensitive to fare increases than leisure travellers, and 
are willing to pay a higher price for decreases in access-time (and generally also 
increases in frequency) than is the case for leisure travellers. Finally, the results show 
that the random variation between business travellers in terms of sensitivity to access-
time is more pronounced than that between leisure travellers, as is the case for visitors 
when compared to residents.  
 

1. INTRODUCTION 

During the last decade of the twentieth century, the demand for air travel grew at an 

average rate of 5% per annum (International Air Transport Association, 2002), and 

despite the impacts of the global economic downturn and the events of September 11th 

2001, annual growth levels of 5.1% (passenger-kilometres flown) are forecast for the 

next 20 years (Boeing, 2003). While the growth in traffic has been accompanied by a 

comparable increase in the available seat-kilometres, there has been a lack of increases 

in runway and terminal capacity. As a consequence, pressure exists to expand capacity 

at many of the world’s busiest airports (UK Department for Transport, 2003; Regional 
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Airport Planning Committee, 2000). These capacity expansion decisions are 

complicated, not least because of the fact that many of the concerned airports are part of 

a network of airports serving a multi-airport region. The case for capacity expansion in 

such regions depends not only on the total level of air traffic growth, but also on its 

distribution across alternative airports. 

To a large degree, the decision-making process in airport expansion schemes in such 

multi-airport regions depends on the projected levels of passenger demand at the 

different airports, such that the modelling of travellers’ choice of airport is a key 

component of such studies. Although this area of research has attracted increased 

activity in recent years (Veldhuis et al., 1999, Pels et al., 2001, 2003; Basar and Bhat, 

2004), the development of a systematic understanding of airport choice is still at a 

relatively early stage. In particular, compared to other dimensions of travel choice, little 

is known about the variation in tastes across different market segments or within 

individual market segments. 

Here we investigate specifically the prevalence of taste heterogeneity in the context 

of airport choice in the San Francisco Bay (SF-Bay) area. To do this, we consider only 

the choice of airport, independently of related choice dimensions such as those of main 

mode, access-mode and airline. In common with most existing studies, we also 

concentrate only on departing passengers and exclude passengers using the airports for 

connecting flights. Moreover, travellers on indirect flights are similarly excluded from 

the analysis. 

2. LITERATURE REVIEW 

One of the first studies of airport choice was by Skinner (1976), who used a 

multinomial logit (MNL) model for airport choice in the Baltimore-Washington DC 

area (3 airports). The results reveal significant effects of flight frequency and ground 
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accessibility, with travellers being more sensitive to the latter. In a more recent study of 

airport choice in this area, Windle and Dresner (1995) use an MNL model that shows 

significant effects associated with flight frequency and airport access-time, and also 

reveals that the more often a traveller uses a certain airport in a year, the more likely this 

traveller is to choose the same airport again. 

A large number of studies on airport choice have been undertaken in the SF-Bay 

area, mainly because of the availability of very good data. Harvey (1987) uses an MNL 

model for airport choice, and finds that airport access-time and flight frequency are 

significant for both leisure and business travellers, with lower valuations of time for 

leisure travellers. More recently, Pels et al. (2001) have used a nested logit (NL) model 

for airport and airline choice in the SF-Bay area. The results indicate that, ceteris 

paribus, travellers are more likely to switch between airlines than between airports. Pels 

et al. (2003) analyse the joint choice of airport and access mode by using an NL model 

(airport choice above access mode choice), showing high sensitivity to access-time, 

especially for business travellers. Basar and Bhat (2004) take a different approach by 

explicitly incorporating choice-set formation in the model, thus acknowledging that not 

all airports are considered by every travellers. The results show that flight frequency is 

the most important aspect in choice set composition, surprisingly dominating the also 

significant access-time factor, while, in terms of the actual choice of airport, access-time 

is the most important factor. In a predecessor to the analysis in this paper, Hess and 

Polak (2004a) show that there exist differences in choice-behaviour between population 

groups as well as within population groups, most notably in the sensitivity to access-

time increases. Finally, in an analysis of the joint choice of airport, airline and access-

mode, Hess and Polak (2004b) found differences across population groups in the 



 4

correlation structure in place in the choice-set of alternatives, and that, in general, the 

highest level of correlation exists between alternatives sharing the same access-mode. 

There have also been a number of studies of airport choice in the UK. Ashford and 

Bencheman (1987) use an MNL model for airport choice at five airports in England 

(Heathrow, Manchester, Birmingham, East Midlands and Luton), and find that access-

time and flight frequency are significant factors for all types of passengers, while fare is 

significant for all passengers except international business travellers. Ndoh et al. (1990) 

compare MNL and NL models for passenger route choice in central England and find 

the NL model to be superior. Thompson and Caves (1993) use an MNL model to 

forecast the market share for a new airport in North England; access-time, flight 

frequency and the number of seats on the aircraft (reflecting size/comfort) are found to 

be significant, with access-time being most important for travellers living close to the 

airport and frequency being more important for travellers living further afield. 

Outside the US and the UK, Ozoka and Ashford (1989) use an MNL model to 

predict the effect of building a third airport in a multi-airport region in Nigeria and find 

access-time to be significant, suggesting that the choice of location plays an important 

role in the success of an airport, along with the provision of good ground-access 

facilities. Innes and Doucet (1990) use a binary logit model to predict choice between 

airports in Canada, and find that travellers prefer jet services to turboprop services. 

Furuichi and Koppelman (1994) use an NL model for departure and destination airport 

choice in Japan, and find significant effects of access-time, access journey cost and 

flight-frequency. Finally, Veldhuis et al. (1999) produce the comprehensive Integrated 

Airport Competition Model for Amsterdam’s Schiphol airport, using a sequential NL 

choice process that models the choice of main mode, followed by the combined choice 

of airport and air-route, and finally the choice of access-mode at the chosen airport. 
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3. DATA 

The SF-Bay area is served by three major airports; San Francisco International (SFO), 

San Jose Municipal (SJC) and Oakland International (OAK). SFO is the largest of the 

three, with, in 1995, some 15 million emplaned passengers (~55.8%), compared to 

around 4.2 million passengers at SJC (~15.6%), and 7.7 million passengers at OAK 

(~28.6%). Forecasts by the Metropolitan Transport Commission (2000) predict 

significant increases in traffic; these will inevitably lead to problems with capacity, and 

different expansion schemes are already under consideration (Regional Airport Planning 

Committee, 2000).  

Data on individual travellers’ choices were obtained from the 1995 Airline 

Passenger Survey conducted by the MTC, containing information on over 21,000 

departing air-travellers (Metropolitan Transport Commission, 1995). The sample of 

passengers interviewed at the three main airports is not entirely representative of the 

real-world traffic at the airports; indeed, SJC is over-sampled, while OAK is under-

sampled. This sampling needs to be taken into account in the modelling in order to 

avoid any risk of biased results. In the present analysis, we account for the sampling 

effects by using the weighted exogenous sampling maximum likelihood (WESML) 

approach, in which each observation is assigned a weight in the likelihood function that 

represents the relative real-world market share of the chosen alternative compared to its 

market-share in the sample used in the analysis. Appropriate weights were calculated 

separately for each of the sub-samples used in the various models. 

It was decided to use only destinations that could be reached by direct flight from all 

three of the modelled airports, on every day of the week. Overall, this approach led to 

the use of 14 destinations, and an initial sample of 9,924 respondents. After removing 

observations for individuals who stated that they could not have flown out of a different 
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airport (c.f. Hess and Polak, 2004a, 2004b), and some further data-cleaning (removal of 

incomplete records), a final sample of 5,097 individuals was obtained, divided into 

1,268 resident business travellers, 1,500 resident leisure travellers, 1,269 visiting 

business travellers, and 1,060 visiting leisure travellers. The data used are summarised 

in Table 1, which illustrates the oversampling of SJC, when compared to the actual 

passenger numbers given above. The specific choice of destinations had little or no 

effect on the distribution of flights across other dimensions, such as journey purposes 

and household income. Clearly, the sampling has an effect on the market shares for the 

different airlines; as this study does not explicitly look at the choice of airline, this is 

however of little importance.  

Special care is required in the presence of destinations that are themselves located in 

multi-airport regions. It is in this case important to consider whether passengers’ 

choices of departure airport in the SF-Bay area may have been influenced by their 

choice of destination airport. After careful consideration, destinations from two such 

multi-airport regions were included in the present analysis, namely destinations in the 

wider Los Angeles area, and one of the two main Chicago airports. The decision to 

include the Los Angeles area airports was motivated primarily by the high 

representation of these destinations in the survey data, while, in the case of Chicago, the 

comparatively low frequency of services to the secondary airport at Midway (MDW) 

meant that the choice of airport in the SF-bay can almost be guaranteed to take 

precedence. A separate small-scale analysis indicated that the inclusion of these 

destinations did not lead to any significant bias in the results. 

The passenger-survey dataset contains information on the actual choices of a given 

set of travellers; for a modelling analysis, this needs to be complemented by datasets 

describing the attributes of the different alternatives contained in the travellers’ choice-
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sets. To this extent, air-travel level-of-service data were obtained from BACK Aviation 

Solutions1, containing daily information on the different operators serving the selected 

routes for the time period used in the present analysis (August and October 1995). 

Besides the frequencies for the different operators, the dataset also contains information 

on the average fares paid on a given route operated by a given airline. This clearly 

involves a great deal of aggregation, as no distinction is made between the fares for the 

different classes of travel. Furthermore, as no information on advance purchase 

discounts at the time booking was available, it had to be assumed that fares stay 

constant, and that availability of a specific fare on a given day is the same across all 

airports offering that route. Unfortunately, such assumption cannot in general be 

avoided in the area of airport-choice modelling, given the lack of adequate data on fares. 

A number of other attributes were included in the datasets; these were however not used 

in the present analysis (Hess and Polak, 2004a; 2004b). As the present study ignores the 

airline-choice dimension, aggregate air-travel level-of-service data were used, assigning 

to each passenger the industry-level information on frequencies and fares for flights 

from each of the three airports to the desired destination on the actual date of travel. 

Even though the access-mode choice dimension is not analysed explicitly in the 

present analysis, information on the access options at the different airports is still a 

prerequisite for the model-fitting exercise, given that access journeys are known to play 

an important role in airport choice. The ground-access level-of-service data used in this 

study were derived from origin-destination level-of-service matrices for a 1099 traffic 

zone system of the SF-Bay area, assembled by the MTC, containing time and cost 

information for car travel and public transport. Corresponding data for other modes 

were calculated separately, based on current prices and the change in the consumer price 
                                                 
1 Back Aviation Solutions, 6000 Lake Forrest Drive, Suite 580, Atlanta, GA  30328, 
www.backaviation.com 
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index for California. In the analysis, the travel access-dimension information for a given 

respondent corresponds to the mode actually chosen by this respondent. This is clearly a 

significant simplification of the actual situation (as it assumes that the same mode 

would have been chosen at a different airport), but does at least give some idea of the 

differences in access journeys to the different airports, in the absence of an explicit 

treatment of mode-choice. The impacts of this assumption are also weakened by the low 

elasticity for access-mode changes in the SF-bay area (Hess and Polak, 2004b).  

4. METHODOLOGY 

Discrete choice models have been used extensively in the field of transportation 

research for over thirty years. Initially, virtually all applications were based on the MNL 

model and basic NL models; more recently, the use of more flexible model forms, such 

as advanced generalised extreme value (GEV) models and the MMNL model has 

increased dramatically (Train, 2003). 

The MMNL model (McFadden and Train, 2000) offers significant advantages over 

the MNL model by allowing for random taste variation across decision-makers, thus 

acknowledging the differences across agents in their sensitivities  to factors such as fare 

and frequency. The random-coefficients formulation of the MMNL model uses 

integration of the MNL choice probabilities over the assumed distribution of the taste 

coefficients, such that the probability of individual n choosing alternative i is: 
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where Xni is a vector of explanatory variables for alternative i as faced by decision-

maker n, β is a vector of taste coefficients, and the function V(β,Xni) gives the observed 

utility of alternative i (Train, 2003). In the MMNL model, the vector β is distributed 

randomly across decision-makers, with density ( )θβf , where θ is a vector of parameters 
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to be estimated that represent, for example, the mean and variance of preferences in the 

population.  

The MMNL model not only allows for random taste variation, but also in principle 

avoids the unrealistic MNL substitution patterns resulting from the independence from 

irrelevant alternatives (IIA) assumption, which dictates that the dependency between 

any two alternatives is the same across alternatives, making the MNL model an 

inappropriate choice in many scenarios. The MNL model has been used repeatedly in 

airport choice modelling, and several authors (Ashford and Bencheman, 1987; 

Thompson and Caves, 1993) have justified the use of the MNL on the basis of tests 

showing that the IIA assumption is justified, i.e. that the different airports in the system 

under study are in effect independent entities. This is in general however far from clear, 

as in some cases, it seems that there is a possibility of varying cross-elasticities across 

pairs of airports in a multi-airport region (with more than two airports), given the 

similarities, respectively dissimilarities between some of the airports (e.g. business 

airport versus no-frills airlines base). 

The biggest drawback of the MMNL model is the fact that the integrals representing 

the choice probabilities do not have a closed-form expression and need to be 

approximated through simulation (Train, 2003; Hess et al., 2004a). A second issue with 

the MMNL model is the choice of distribution to be used for the random taste 

coefficients, especially in the case where an a priori assumption exists about the sign of 

a given coefficient (Hensher and Greene,2001; Hess and Polak, 2004c; Hess et al., 

2004b).  

5. ANALYSIS 

In this section, we describe the final estimated models used, and report the results 

produced. The more basic MNL and MMNL models estimated in the early stages of the 
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research are not described in detail in the present paper; more in depth descriptions and 

results for these models are available from the first author on request (Hess and Polak, 

2004a). In each model, the influence of a number of attributes was explored. These 

attributes included fare, frequency, access-journey time, access-journey cost, flight time, 

the number of operators serving a route, the size of aircraft used, and the on-time 

performance at the different airports. Only fare, frequency and access journey time were 

found to have a consistently significant effect. The lack of effects by other variables 

could be due to the use of airport-specific data, and different results can be expected 

with the use of airline-specific data (Hess and Polak, 2004b). Finally, no effect of 

travellers’ allegiances to given airlines could be included in the models, due to the lack 

of information on frequent traveller programmes. 

At this point, it seems worthwhile noting that the frequency coefficient is of special 

interest. Indeed, as it is not presently feasible to model the distribution of available 

departure times and individual travellers’ preferred departure times (due to data 

limitations), this coefficient can be seen as giving an estimate of the effect of changes in 

the time difference (schedule delay) between a desired departure time and the next best 

available departure time, making the (considerable) assumption of a relatively even 

spread of flights across the day. In this context, higher frequency means more 

reliability, and a lower risk of not arriving at the destination on time. Finally, the 

frequency coefficient also captures a visibility effect, in that, ceteris paribus, options 

with a higher frequency of service have a higher chance of being selected, due to higher 

representation in the choice set. 

Due to limitations in model specification, but also in the quality of the data 

available, it is never possible to capture all information that affects the choice of a given 

decision-maker. As such, the utility of a given alternative is not fully observed, and an 
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error term, or unobserved part of utility, remains. By adding alternative specific 

constants (ASC) to the utility of alternatives, the mean of this randomly distributed error 

term is added into the observed utility function, such that the remaining error term has a 

mean of zero. These ASCs thus capture the mean effect of all unobserved variables 

attributes, including general attitude towards an alternative, while the remaining error 

term captures the variation in this effect. For identification reasons, one of the ASCs 

needs to be normalised. In the present analysis, the ASC of OAK was set to zero; in the 

MNL models, the normalisation is arbitrary, while in the MMNL models, this 

normalisation was acceptable due to the lack of random variation in this constant across 

agents (Hensher and Greene, 2001). 

Another important issue is the choice of distribution for randomly distributed 

coefficients. A Normal distribution can safely be used for ASCs, thus allowing for 

positive as well as negative impacts of unmeasured variables across decision-makers. 

However, in the case of coefficients with an a priori sign assumption, the use of the 

Normal distribution should be avoided, as it leads to a positive probability of wrongly 

signed coefficients (Hess et al., 2004b). To this extent, a lognormal distribution was 

used for such coefficients in the analysis, producing positive draws only, such that, in 

the case of an undesirable attribute, the sign of the attribute needs to be reversed. 

Besides being more intuitively appealing, the use of the lognormal distribution in this 

case also universally led to better model fit. Models using a lognormal distribution yield 

estimates of the parameters of the underlying Normal distribution c and s; 

corresponding values for the actual mean and standard deviation of the Lognormal 

distribution, µ and σ, can be found using a simple transformation (Hess and Polak, 

2004c). This transformation is used in the presentation in the tables below, along with a 

sign change, where appropriate. 
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While the MMNL model has the power to explain variations in tastes with the use of 

statistical distributions, for interpretation (as well as estimation) reasons, attempts 

should always be made to explain as much of this variation as possible in a 

deterministic fashion. This generally comes in the form of separate models for different 

population groups, or separate coefficients for different groups within the same model. 

In the present analysis, three dimensions of segmentation were used; purpose, residency 

status and income. A further segmentation by ticket type (e.g., business versus 

economy) was not possible, for data reasons. Four separate models were estimated, 

dividing resident and visiting travellers each into a business and a leisure group. Results 

by Hess and Polak (2004a) show this approach to be preferable to the use of separate 

coefficients for the different groups in a common model. The effect of income was 

accommodated by dividing the sample population into three roughly equally sized 

income groups (less than $21,000, between $21,000 and $44,000 and above $44,000 per 

annum). An alternative approach would have been to explicitly model the continuous 

relationship between income and the sensitivity to factors such as fare and access-time; 

this is however beyond the scope of the present analysis. Initial results showed that no 

further gains could be made by estimating separate models for the three different 

income groups, such that (where necessary) separate coefficients for the three income 

groups would be used inside the four different models estimated. Finally, for each of the 

four subgroups, a random sub-sample of roughly 10% was removed and retained for 

later validation of the models on data not used in the estimation. 

Another important point that warrants further discussion is the way in which 

explanatory variables enter the utility function. Generally, a linear specification is used 

in discrete choice models, such that changes in a given attribute lead to linear changes in 

utility; this is thus not appropriate in the case of attributes for which decreasing 
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marginal returns in utility would be expected. In the case of airport choice modelling, 

the most prominent example of such an attribute is flight frequency, where increases at 

a lower base frequency are relatively more valuable to travellers than increases at 

already high base frequencies. A non-linear specification of frequency can be 

accommodated in the models by replacing the absolute frequency levels by a formula 

that gives a decreasing marginal return. In the present analysis, the natural logarithm 

transform was used for the frequency attribute; this has been used previously by 

Veldhuis et al (1999) and Pels et al. (2003) amongst others, and Hess and Polak (2004a) 

suggest this approach to be superior to that of other non-linear transforms, at least in the 

present context. The same transformation was used for the past-experience attribute, 

where decreasing marginal returns should also be expected. Attempts were also made to 

use a non-linear specification for the remaining coefficients of fare and access-time; this 

did however not lead to any significant gains in model fit. 

6. MODELLING RESULTS 

The results of the estimation process are summarised in Table 2. In each one of the four 

models, there was sufficient variation in the sensitivity to access-time to use a random 

coefficient that follows a Lognormal distribution. In addition, significant variation to 

enable the use of a normally distributed ASC for SFO was identified in each model 

except the model for business trips by visitors. It was not possible to identify significant 

random heterogeneity in the sensitivities to fare and frequency changes; this lack of 

additional variation can again be partly explained by the use of airport-specific data, and 

ongoing work has revealed the existence of additional levels of heterogeneity when 

looking at the related choice dimensions of airline and access-mode.  

In each case, the use of the MMNL specification led to statistically significant gains 

in model fit over the corresponding MNL structure, with the most significant gain being 
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obtained by the model for visiting business travellers, despite the fact that this model 

has only one randomly distributed coefficient. Significant effects of income could only 

be found in the model for resident business travellers, where a significant effect of fare 

was only identified for the low-income group, and the model for visiting leisure 

travellers, where a separate frequency coefficient was used for the high-income group, 

with a common coefficient for the low and medium-income groups. It was not possible 

to identify a significant fare-effect in the model for business trips by visitors; this comes 

in addition to the inability to estimate such an effect for the medium and high-income 

groups for resident business travellers. The failure to estimate a significant fare-effect 

could reflect the comparatively low sensitivity to fare for business travellers, but could 

also be partly due to the use of highly aggregate fare information; other authors have 

encountered similar problems with estimating significant fare coefficients (Pels et al., 

2003). Finally, the differences in the estimates of the ASCs across models are largely an 

effect of the use of the WESML approach, and of the differences in the sampling in 

different models.  

Given that it was not possible to identify a significant effect for access-cost in any of 

the models, it was similarly impossible to give a proper estimate of the value of access-

time savings. An indication of the monetary value of access-time changes can be given 

by looking at the ratio between the access-time coefficient and the air-fare coefficient. 

The estimate of this ratio can however be expected to be higher than the actual value of 

access-time, given the significant differences in scale between the associated attributes. 

As such, a lower marginal utility would be associated with a change in air-fare by one 

dollar than a change in access-cost by the same amount. Additionally, trade-offs were 

calculated between the frequency and access-time coefficients, and between the 

frequency and fare coefficients. It should be noted that, due to the lack of significant 
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fare-coefficients in some of the models, the calculation of trade-offs involving this 

coefficient was not possible for all population segments. Also, due to the use of the 

logarithmic transform for frequency, the two trade-offs involving this coefficient need 

to be adjusted through multiplication by the difference between the logarithm of the 

new frequency and the logarithm of the old frequency (defined as K) to obtain a real 

measure for the trade-off. Finally, for the trade-offs involving randomly distributed 

coefficients, it is of interest not just to calculate the mean values of access-time, but to 

incorporate the full distribution of this coefficient in the calculation. This not only gives 

an account of the variation in these trade-offs across the population, but also avoids a 

major risk of biased estimates (Hensher and Greene, 2001; Hess and Polak, 2004c). The 

distributional characteristics of such randomly distributed trade-offs were found 

analytically in the case of the trade-off between the access-time and flight frequency 

coefficients, and through simulation in the case of the trade-off between the flight 

frequency and access-time coefficients (where the random variable forms the 

denominator of the ratio). The resulting values are shown in Table 3. To give a meaning 

to the calculated trade-offs involving the frequency coefficient, the table also gives 

values for an increase by one flight at a base frequency of 5 flights per day, where K is 

equal to 0.182. The corresponding value of K at a base frequency of 10 flights is 0.095, 

showing the decreasing marginal returns with this specification.  

The results indicate a greater willingness to accept higher flight fares in return for 

access-time decreases for resident business travellers than for resident leisure travellers, 

especially when taking into account that the fare coefficient estimated for resident 

business travellers is for the low income group only. The results further indicate that, 

while the mean willingness to pay is very similar for resident and visiting leisure 

travellers, the within-group variation is more important for visiting leisure travellers. 
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The implied willingness to accept higher flight-fares in return for shorter access-times 

can be expected to be even greater for visiting business travellers, given that it was not 

possible to identify a significant fare effect for this group of travellers. Although, as 

mentioned before, the calculated trade-offs should not be seen as an estimate of the 

value of access-time reductions, given the use of the flight-fare rather than the access 

cost coefficients, the estimated values are still very high. This is a direct result of the 

low air-fare coefficient, which is at least partly due to the relatively poor quality of the 

fare information used. However, the size of the ratio is clearly also a result of the high 

access-time coefficient, which could possibly indicate that travellers associate increases 

in access-time with increases in the risk of missing a flight. This explanation is 

supported by the high values of access-time reported in studies where an access-cost 

coefficient could be identified. For example, Pels et al (2003) report values of 

$2.90/min for business travellers in August and $1.97/min for business travellers in 

October, using the same data as the present analysis. Lower values were reported in 

older studies; for example, Harvey (1986) gives a value of $0.69/min, while Furuichi 

and Koppelman (1994) give a value of $1.21/min.  

In terms of the willingness to accept access-time increases in return for frequency 

increases, the results indicate a higher mean willingness for visiting business travellers 

than for resident business travellers (20.99K vs 15.64K), despite the fact that the simple 

ratio between the coefficient mean values would suggest the opposite (8.73K vs 9.93K). 

This is caused by the much larger standard deviation in the coefficient for visitors than 

for residents, and illustrates the importance of incorporating the full distribution of the 

coefficients in the calculation of trade-offs, especially in the case of asymmetrical 

distributions (special care was taken in the simulation to reduce the impact of outliers 

on the calculation). The use of the simple ratio of means approach thus not only 
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underestimates the trade-offs, but also incorrectly predicts a higher willingness to accept 

access-time increases for residents than for visitors, potentially leading to wrong policy 

implications. A similar problem occurs when using the MNL model.  

Finally, the models show a higher relative desire for frequency increases for visiting 

leisure travellers than for resident leisure travellers, with increasing willingness to 

accept access-time increases for travellers in higher income classes. The results also 

suggest that in both income groups for visiting leisure travellers, this trade-off is larger 

than the common trade-off for resident business travellers. The observations for the 

willingness to pay for frequency increases are very similar, with the exception that only 

the willingness to pay of high-income visiting leisure travellers is above the common 

willingness of resident business travellers. In terms of the actual real-world values of 

one additional daily flight with a base frequency of five flights, the implied trade-offs 

between frequency and access-time increases seem a bit low, but should be put into 

context by noting that the average access-time in the data used was just below 30 

minutes. Finally, the monetary values of one additional flight seem realistic, though 

possibly also at the low end of the real values.  

7. MODEL VALIDATION AND PREDICTION PERFORMANCE 

The first part of the model validation process was concerned with applying the four 

models to the respective estimation samples, and calculating the average choice 

probabilities assigned by the models to the actual chosen alternatives. This approach 

produces correct prediction probabilities of 64.3% for resident business travellers, 

68.0% for resident leisure travellers, 66.5% for visiting business travellers and 65.9% 

for visiting leisure travellers. These values are lower than those reported recently by 

Basar and Bhat (2004), who obtained an average correct prediction rate of 74.9%. 

However, when taking into account the use of a simplistic utility function, the use of 
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airport rather than airline-specific level-of-service information, and the fact that choice-

set formation was excluded from the analysis, the performance of the models is actually 

very good, and reflects the relative explanatory power of the three variables used in the 

models.  

The most telling test of model performance is however the ability of the final 

calibrated models to correctly predict the market shares and choices in data that were 

not used in the actual model calibration process. For this purpose, the four models were 

applied to the validation samples retained for this use. The results of this process are 

shown in Table 4, giving the weighted predicted market shares, along with the average 

probability of correct prediction. The results show that, except for the model for resident 

leisure travellers, the correct prediction performance on the validation sample is actually 

higher than that obtained with the estimation sample, suggesting that the models have 

not been over-fitted on the estimation data, and are capable of offering good 

performance on unknown data. In terms of reproducing the weighted market shares for 

the three airports, the performance is again very good, although the two models for 

leisure travellers tend to slightly overestimate the market share for OAK and 

underestimate the market share for SFO (as a reminder, the overall real-world market-

shares were 55.8%, 15.6% and 28.6% for SFO, SJC and OAK respectively). 

8. CONCLUSIONS 

The paper has looked at airport choice in the San Francisco Bay area. In line with 

previous research, the analysis shows there exist significant influences on airport choice 

due to access-time, fare, and frequency of service. Moreover, the results indicate that 

there are significant differences across travellers in their sensitivity to these factors, and 

that while differences in sensitivity to fare and frequency can be adequately 

accommodated by deterministic market segmentation, the sensitivity to access-time 
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additionally varies randomly within these market segments. This shows that the MMNL 

model can lead to important gains in modelling accuracy and explanatory power in the 

analysis of air-travel behaviour. 
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Table 1: Destinations used in the analysis 
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SFO 54 97 45 74 65 203 35 38 129 140 1 48 261 220 1410 

SJC 161 71 97 89 158 370 113 246 128 105 147 66 237 157 2145 Departure 
Airport  

OAK 203 6 26 12 67 370 130 168 47 96 35 42 133 207 1542 

Total  418 174 168 175 290 943 278 452 304 341 183 156 631 584 5097 

Table 2: Mixed logit models using segmentation by purpose and division into residents and visitors 
 
 Resident business Resident leisure Visitor business Visitor leisure 

Parameter Estimate t-statistic Estimate t- statistic Estimate t- statistic Estimate t- statistic 
Fare (common)   -0.0475 -3.8   -0.0477 -3.7 

Fare         
(income < $21,000) -0.0430 -2.55       

Frequency (common) 1.9469 5.6 1.8333 5.7 1.8881 7.7   
Frequency      

(income < $44,000)       1.9701 5.2 

Frequency 
(income > $44,000)       3.0328 5.2 

Access-time c -1.8571 -15.5 -1.8916 -17.1 -1.9706 -20.6 -1.9669 -13.0 
Access-time s 0.6742 4.3 0.5102 3.6 0.9373 5.4 0.6934 5.5 
Access-time µ -0.1960 N/A -0.1718 N/A -0.2163 N/A -0.1779 N/A 
Access-time σ 0.1487 N/A 0.0937 N/A 0.2566 N/A 0.1398 N/A 

ASC SFO mean 1.1563 4.2 0.9289 3.9 0.3632 2.5 0.5028 1.9 
ASC SFO std.dev 2.0260 3.6 1.3650 2.7   1.6019 2.2 

ASC SJC -0.1045 -0.5 -0.1515 -0.8 -0.7767 -3.7 0.7784 2.8 
Observations 1,140 1,347 1,142 952 

LL -604.03 -659.67 -573.67 -514.62 

LL (MNL) -615.53 -666.22 -592.05 -519.92 
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Table 3: Trade-offs [standard deviations in brackets, where applicable] 
 
 Resident 

business 
Resident 
leisure 

Visitor 
business 

Visitor 
leisure 

Trade-off between access-time and flight fare 
coefficient ($/min) 

4.56            
[3.46] b 

3.62          
[1.97] N/A 3.73            

[2.93] 

Trade-off between frequency increases and access-
time increases (min/flight) a 

15.64K     
[11.84] 

13.85K     
[7.55] 

20.99K      
[24.62] 

17.91K        
[14.00] c 
27.57K        

[21.56] d 

Willingness to pay for frequency increases ($) a 45.27K b 38.60K N/A 
41.30K c 
63.58K  d 

Mean willingness to accept access-time increases for 
one additional flight at a base frequency of 5 flights 

(min) 
2.85 2.53 3.83 

3.27c 
5.03d 

Willingness to pay for one additional flight at a base 
frequency of 5 flights ($) 8.25 7.04 N/A 

7.53c 
11.59d 

     

a K=ln(f+1)-ln(f); b low-income travellers only; 
c
 low-income and medium-income travellers only , d high-income travellers only 

Table 4: Prediction performance on validation sample 

 Resident business Resident leisure Visitor business Visitor leisure 
     

Observations 128 153 127 108 
     

Share SFO 56.4% 52.4% 56.2% 52.7% 
Share SJC 15.9% 16.0% 15.3% 15.2% 
Share OAK 27.7% 31.6% 28.5% 32.2% 
     

Correct prediction 67.6% 66.1% 67.0% 68.3% 
     


