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Poisson cluster measures: quasi-invariance,
integration by parts and equilibrium stochastic

dynamics
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Abstract

The distribution µcl of a Poisson cluster process in X = Rd (with i.i.d. clusters) is studied
via an auxiliary Poisson measure on the space of configurations in X =

⊔
n Xn, with

intensity measure defined as a convolution of the background intensity of cluster centres
and the probability distribution of a generic cluster. We show that the measure µcl is quasi-
invariant with respect to the group of compactly supported diffeomorphisms of X and prove
an integration-by-parts formula for µcl. The corresponding equilibrium stochastic dynamics
is then constructed using the method of Dirichlet forms.
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1 Introduction

In the mathematical modelling of multi-component stochastic systems, it is con-
ventional to describe their behaviour in terms of random configurations of “par-
ticles” whose spatio-temporal dynamics is driven by interaction of particles with
each other and the environment. Examples are ubiquitous and include various mod-
els in statistical mechanics, quantum physics, astrophysics, chemical physics, biol-
ogy, computer science, economics, finance, etc. (see [16] and the extensive bibli-
ography therein).

Initiated in statistical physics and theory of point processes, the development of
a general mathematical framework for suitable classes of configurations was over
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decades a recurrent research theme fostered by widespread applications. More re-
cently, there has been a boost of more specific interest in the analysis and geometry
of configuration spaces. In the seminal papers [5,6], an approach was proposed to
configuration spaces as infinite-dimensional manifolds. This is far from straight-
forward, since configuration spaces are not vector spaces and do not possess any
natural structure of Hilbert or Banach manifolds. However, many “manifold-like”
structures can be introduced, which appear to be nontrivial even in the Euclidean
case. We refer the reader to papers [2,6,7,25,29] and references therein for further
discussion of various aspects of analysis on configuration spaces and applications.

Historically, the approach in [5,6] was motivated by the theory of representations
of diffeomorphism groups (see [17,20,33]). To introduce some notation, let ΓX be
the space of countable subsets (configurations) without accumulation points in a
topological space X (e.g., Euclidean space Rd). Any probability measure µ on ΓX ,
quasi-invariant with respect to the action of the group Diff0(X) of compactly sup-
ported diffeomorphisms ofX (lifted pointwise to transformations of ΓX), generates
a canonical unitary representation of Diff0(X) in L2(ΓX , µ). It has been proved in
[33] that this representation is irreducible if and only if µ is Diff0(X)-ergodic. Rep-
resentations of such type are instrumental in the general theory of representations
of diffeomorphism groups [33] and in quantum field theory [17,18].

According to a general paradigm described in [5,6], configuration space analy-
sis is determined by the choice of a suitable probability measure µ on ΓX (quasi-
invariant with respect to Diff0(X)). It can be shown that such a measure µ satisfies
a certain integration-by-parts formula, which enables one to construct, via the the-
ory of Dirichlet forms, the associated equilibrium dynamics (stochastic process) on
ΓX such that µ is its invariant measure [5,6,27]. In turn, the equilibrium process
plays an important role in the asymptotic analysis of statistical-mechanical systems
whose spatial distribution is controlled by the measure µ; for instance, this process
is a natural candidate for being an asymptotic “attractor” for motions started from
a perturbed (non-equilibrium) configuration.

This programme has been successfully implemented in [5] for the Poisson mea-
sure, which is the simplest and most well-studied example of a Diff0(X)-quasi-
invariant measure on ΓX , and in [6] for a wider class of Gibbs measures, which
appear in statistical mechanics of classical continuous gases. In particular, it has
been shown that in the Poisson case, the equilibrium dynamics amounts to the
well-known independent particle process, that is, an infinite family of independent
(distorted) Brownian motions started at the points of a random Poisson configura-
tion. In the Gibbsian case, the dynamics is much more complex due to interaction
between the particles.

The Gibbsian class (containing the Poisson measure as a simple “interaction-
free” case) is essentially the sole example so far that has been fully amenable to
such analysis. In the present paper, our aim is to develop a similar framework for
a different class of random spatial structures, namely the well-known cluster point
processes (see, e.g., [14,16]). Cluster process is a simple model to describe effects
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of grouping (“clustering”) in a sample configuration. The intuitive idea is to assume
that the random configuration has a hierarchical structure, whereby independent
clusters of points are distributed around a certain (random) configuration of invis-
ible “centres”. The simplest model of such a kind is the Poisson cluster process,
obtained by choosing a Poisson point process as the background configuration of
the cluster centres.

Cluster models have been very popular in numerous practical applications rang-
ing from neurophysiology (nerve impulses) and ecology (spatial distribution of off-
spring around the parents) to seismology (statistics of earthquakes) and cosmology
(formation of constellations and galaxies). More recent examples include applica-
tions to trapping models of diffusion-limited reactions in chemical kinetics [1,9,12],
where clusterization may arise due to binding of traps to a substrate (e.g., a poly-
mer chain) or trap generation (e.g., by radiation damage). An exciting range of new
applications in physics and biology is related to the dynamics of clusters consisting
of a few to hundreds of atoms or molecules. Investigation of such “mesoscopic”
structures, intermediate between bulk matter and individual atoms or molecules, is
of paramount importance in the modern nanoscience and nanotechnology (for an
authoritative account of the state of the art in this area, see a recent review [15] and
further references therein).

In the present work, we consider Poisson cluster processes in X = Rd. We prove
the Diff0(X)-quasi-invariance of the Poisson cluster measure µcl and establish the
integration-by-parts formula. We then construct an associated Dirichlet form, which
implies in a standard way the existence of equilibrium stochastic dynamics on the
configuration space ΓX . Our technique is based on the representation of µcl as a nat-
ural “projection” image of a certain Poisson measure on an auxiliary configuration
space ΓX over a disjoint union X =

⊔
nX

n, comprising configurations of “droplets”
representing individual clusters of variable size. A suitable intensity measure on X

is obtained as a convolution of the background intensity λ(dx) (of cluster centres)
with the probability distribution η(dȳ) of a generic cluster. This approach enables
one to apply the well-developed apparatus of Poisson measures to the study of the
Poisson cluster measure µcl.

Let us point out that the projection construction of the Poisson cluster measure
is very general, and in particular it works even in the case when “generalized” con-
figurations (with possible accumulation or multiple points) are allowed. However,
to be able to construct a well-defined differentiable structure on cluster configura-
tions, we need to restrict ourselves to the space ΓX of “proper” (i.e., locally finite
and simple) configurations. Using the technique of Laplace functionals, we ob-
tain necessary and sufficient conditions of almost sure (a.s.) properness for Poisson
cluster configurations, set out in terms of the background intensity λ(dx) of cluster
centres and the in-cluster distribution η(dȳ). To the best of our knowledge, these
conditions appear to be new (cf., e.g., [16, § 6.3]) and may be of interest for the
general theory of cluster point processes.

Some of the results of this paper have been sketched in [11] (in the case of
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clusters of fixed size). We anticipate that the projection approach developed in
the present paper can be applied to the study of more general cluster measures
on configurations spaces, especially Gibbs cluster measure (see [10] for the case
of fixed-size clusters). Such models, and related functional-analytic issues, will be
addressed in our future work.

The paper is organized as follows. In Section 2.1, we set out a general framework
of probability measures in the space of generalized configurations Γ ]

X . In Section
2.2, we recall the definition and discuss the construction and some basic properties
of the Poisson measure on the space Γ ]

X , while Section 2.3 goes on to describe
the Poisson cluster measure. In Section 2.4, we discuss criteria for Poisson clus-
ter configurations to be a.s. locally finite and simple (Theorem 2.7, the proof of
which is deferred to the Appendix). An auxiliary intensity measure λ? on the space
X =

⊔
nX

n is introduced and discussed in Section 3.1, which allows us to define
the corresponding Poisson measure πλ? on the configuration space Γ ]

X (Section 3.2).
Theorem 3.6 of Section 3.3 shows that the Poisson cluster measure µcl can be ob-
tained as a push-forward of the Poisson measure πλ? on Γ ]

X under the “unpacking”
map X 3 x̄ 7→ p(x̄) :=

⊔
xi∈x̄{xi} ∈ Γ ]

X. In Section 3.4, we describe a more gen-
eral construction of µcl using another Poisson measure defined on the space Γ ]

X×X

of configurations of pairs (x, ȳ) (x = cluster centre, ȳ = in-cluster configuration),
with the product intensity measure λ(dx)⊗ η(dȳ). Following a brief compendium
on differentiable functions in configuration spaces (Section 4.1), Section 4.2 deals
with the property of quasi-invariance of the measure µcl with respect to the dif-
feomorphism group Diff0(X) (Theorem 4.3). Further on, an integration-by-parts
formula for µcl is established in Section 4.3 (Theorem 4.5). The Dirichlet form
Eµcl

associated with µcl is defined and studied in Section 5.1, which enables us to
construct in Section 5.2 the canonical equilibrium dynamics (i.e., diffusion on the
configuration space with invariant measure µcl). In addition, we show that the form
Eµcl

is irreducible (Theorem 5.4, Section 5.3). Finally, the Appendix includes the
proof of Theorem 2.7 (Section 6.1) and the proof of a well-known general result on
quasi-invariance of Poisson measures, adapted to our purposes (Section 6.2).

2 Poisson and Poisson cluster measures in configuration spaces

In this section, we fix some notations and describe the setting of configuration
spaces that we shall use. As compared to a standard exposition (see, e.g., [14,16]),
we adopt a more general standpoint by allowing configurations with multiple points
and/or accumulation points. With this modification in mind, we recall the definition
and some properties of Poisson point process (as a probability measure in the gen-
eralized configuration space Γ ]

X). We then proceed to introduce the main object of
the paper, the cluster Poisson point process and the corresponding measure µcl in
Γ ]

X . The central result of this section is the projection constriction showing that µcl

can be obtained as a push-forward of a suitable Poisson measure in the auxiliary
“vector” configuration space Γ ]

X, where X =
⊔

nX
n.
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2.1 Generalized configurations

LetX be a Polish space (i.e., separable completely metrizable topological space),
equipped with the Borel σ-algebra B(X) generated by the open sets. Denote Z+ :=
Z+∪{∞}, where Z+ = {0, 1, 2, . . . }, and consider the space X built from Cartesian
powers of X , that is, a disjoint union X :=

⊔
n∈Z+

Xn including X0 = {∅} and the
space X∞ of infinite sequences (x1, x2, . . . ). That is to say, x̄ = (x1, x2, . . . ) ∈ X

if and only if x̄ ∈ Xn for some n ∈ Z+. For simplicity of notation, we take the
liberty to write xi ∈ x̄ if xi is a coordinate of the vector x̄.

Each space Xn is equipped with the product topology induced by X , that is,
the coarsest topology in which all coordinate projections (x1, . . . , xn) 7→ xi are
continuous (i = 1, . . . , n). Hence, the space X is endowed with the natural disjoint
union topology, that is, the finest topology in which the canonical injections jn :
Xn → X are continuous (n ∈ Z+). In other words, a set U ⊂ X is open in
this topology whenever U =

⊔
n∈Z+

Un, where each Un is an open subset in Xn

(n ∈ Z+). Hence, the Borel σ-algebra on X is given by B(X) =
⊕

n∈Z+
B(Xn),

that is, consists of sets of the form B =
⊔

n∈Z+
Bn, where Bn ∈ B(Xn), n ∈ Z+ .

Remark 2.1. Note that a setK ⊂ X is compact if and only ifK =
⊔N

n=0Kn, where
N < ∞ and Kn are compact subsets of Xn, respectively. This becomes clear by
considering an open cover of K by the sets Un = Xn, n ∈ Z+.

Denote byN (X) the space of Z+-valued measuresN(·) onB(X) with countable
(i.e., finite or countably infinite) support suppN := {x ∈ X : N{x} > 0} (here
and below, we use N{x} as a shorthand for a more accurate N({x}); the same
convention applies to other measures). Consider the natural projection

X 3 x̄ 7→ p(x̄) :=
∑
xi∈x̄

δxi
∈ N (X), (2.1)

where δx is Dirac measure at point x ∈ X . Gathering any coinciding points xi ∈ x̄,
the measure N =

∑
xi∈x̄ δxi

in (2.1) can be written down as N =
∑

x∗i∈supp N kiδx∗i ,
where ki = N{x∗i } > 0 is the “multiplicity” (possibly infinite) of the point x∗i ∈
suppN . Any such measure N can be conveniently associated with a generalized
configuration γ of points in X ,

N ↔ γ :=
⊔

x∗i∈supp N

{x∗i } t · · · t {x∗i }︸ ︷︷ ︸
ki

,

where the disjoint union {x∗} t · · · t {x∗} signifies the inclusion of several dis-
tinct copies of point x∗ ∈ suppN . Thus, the mapping (2.1) can be symbolically
rewritten as

p(x̄) = γ :=
⊔

xi∈x̄

{xi}, x̄ = (x1, x2, . . . ) ∈ X. (2.2)

That is to say, under the projection mapping p each vector from X is “unpacked”
into distinct components, resulting in a countable aggregate of points in X (with
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possible multiple points), which we interpret as a generalized configuration γ. Note
that, formally, x̄ may be from the “trivial” component X0 = {∅}, in which case the
union in (2.2) (as well as the sum in (2.1)) is vacuous and hence corresponds to the
empty configuration, γ = ∅.

Even though generalized configurations are not, strictly speaking, subsets of X
(due to possible multiple points), it is convenient to keep using set-theoretic nota-
tions, which should not cause any confusion. For instance, we write γB := γ∩B for
the restriction of configuration γ to a subset B ∈ B(X). Similarly, for a function
f : X → R we denote

〈f, γ〉 :=
∑
xi∈γ

f(xi) ≡
∑

x∗i∈supp N

N{x∗i } f(x∗i ) =
∫

X
f(x)N(dx). (2.3)

This formula motivates the following convention that will be used throughout: if
γ = ∅ then

∑
x∈γ f(x) := 0.

In what follows, we shall identify generalized configurations γ with the corre-
sponding measures N =

∑
xi∈γ δxi

, and we shall opt to interpret the notation γ
either as an aggregate of (multiple) points in X or as a Z+-valued measure or both,
depending on the context. For example, if 1B(x) is the indicator function of a set
B ∈ B(X) then 〈1B, γ〉 = γ(B) is the total number of points (counted with their
multiplicities) in the restriction γB of the configuration γ to B.

Definition 2.1. Configuration space Γ ]
X is the set of generalized configurations γ in

X , endowed with the cylinder σ-algebra B(Γ ]
X) generated by the class of cylinder

sets Cn
B := {γ ∈ Γ ]

X : γ(B) = n}, B ∈ B(X), n ∈ Z+ .

Remark 2.2. Note that the set C∞
B = {γ ∈ Γ ]

X : γ(B) = ∞} is measurable:

C∞
B =

∞⋂
n=0

{γ ∈ Γ ]
X : γ(B) ≥ n} =

∞⋂
n=0

∞⋃
k=n

C k
B ∈ B(Γ ]

X).

The mapping p : X → Γ ]
X defined by formula (2.2) is measurable, since for any

cylinder set Cn
B ∈ B(Γ ]

X) we have

p−1(Cn
B) = Dn

B :=

{
x̄ ∈ X :

∑
xi∈x̄

1B(xi) = n

}
∈ B(X). (2.4)

As already mentioned, conventional theory of point processes (and their dis-
tributions as probability measures on configuration spaces) usually rules out the
possibility of accumulation points or multiple points (see, e.g., [16]).

Definition 2.2. Configuration γ ∈ Γ ]
X is said to be locally finite if γ(K) < ∞

for any compact set K ⊂ X . Configuration γ ∈ Γ ]
X is called simple if γ{x} ≤ 1

for each x ∈ X . Configuration γ ∈ Γ ]
X is called proper if it is both locally finite

and simple. The set of proper configurations will be denoted by ΓX and called the
proper configuration space over X . The corresponding σ-algebra B(ΓX) is gener-
ated by the cylinder sets {γ ∈ ΓX : γ(B) = n} (B ∈ B(X), n ∈ Z+).
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Like in the standard theory for proper configuration spaces (see, e.g., [16, § 6.1]),
every measure µ on the generalized configuration space Γ ]

X can be characterized
by its Laplace functional

Lµ[f ] :=
∫

Γ ]
X

e−〈f,γ〉 µ(dγ), f ∈ M+(X), (2.5)

where M+(X) is the set of measurable non-negative functions on X (so that the
integral in (2.5) is well defined since 0 ≤ e−〈f,γ〉 ≤ 1). To see why Lµ[·] completely
determines the measure µ on B(Γ ]

X), note that if B ∈ B(X) then Lµ[s1B] as a
function of s > 0 gives the Laplace–Stieltjes transform of the distribution of the
random variable γ(B) and as such determines the values of the measure µ on the
cylinder sets Cn

B ∈ B(Γ ]
X) (n ∈ Z+). In particular, Lµ[s1B] = 0 if and only if

γ(B) = ∞ (µ-a.s.). Similarly, using linear combinations
∑k

i=1 si1Bi
we can recover

the values of µ on the cylinder sets

Cn1,...,nk
B1,...,Bk

:=
k⋂

i=1

Cni
Bi

= {γ ∈ Γ ]
X : γ(Bi) = ni, i = 1, . . . , k}

and hence on the ring C(X) of finite disjoint unions of such sets. Since the ring
C(X) generates the cylinder σ-algebra B(Γ ]

X), the extension theorem (see, e.g.,
[19, § 13, Theorem A] or [16, Theorem A1.3.III]) ensures that the measure µ on
B(Γ ]

X) is determined uniquely.

2.2 Poisson measure

We recall here some basic facts about Poisson measures in configuration spaces.
As compared to the customary treatment, another difference, apart from working
in the space of generalized configurations Γ ]

X , is that we use a σ-finite intensity
measure rather than a locally finite one.

Poisson measure on the configuration space Γ ]
X is defined descriptively as fol-

lows (cf. [16, § 2.4]).

Definition 2.3. Let λ be a σ-finite measure in (X,B(X)) (not necessarily infinite,
i.e., λ(X) ≤ ∞). The Poisson measure πλ with intensity λ is a probability measure
on B(Γ ]

X) satisfying the following condition: for any disjoint sets B1, . . . , Bk ∈
B(X) (i.e., Bi ∩ Bj = ∅ for i 6= j), such that λ(Bi) < ∞ (i = 1, . . . , k), and any
n1, . . . , nk ∈ Z+, the value of πλ on the cylinder set Cn1,...,nk

B1,...,Bk
is given by

πλ

(
Cn1,...,nk

B1,...,Bk

)
=

k∏
i=1

λ(Bi)
ni e−λ(Bi)

ni!
(2.6)

(with the convention 00 := 1). That is, for disjoint sets Bi the values γ(Bi) are mu-
tually independent Poisson random variables with parameters λ(Bi), respectively.

A well-known “explicit” construction of the Poisson measure πλ is as follows
(cf. [5,31]). For a fixed set Λ ∈ B(X) such that λ(Λ) <∞, consider the restriction
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mapping pΛ ,
Γ ]

X 3 γ 7→ pΛγ = γ ∩ Λ ≡ γΛ ∈ Γ ]
Λ.

Clearly, pΛ(Cn
Λ) = {γ̃ ∈ Γ ]

Λ : γ̃(Λ) = n}. For A ∈ B(Γ ]
Λ) and n ∈ Z+, let

AΛ,n := A ∩ pΛ(Cn
Λ) ∈ B(Γ ]

Λ) and define the measure

πΛ
λ (A) := e−λ(Λ)

∞∑
n=0

1

n!
λ⊗n ◦ p−1(AΛ,n), A ∈ B(Γ ]

Λ), (2.7)

where λ⊗n = λ⊗ · · · ⊗ λ︸ ︷︷ ︸
n

is the product measure in (Xn,B(Xn)) (we formally

set λ⊗0 := δ{∅}) and p is the projection operator defined in (2.2). In particular, (2.7)
implies that πΛ

λ is a probability measure on Γ ]
Λ. It is easy to check that the “cylindri-

cal” measure πΛ
λ ◦ pΛ in Γ ]

X (in fact, supported on
⋃∞

n=0C
n
Λ ) satisfies equation (2.6)

for any disjoint Borel sets Bi ⊂ Λ. It is also clear that the family {πΛ
λ , Λ ⊂ X} is

consistent, that is, the restriction of the measure πΛ
λ to a smaller configuration space

Γ ]
Λ′ (with Λ′ ⊂ Λ) coincides with πΛ′

λ , that is, πΛ
λ ◦ (pΛp

−1
Λ′ ) = πΛ′

λ .

Existence (and uniqueness) of a measure πλ in (Γ ]
X ,B(Γ ]

X)) such that, for any
Λ ∈ B(X), the push-forward measure p∗Λπλ ≡ πλ ◦ p−1

Λ coincides with πΛ
λ (which

implies that πλ satisfies Definition 2.3 and is therefore a Poisson measure on the
configuration space Γ ]

X), now follows by a projective version of the fundamen-
tal Kolmogorov extension theorem (see, e.g., [16, §A1.5] or [28, Ch. 5]). More
precisely, recall that the measure λ on X is σ-finite, hence there is a countable
family of sets Bk ∈ B(X) such that λ(Bk) < ∞ and

⋃∞
k=1Bk = X . Then

Λm :=
⋃m

k=1Bk ∈ B(X) (m ∈ N) is a monotone increasing sequence of sets
such that λ(Λm) < ∞ and

⋃∞
m=1Λm = X . By the construction (2.7), we obtain

a consistent family of probability measures πΛm
λ on the configuration spaces Γ ]

Λm
,

respectively. Using the metric inX (which is assumed to be a Polish space, see Sec-
tion 2.1), one can define a suitable distance between finite configurations in each
space Γ ]

Λm
and thus convert Γ ]

Λm
into a Polish space (see [31]), which ensures that

the Kolmogorov extension theorem is applicable.

Remark 2.3. Even though the paper [31] deals with simple configurations only,
its methods may be easily extended to a more general case of configurations with
multiple points. However, finiteness of configurations in each Λm is essential.

Remark 2.4. The requirement that X is a Polish space (see Section 2.1) is only
needed in order to equip the spaces of finite configurations in the sets Λm with the
structure of a Polish space and thus to be able to apply the Kolmogorov extension
theorem as explained above (see [31]). This assumption may be replaced by a more
general condition that (X,B(X)) is a standard Borel space (i.e., Borel isomorphic
to a Borel subset of a Polish space, see [21,28]).

Remark 2.5. Formula (2.7), rewritten in the form

πΛ
λ (A) =

∞∑
n=0

λ(Λ)n e−λ(Λ)

n!
· λ

⊗n ◦ p−1(AΛ,n)

λ(Λ)n
,

gives an explicit way of sampling a Poisson configuration γΛ in the set Λ: first,

8



a random value of γ(Λ) is sampled as a Poisson random variable with parameter
λ(Λ) <∞, and then, conditioned on the event {γ(Λ) = n} (n ∈ Z+), the n points
are distributed over Λ independently of each other, with probability distribution
λ(dx)/λ(Λ) each (cf. [22, §2̇.4]).

Decomposition (2.7) implies that if F (γ) ≡ F (γΛ) for some set Λ ∈ B(X) such
that λ(Λ) <∞, then∫

Γ ]
X

F (γ)πλ(dγ) =
∫

Γ ]
X

F (pΛγ)πλ(dγ) =
∫

Γ ]
Λ

F (γ)πΛ
λ (dγ)

= e−λ(Λ)
∞∑

n=0

1

n!

∫
Λn
F ({x1, . . . , xn})λ(dx1) · · ·λ(dxn). (2.8)

A well-known formula for the Laplace functional of a Poisson point process
without accumulation points (see, e.g., [5,16]]) is easily verified in the case of gen-
eralized configurations.

Proposition 2.1. The Laplace functional Lπλ
[f ] :=

∫
Γ ]

X
e−〈f,γ〉 πλ(dγ) of the Pois-

son measure πλ on the configuration space Γ ]
X is given by

Lπλ
[f ] = exp

{
−
∫

X

(
1− e−f(x)

)
λ(dx)

}
, f ∈ M+(X). (2.9)

Proof. Repeating a standard derivation, suppose that λ(Λ) < ∞ and set fΛ :=
f · 1Λ. Applying formula (2.8) we have

∫
Γ ]

X

e−〈fΛ,γ〉 πλ(dγ) = e−λ(Λ)
∞∑

n=0

1

n!

∫
Λn

exp

{
−

n∑
i=1

fΛ(xi)

}
λ(dx1) · · ·λ(dxn)

= e−λ(Λ)
∞∑

n=0

1

n!

(∫
Λ

e−fΛ(x) λ(dx)
)n

= exp
{
−
∫

X

(
1− e−fΛ(x)

)
λ(dx)

}
. (2.10)

Since fΛ(x) ↑ f(x) as Λ ↑ X (more precisely, setting Λ = Λm as in the above
construction of πλ and passing to the limit as m→∞), by applying the monotone
convergence theorem to both sides of (2.10) we obtain (2.9).

Formula (2.6) implies that if B1 ∩ B2 = ∅ then the restricted configurations γB1

and γB2 are independent under the Poisson measure πλ. That is, if B := B1 ∪ B2

then the distribution πB
λ = p∗Bπλ of composite configurations γB = γB1 t γB2

coincides with the product measure πB1
λ ⊗ πB2

λ (πBi
λ = p∗Bi

πλ). Building on this
observation, we obtain the following useful result.

Proposition 2.2. Suppose that (Xn,B(Xn)) (n ∈ N) is a family of disjoint mea-
surable spaces (i.e., Xi ∩ Xj = ∅, i 6= j), with measures λn, respectively, and
let πλn be the corresponding Poisson measures on the configuration spaces Γ ]

Xn

(n ∈ N). Consider the disjoint-union space X =
⊔∞

n=1Xn endowed with the σ-
algebra B(X) =

⊕∞
n=1 B(Xn) and measure λ =

⊕∞
n=1λn . Then the product mea-
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sure πλ =
⊗∞

n=1 πλn exists and is a Poisson measure on the configuration space
Γ ]

X with intensity measure λ .

Proof. Note that Γ ]
X is a Cartesian product space, Γ ]

X = X∞
n=1Γ

]
Xn

, endowed with
the product σ-algebra B(Γ ]

X) =
⊗∞

n=1 B(Γ ]
Xn

). The existence of the product mea-
sure πλ :=

⊗∞
n=1 πλn on (Γ ]

X ,B(Γ ]
X)) now follows by a standard result for infinite

products of probability measures (see, e.g., [19, § 38, Theorem B] or [21, Corol-
lary 5.17]). Let us point out that this theorem is valid without any regularity condi-
tions on the spaces Xn.

To show that πλ is a Poisson measure, one could check the cylinder condition
(2.7), but it is easier to compute its Laplace functional. Note that each function
f ∈ M+(X) is decomposed as f =

∑∞
n=1 fXn · 1Xn , where fXn ∈ M+(Xn) is the

restriction of f to Xn; similarly, each configuration γ ∈ Γ ]
X may be represented as

γ =
⊔∞

n=1 γXn , where γXn = pXnγ ∈ Γ ]
Xn

. Hence, 〈f, γ〉 =
∑∞

n=1〈fXn , γXn〉 and,
using Proposition 2.1 for each πλn , we obtain

∫
Γ ]

X

e−〈f,γ〉 πλ(dγ) =
∫
X∞

n=1Γ ]
Xn

exp

{
−

∞∑
n=1

〈fXn , γn〉
} ∞⊗

n=1

πλn(dγn)

=
∞∏

n=1

∫
Γ ]

Xn

e−〈fXn ,γn〉 πλn(dγn)

= exp

{
−

∞∑
n=1

∫
Xn

(
1− e−fXn (xn)

)
λn(dxn)

}

= exp
{
−
∫

X

(
1− e−f(x)

)
λ(dx)

}
,

and it follows, according to formula (2.9), that πλ is a Poisson measure.

Remark 2.6. Using Proposition 2.2, one can give a construction of a Poisson
measure πλ on the configuration space Γ ]

X avoiding any additional topological
conditions upon the space X (e.g., that X is a Polish space) that are needed for
the sake of the Kolmogorov extension theorem (similar ideas are developed in
[22,23] in the context of proper configuration spaces). To do so, recall that the
measure λ is σ-finite and define Xn := Λn \ Λn−1 (n ∈ N), where the sets
∅ = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn ⊂ · · · ⊂ X , such that λ(Λn) < ∞ and

⋃∞
n=1 Λn = X ,

were considered above. Then the family of sets (Xn) is a disjoint partition of X
(i.e., Xi ∩ Xj = ∅ for i 6= j and

⋃∞
n=1Xn = X), such that λ(Xn) < ∞ for all

n ∈ N. Using formula (2.6), we construct the Poisson measures πλn ≡ pXnπλ on
each Γ ]

Xn
, where λn = λXn is the restriction of the measure λ to the set Xn. Now, it

follows by Proposition 2.2 that the product measure πλ =
⊗∞

n=1 πλn is the required
Poisson measure on Γ ]

X .

Remark 2.7. Although not necessary for the existence of the Poisson measure,
in order to develop a sensible theory one needs to ensure that there are enough
measurable sets and in particular any singleton set {x} is measurable. To this end,
it is suitable to assume (see [22, § 2.1]) that the diagonal set {x = y} is measurable
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in the product space X2 = X ×X , that is,

D := {(x, y) ∈ X2 : x = y} ∈ B(X2). (2.11)

This condition readily implies that {x} ∈ B(X) for each x ∈ X . Note that if X is
a Polish space, condition (2.11) is automatically satisfied because then the diagonal
D is a closed set in X2.

Let us also record one useful general result known as the Mapping Theorem (see
[22, § 2.3], where configurations are assumed proper and the mapping is one-to-
one). Let ϕ : X → Y be a measurable mapping (not necessarily one-to-one) of X
to another (or the same) measurable space Y endowed with Borel σ-algebra B(Y ).
The mapping ϕ can be lifted to a measurable “diagonal” mapping (denoted by the
same letter) between the configuration spaces Γ ]

X and Γ ]
Y :

Γ ]
X 3 γ 7→ ϕ(γ) :=

⊔
x∈γ

{ϕ(x)} ∈ Γ ]
Y . (2.12)

Proposition 2.3 (Mapping Theorem). If πλ is a Poisson measure on Γ ]
X with

intensity measure λ, then under the mapping (2.12) the push-forward measure
ϕ∗πλ ≡ πλ◦ϕ−1 is a Poisson measure on Γ ]

Y with intensity measure ϕ∗λ ≡ λ◦ϕ−1.

Proof. It suffices to compute the Laplace functional of ϕ∗πλ. Using Proposition
2.1, for any f ∈ M+(Y ) we have

Lϕ∗πλ
[f ] =

∫
Γ ]

Y

e−〈f,γ〉 (ϕ∗πλ)(dγ) =
∫

Γ ]
X

e−〈f, ϕ(γ)〉 πλ(dγ)

= exp
{
−
∫

X

(
1− e−f(ϕ(x))

)
λ(dx)

}
= exp

{
−
∫

Y

(
1− e−f(y)

)
(ϕ∗λ)(dy)

}
= Lπϕ∗λ [f ],

and the proof is complete.

We conclude this section with necessary and sufficient conditions in order that
πλ-almost all (a.a.) configurations γ ∈ Γ ]

X be proper (see Definition 2.2). Although
being apparently well-known folklore, these criteria are not always proved or even
stated explicitly in the literature, most often being mixed up with various sufficient
conditions, e.g., using the property of orderliness etc. (see, e.g., [14,16,22]). We do
not include the proof here, as the result follows from a more general statement for
the Poisson cluster measure (see Theorem 2.7 below).

Proposition 2.4. (a) If B ∈ B(X) then γ(B) <∞ (πλ-a.s.) if and only if λ(B) <
∞. In particular, in order that πλ-a.a. configurations γ ∈ Γ ]

X be locally finite, it is
necessary and sufficient that λ(K) <∞ for any compact set K ∈ B(X).

(b) In order that πλ-a.a. configurations γ ∈ Γ ]
X be simple, it is necessary and

sufficient that the measure λ be non-atomic, that is, λ{x} = 0 for each x ∈ X .

11



2.3 Poisson cluster measure

Let us first recall the notion of a general cluster point process (CPP). The intuitive
idea is to construct its realizations in two steps: (i) take a background random con-
figuration of (invisible) “centres” obtained as a realization of some point process γc

governed by a probability measure µc on Γ ]
X , and (ii) relative to each centre x ∈ γc,

generate a set of observable secondary points (referred to as a cluster centred at x)
according to a point process γ ′x with probability measure µx on Γ ]

X (x ∈ X).

The resulting (countable) assembly of random points, called the cluster point
process, can be symbolically expressed as

γ =
⊔

x∈γc

γ ′x ∈ Γ
]
X ,

where the disjoint union signifies that multiplicities of points should be taken into
account. More precisely, assuming that the family of secondary processes γ ′x(·) is
measurable as a function of x ∈ X , the integer-valued measure corresponding to a
CPP realization γ is given by

γ(B) =
∫

X
γ ′x(B) γc(dx) =

∑
x∈γc

γ ′x(B) =
∑
x∈γc

∑
y∈γ ′x

δy(B), B ∈ B(X).

(2.13)

A tractable model of such a kind is obtained when (i) X is a linear space so that
translations X 3 y 7→ y + x ∈ X are defined, and (ii) random clusters are inde-
pendent and identically distributed (i.i.d.), being governed by the same probability
law translated to the cluster centres,

µx(A) = µ0(A− x), A ∈ B(Γ ]
X). (2.14)

From now on, we make both of these assumptions.

Remark 2.8. Unlike the standard theory of CPPs whose sample configurations are
presumed to be a.s. locally finite (see, e.g., [16, Definition 6.3.I]), the description of
the CPP given above only implies that its configurations γ are countable aggregates
inX , but possibly with multiple and/or accumulation points, even if the background
point process γc is proper. Therefore, the distribution µ of the CPP (2.13) is a prob-
ability measure defined on the space Γ ]

X of generalized configurations. It is a matter
of interest to obtain conditions in order that µ be actually supported on the proper
configuration space ΓX , and we shall address this issue in Section 2.4 below in the
case of Poisson CPPs.

Let νx := γ ′x(X) be the total (random) number of points in a cluster γ ′x centred
at point x ∈ X (referred to as the cluster size). According to our assumptions, the
random variables νx are i.i.d. for different x, with common distribution

pn := µ0{ν0 = n} (n ∈ Z+) (2.15)

(so in principle the event {ν0 = ∞} may have a positive probability, p∞ ≥ 0).
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Remark 2.9. One might argue that allowing for vacuous clusters (i.e., with νx = 0)
is superfluous since these are not visible in a sample configuration, and in particular
the probability p0 cannot be estimated statistically [16, Corollary 6.3.VI]. In fact,
the possibility of vacuous cluster may be ruled out without loss of generality, at the
expense of rescaling the background intensity measure, λ 7→ (1− p0)λ. However,
we keep this possibility in our model in order to provide a suitable framework
for evolutionary cluster point processes with annihilation and creation of particles,
which we intend to study elsewhere.

The following fact is well known in the case of CPPs without accumulation
points (see, e.g., [16, § 6.3]).

Proposition 2.5. The Laplace functional Lµ[·] of the probability measure µ on Γ ]
X

corresponding to the CPP (2.13) is given, for all functions f ∈ M+(X), by

Lµ[f ] = Lµc

(
− lnLµx [f ]

)
= Lµc

(
− lnLµ0 [f( ·+ x)]

)
, (2.16)

where Lµc acts in variable x.

Proof. The representation (2.13) of cluster configurations γ implies that

〈f, γ〉 =
∑
z∈γ

f(z) =
∑
x∈γc

∑
y∈γ ′x

f(y).

Conditioning on the background configuration γc and using the independence of
the clusters γ ′x for different x, we obtain

∫
Γ ]

X

e−〈f,γ〉 µ(dγ) =
∫

Γ ]
X

∏
x∈γc

(∫
Γ ]

X

e
−
∑

y∈γ ′x
f(y)

µx(dγ
′
x)

)
µc(dγc)

=
∫

Γ ]
X

exp

{ ∑
x∈γc

ln (Lµx [f ])

}
µc(dγc) = Lµc

(
− lnLµx [f ]

)
,

which proves the first formula in (2.16). The second one easily follows by shifting
the measure µx to the origin using (2.14).

In this paper, we are mostly concerned with the Poisson CPPs, which are speci-
fied by assuming that µc is a Poisson measure on configurations, with some inten-
sity measure λ. The corresponding probability measure on the configuration space
Γ ]

X will be denoted by µcl and called the Poisson cluster measure.

The combination of (2.9) and (2.16) yields a formula for the Laplace functional
of the measure µcl.

Proposition 2.6. The Laplace functional Lµcl
[f ] of the Poisson cluster measure µcl

on Γ ]
X is given, for all f ∈ M+(X), by

Lµcl
[f ] = exp

{
−
∫

X

(∫
Γ ]

X

(
1− e

−
∑

y∈γ ′
0

f(y+x)
)
µ0(dγ

′
0)

)
λ(dx)

}
. (2.17)
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According to the convention made in Section 2.1 (see after equation (2.3)), if
γ ′0 = ∅ then the function under the internal integral in (2.17) vanishes, so the inte-
gral over Γ ]

X is reduced to that over the subset {γ ′0 ∈ Γ
]
X : γ ′0 6= ∅}.

2.4 Criteria of local finiteness and simplicity

In this section, we give criteria for the Poisson CPP to be locally finite and sim-
ple. As mentioned in the Introduction, these results appear to be new (e.g., a general
criterion of local finiteness in [16, Lemma 6.3.II and Proposition 6.3.III] is merely
a more formal rewording of the finiteness condition).

For a given set B ∈ B(X) and each in-cluster configuration γ ′0 centred at the
origin, consider the set (referred to as droplet cluster)

DB(γ ′0) :=
⋃

y∈γ ′0

(B − y), (2.18)

which is a set-theoretic union of “droplets” of shape B shifted to the centrally
reflected points of γ ′0.

Theorem 2.7. Let µcl be a Poisson cluster measure on the generalized configura-
tion space Γ ]

X .

(a) In order that µcl-a.a. configurations γ ∈ Γ ]
X be locally finite, it is necessary

and sufficient that the following two conditions hold:

(a-i) in-cluster configurations γ ′0 are a.s. locally finite, that is, for any compact
set K ∈ B(X),

γ ′0(K) <∞ (µ0-a.s.) (2.19)

(a-ii) for any compact set K ∈ B(X), the mean λ-measure of the droplet cluster
DK(γ ′0) is finite, ∫

Γ ]
X

λ
(
DK(γ ′0)

)
µ0(dγ

′
0) <∞. (2.20)

(b) In order that µcl-a.a. configurations γ ∈ Γ ]
X be simple, it is necessary and

sufficient that the following two conditions hold:

(b-i) in-cluster configurations γ ′0 are a.s. simple,

sup
x∈X

γ ′0{x} ≤ 1 (µ0-a.s.) (2.21)

(b-ii) for any x ∈ X , the “point” droplet cluster D{x}(γ
′
0) has a.s. zero λ-

measure,
λ
(
D{x}(γ

′
0)
)

= 0 (µ0-a.s.) (2.22)

The proof of Theorem 2.7 is deferred to the Appendix (Section 6.1).

Let us discuss the conditions of properness. First of all, the interesting question
is whether the local finiteness of the Poisson CPP is compatible with the possibility
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that the number of points in a cluster, ν0 = γ ′0(X), is infinite (see (2.15)). The next
proposition describes a simple situation where this is not the case.

Proposition 2.8. Let both conditions (a-i) and (a-ii) be satisfied, and suppose that
for any compact set K ∈ B(X), the λ-measure of its translations is uniformly
bounded from below,

cK := inf
x∈X

λ(K + x) > 0. (2.23)

Then ν0 <∞ (µ0-a.s.).

Proof. Suppose that γ ′0 is an infinite configuration. Due to (a-i), γ ′0 must be locally
finite (µ0-a.s.), which implies that there is an infinite subset of points yj ∈ γ ′0 such
that the sets K − yj are disjoint (j ∈ N). Hence, using (2.23) we get

λ
(
DK(γ ′0)

)
≥

∞∑
j=1

λ(K − yj) = ∞,

which, according to condition (a-ii), may occur only with zero probability.

On the other hand, it is easy to construct examples of locally finite Poisson CPPs
with a.s.-infinite clusters.

Example 2.1. Let X = Rd and choose a measure λ such that, for any compact set
K ⊂ Rd, λ(K − x) ∼ Cd λ(K) |x|−α as x→∞, where α > 0 (e.g., take λ(dx) =
(1 + |x|)−α−d+1 dx). Suppose now that the in-cluster configurations γ ′0 = {xn} are
such that n2/α < |xn| ≤ (n+ 1)2/α, n ∈ N (µ0-a.s.). Then for any compact set K

λ
(
DK(γ ′0)

)
≤

∑
xn∈γ ′0

λ(K − xn) <∞,

because λ(K − xn) ∼ Cd λ(K)|xn|−α = O(n−2) as n→∞.

It is easy to give conditions sufficient for (a-ii). The first set of conditions below
is expressed in terms of the intensity measure λ and the mean number of points in
a cluster, while the second condition focuses on the location of in-cluster points.

Proposition 2.9. Suppose that ν0 <∞ (µ0-a.s.). Then either of the following con-
ditions is sufficient for condition (a-ii) in Theorem 2.7.

(a-ii′) For any compact set K ∈ B(X), the λ-measure of its translations is uni-
formly bounded from above,

CK := sup
x∈X

λ(K + x) <∞, (2.24)

and, moreover, the mean number of in-cluster points is finite,∫
Γ ]

X

γ ′0(X)µ0(dγ
′
0) =

∑
n∈Z+

npn <∞ (2.25)

(this necessarily implies that p∞ = 0).
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(a-ii′′) In-cluster configuration γ ′0 as a set in X is µ0-a.s. bounded, that is, there
exists a compact set K0 ∈ B(X) such that γ ′0 ⊂ K0 (µ0-a.s.).

Proof. From (2.18) and (2.24) we obtain

λ
(
DK(γ ′0)

)
≤
∑
y∈γ ′0

λ(K − y) ≤ CKγ
′
0(X) = CK ν0,

and condition (a-ii) follows by (2.25),

∫
Γ ]

X

λ
(
DK(γ ′0)

)
µ0(dγ

′
0) ≤ CK

∫
Γ ]

X

γ ′0(X)µ0(dγ
′
0) <∞.

If condition (a-ii′′) holds then

DK(γ ′0) ⊂
⋃

y∈K0

(K − y) =: K −K0,

where the set K −K0 is compact. Therefore,

∫
Γ ]

X

λ
(
DK(γ ′0)

)
µ0(dγ

′
0) ≤ λ(K −K0)

∫
Γ ]

X

µ0(dγ
′
0) = λ(K −K0) <∞,

and condition (a-ii) follows.

The impact of conditions (a-ii′) and (a-ii′′) is clear: (a-ii′) imposes a bound on
the number of points which can be contributed from remote clusters, while (a-ii′′)
restricts the range of such contribution.

Similarly, one can work out simple sufficient conditions for (b-ii). The first con-
dition below is set in terms of the measure λ, whereas the second one exploits the
in-cluster distribution µ0.

Proposition 2.10. Suppose that ν0 < ∞ (µ0-a.s.). Then either of the following
conditions is sufficient for condition (b-ii) of Theorem 2.7.

(b-ii′) The measure λ is non-atomic, that is, λ{x} = 0 for each x ∈ X .

(b-ii′′) In-cluster configurations γ ′0 have no fixed points, that is, µ0{γ ′0 ∈ Γ ]
X :

x ∈ γ ′0} = 0 for each x ∈ X .

Proof. Condition (b-ii′) readily implies (b-ii):

0 ≤ λ
(
D{x}(γ

′
0)
)
≤
∑
y∈γ ′0

λ{x− y} = 0.
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Further, if condition (b-ii′′) holds then

∫
Γ ]

X

λ
(
D{x}(γ

′
0)
)
µ0(dγ

′
0) =

∫
X

(∫
Γ ]

X

1∪y∈γ ′
0
{x−y}(z)µ0(dγ

′
0)

)
λ(dz)

=
∫

X

(∫
Γ ]

X

1γ ′0
(z − x)µ0(dγ

′
0)

)
λ(dz)

=
∫

X
µ0{γ ′0 ∈ Γ

]
X : z − x ∈ γ ′0}λ(dz) = 0, (2.26)

and condition (b-ii) follows.

3 Poisson cluster processes via Poisson measures

In this section, we construct an auxiliary Poisson measure πλ? on the “vector”
configuration space X and prove that the Poisson cluster measure µcl coincides with
the projection of πλ? onto the configuration space Γ ]

X (Theorem 3.6). This furnishes
a useful description of Poisson cluster measures that will enable us to apply to their
study the well-developed calculus on Poisson configuration spaces.

3.1 An auxiliary intensity measure λ?

Recall that the space X =
⊔

n∈Z+
Xn of finite or infinite vectors x̄ = (x1, x2, . . . )

was introduced in Section 2.1 The probability distribution µ0 of a generic cluster
γ ′0 centred at the origin (see Section 2.3) determines a probability measure η in X

which is symmetric with respect to permutations of coordinates. Conversely, µ0 is
a push-forward of the measure η under the projection mapping p : X → Γ ]

X defined
by (2.2), that is,

µ0 = p∗η ≡ η ◦ p−1. (3.1)

Conditional measure induced by η on the space Xn via the condition γ ′0(X) = n
will be denoted ηn (n ∈ Z+); in particular, η0 = δ{∅}. Hence (recall (2.15)),

η(B) =
∑

n∈Z+

pnηn(B ∩Xn), B ∈ B(X). (3.2)

Note that if pn = η{γ ′0(X) = n} = 0 then ηn is not well defined; however, this is
immaterial since the corresponding term vanishes from the sum (3.2) (cf. also the
decomposition (3.5) below).

The following definition is fundamental for our construction.

Definition 3.1. We introduce the measure λ? on X as a special “convolution” of the
measures η and λ:

λ?(B) :=
∫

X
η(B − x)λ(dx), B ∈ B(X); (3.3)
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equivalently, if M+(X) is the set of all non-negative measurable functions on X

then, for any f ∈ M+(X),∫
X
f(ȳ)λ?(dȳ) =

∫
X

(∫
X
f(ȳ + x) η(dȳ)

)
λ(dx). (3.4)

Here and below, we use the shift notation

ȳ + x := (y1 + x, y2 + x, . . . ), ȳ = (y1, y2, . . . ) ∈ X, x ∈ X.

Using the decomposition (3.2), the measure λ? on X can be represented as a
weighted sum of contributions from the constituent spaces Xn:

λ?(B) =
∑

n∈Z+

pnλ
?
n(B ∩Xn), B ∈ B(X), (3.5)

where, for each n ∈ Z+,

λ?
n(Bn) :=

∫
X
ηn(Bn − x)λ(dx), Bn ∈ B(Xn). (3.6)

Remark 3.1 (Case n = 0). Recall that X0 = {∅} and B(X0) = {∅, X0} =
{∅, {∅}}. Since ∅ − x = ∅, {∅} − x = {∅} (x ∈ X) and η0 = δ{∅}, formula (3.6)
for n = 0 must be interpreted as follows:

λ?
0(∅) =

∫
X
η0(∅)λ(dx) = 0,

λ?
0({∅}) =

∫
X
η0({∅})λ(dx) =

∫
X
λ(dx) = λ(X) = ∞.

(3.7)

If p∞ = 0 (i.e., clusters are a.s. finite) and X = Rd, then in order that the
measure η be absolutely continuous (a.c.) with respect to the “Lebesgue measure”
dȳ = δ{∅}(dȳ)⊕

⊕∞
n=1 dy1⊗ · · · ⊗ dyn on X =

⊔∞
n=0X

n, with some density h,

η(dȳ) = h(ȳ) dȳ, ȳ ∈ X, (3.8)

it is necessary and sufficient that each measure ηn is a.c. with respect to Lebesgue
measure on Xn, that is, ηn(dȳ) = hn(ȳ) dȳ, ȳ ∈ Xn (n ∈ Z+); in this case, the
density h is decomposed as

h(ȳ) =
∞∑

n=0

pnhn(ȳ)1Xn(ȳ), ȳ ∈ X. (3.9)

Moreover, it follows that the measures λ? and λ?
n (n ∈ Z+) are also a.c., with the

corresponding densities

s(ȳ) =
λ?(dȳ)

dȳ
=
∫

X
h(ȳ − x)λ(dx), ȳ ∈ X,

sn(ȳ) =
λ?

n(dȳ)

dȳ
=
∫

X
hn(ȳ − x)λ(dx), ȳ ∈ Xn,

(3.10)
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related by the equation (cf. (3.5), (3.9))

s(ȳ) =
∞∑

n=0

pnsn(ȳ)1Xn(ȳ), ȳ ∈ X. (3.11)

Remark 3.2. In the case n = 1, the definition (3.6) is reduced to

λ?
1(B1) =

∫
X
η1(B1−x)λ(dx) =

∫
X
λ(B1−x) η1(dx), B1 ∈ B(X). (3.12)

In particular, if λ is translation invariant (i.e., λ(B1 − x) = λ(B1) for each B1 ∈
B(X) and any x ∈ X), then λ?

1 coincides with λ.

Remark 3.3. There is a possibility that the measure λ?
n defined by (3.6) is not

σ-finite (even if λ is), and moreover, λ?
n may appear to be locally infinite, in that

λ?
n(B) = ∞ for any compact set B ⊂ Rn with non-empty interior, as in the fol-

lowing example.

Example 3.1. Let X = R, and for n ≥ 1 set

λ(dx) := e|x| dx, η1(dx) :=
|x| dx

(x2 + 1)2
(x ∈ R),

and ηn(dx̄) := η1(dx1) ⊗ · · · ⊗ η1(dxn), x̄ = (x1, . . . , xn) ∈ Rn. Note that for
a < b and any x /∈ [a, b],

η1[a− x, b− x] =
(b− a) |a+ b− 2x|

2((a− x)2 + 1)((b− x)2 + 1)
∼ b− a

|x|3
(x→∞),

so, for any rectangle B = Xn
i=1[ai, bi] ⊂ Rn (ai < bi), by (3.12) we obtain

λ?
1(B) =

∫ ∞

−∞

n∏
i=1

η1[ai − x, bi − x] e|x| dx = ∞.

The next example illustrates a non-pathological situation.

Example 3.2. Let X = R, and for n ≥ 1 set

hn(ȳ) =
1

(2π)n/2
e−‖ȳ‖

2/2, ȳ = (y1, . . . , yn) ∈ Rn,

where ‖ · ‖ is the usual Euclidean norm in Rn. Thus, ηn is a standard Gaussian
measure on Rn. Assume that λ is the Lebesgue measure on R, λ(dx) = dx. For
n = 1, from equation (3.10) we obtain

s1(y) =
1√
2π

∫ ∞

−∞
e−(y−x)2/2 dx = 1,

hence λ?
1 = λ, in accord with Remark 3.2. If n = 2 then from (3.10) we get

s2(y1, y2) =
1

2π

∫ ∞

−∞
e−((y1−x)2+(y2−x)2)/2 dx =

1

2
√
π

e−(y1−y2)2/4.
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Via the orthogonal transformation z1 = (y1 + y2)/
√

2, z2 = (y1 − y2)/
√

2, the
measure λ?

2 is reduced to

λ?
2(dz1, dz2) =

1

2
√
π

e−z2
2/2 dz1 dz2,

which is a product of the standard Gaussian measure (along the coordinate axis z1)
and the scaled Lebesgue measure dz2/

√
2. Note that λ?

2(R2) = ∞, but any vertical
or horizontal strip of finite width (in coordinates ȳ) has finite λ?

2-measure.

In general (n ≥ 2), integration in (3.10) yields

sn(ȳ) =
1

(
√

2π)n−1
√
n

exp
{
−1

2

(
‖ȳ‖2 − n−1|y1 + · · ·+ yn|2

)}
, ȳ ∈ Rn,

It is easy to check that after an orthogonal transformation z̄ = ȳ U such that z1 =
n−1/2(y1 + · · ·+ yn), the measure λ?

n takes the form

λ?
n(dz̄) =

dz1√
n
· 1

(
√

2π)n−1
e−(z2

2+···+z2
n)/2 dz2 · · · dzn , z̄ = (z1, . . . , zn).

That is, λ?
n(dz̄) is a product of the scaled Lebesgue measure dz1/

√
n and the stan-

dard Gaussian measure in coordinates z2, . . . , zn. Hence λ?
n(Rn) = ∞, but for any

coordinate strip Ci = {ȳ ∈ Rn : |yi| ≤ c} we have λ?
n(Ci) <∞.

Example 3.2 can be generalized as follows.

Proposition 3.1. Suppose that p∞ = 0 and X = Rd. For each n ≥ 1, consider an
orthogonal linear transformation z̄ = ȳ Un of the space Xn such that

z1 =
y1 + · · ·+ yn√

n
, z̄ = (z1, . . . , zn), ȳ = (y1, . . . , yn). (3.13)

Set z̄ ′ := (z2, . . . , zn) and consider the measures

η ′n(B ′) :=
∫

X
ηn(dz1, B

′) = ηn(X ×B ′), B ′ ∈ B(Xn−1), (3.14)

λ̃n(B1| z̄ ′) :=
∫

X
λ

(
B1 − z1√

n

)
ηn(dz1| z̄ ′), B1 ∈ B(X), (3.15)

where ηn(dz1| z̄ ′) is the measure on X obtained from ηn via conditioning on z̄ ′.
Then the measure λ? can be decomposed as

λ?(dz̄) = p0λ
?
0(dz̄) +

∞∑
n=1

pn λ̃n(dz1| z̄ ′) η ′n(dz̄ ′), (3.16)

where λ?
0 is defined in (3.7). In particular, if the measure λ onX = Rd is translation

invariant then

λ?(dz̄) = p0λ
?
0(dz̄) +

∞∑
n=1

pn
λ(dz1)

nd/2
η ′n(dz̄ ′). (3.17)
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Proof. For a fixed n ≥ 1, let z̄ = ȳ Un and consider a Borel set in Xn of the form
Bn = {ȳ ∈ Xn : z1 ∈ B1, z̄

′∈ B ′
n}. By equation (3.13) and orthogonality of Un,

we have Bn− x = {z̄ ∈ Xn : z1 ∈ B1− x
√
n, z̄ ′∈ B ′

n}. Therefore, from (3.6) we
obtain

λ?
n(Bn) =

∫
X

(∫
Xn

1(B1−x
√

n)×B ′
n
(z̄) ηn(dz̄)

)
λ(dx)

=
∫

Xn

(∫
X

1B1−x
√

n(z1)λ(dx)
)

1B ′
n
(z̄ ′) ηn(dz̄)

=
∫

X×Xn−1

(∫
X

1(B1−z1)/
√

n (x)λ(dx)
)

1B ′
n
(z̄ ′) ηn(dz1 | z̄ ′) η ′n(dz̄ ′)

=
∫

B ′
n

(∫
X
λ
(
(B1 − z1)/

√
n
)
ηn(dz1 | z̄ ′)

)
η ′n(dz̄ ′)

=
∫

B ′
n

λ̃n(B1| z̄ ′) η ′n(dz̄ ′),

and by inserting this into equation (3.5) we get (3.16). Finally, the translation in-
variance of λ implies that λ((B1 − z1)/

√
n ) = n−d/2λ(B1). Formula (3.15) then

gives λ̃n(B1| z̄ ′) = n−d/2λ(B1), and (3.17) readily follows from (3.16).

Using decomposition (3.16), it is easy to obtain the following criterion of abso-
lute continuity of the measure λ?.

Corollary 3.2. Suppose that p∞ = 0 and X = Rd. Then the measure λ?(dx̄) on X

is a.c. with respect to the Lebesgue measure dx̄ = δ{∅}(dx̄)⊕
⊕∞

n=1 dx1⊗· · ·⊗dxn

if and only if the following two conditions hold:

(i) for each n ≥ 1, the measure η ′n(dz̄ ′) is a.c. with respect to the Lebesgue
measure dz̄ ′ on Xn−1;

(ii) for a.a. z̄ ′, the measure λ̃n(dz1| z̄ ′) is a.c. with respect to the Lebesgue mea-
sure dz1 on X .

In particular, if λ is translation invariant then condition (ii) is automatically ful-
filled and hence condition (i) alone is necessary and sufficient for the absolute
continuity of λ?.

Remark 3.4. The absolute continuity of η is sufficient (cf. (3.8), (3.10)), but not
necessary, for condition (i). This is illustrated by the following example:

η(dy1, dy2) =
1

2
δ{1}(dy1)f(y2) dy2 +

1

2
δ{1}(dy2)f(y1) dy1, (y1, y2) ∈ R2,

where f(y) (y ∈ R) is some probability density function. Then the projection mea-
sure η ′ on R (see (3.14)) is given by

η ′(dz ′) =

√
2

2

(
f(1−

√
2 z ′) + f(1 +

√
2 z ′)

)
dz ′, z ′ =

y1 − y2√
2

,

and so η ′(dz ′) is absolutely continuous.

The next result shows that the absolute continuity of λ? implies that the Poisson
cluster process a.s. has no multiple points (see Definition 2.2).
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Proposition 3.3. Suppose that p∞ = 0, X = Rd, and the measure λ?(dx̄) on X is
a.c. with respect to the Lebesgue measure dx̄. Then µcl-a.a. configurations γ ∈ Γ ]

X

are simple.

Proof. By Theorem 2.7, it suffices to check conditions (b-i) and (b-ii). First, note
that if condition (b-i) is not satisfied (i.e., if the set of points ȳ ∈ X with two or more
coinciding coordinates has positive η-measure), than the projected measure η ′(dz̄ ′)
charges a hyperplane (of codimension 1) in the space X′ spanned over the coordi-
nates z̄ ′. But this contradicts the absolute continuity of λ?, since such hyperplanes
have zero Lebesgue measure.

Furthermore, similarly to (2.26) and using the definition (3.3), for each x ∈ X
we obtain∫

X
λ
(⋃

yi∈ȳ {x− yi}
)
η(dȳ) =

∫
X
η{ȳ ∈ X : z − x ∈ ȳ}λ(dz)

= λ?{ȳ ∈ X : −x ∈ p(ȳ)} = 0,

by the absolute continuity of λ?. Hence, λ
(⋃

yi∈ȳ{x− yi}
)

= 0 (η-a.s.) and condi-
tion (b-ii) follows.

3.2 An auxiliary Poisson measure πλ?

Recall that the “unpacking” map p : X → Γ ]
X is defined in (2.2). For any Borel

subset B ∈ B(X), denote

XB := {x̄ ∈ X : p(x̄) ∩B 6= ∅} ∈ B(Γ ]
X). (3.18)

The following result is crucial for our purposes (cf. Example 3.2).

Proposition 3.4. Let B ∈ B(X) be a set such that λ(B) < ∞. Then condition
(2.20) of Theorem 2.7(a) (i.e., that the mean λ-measure of the droplet cluster DB

is finite) is necessary and sufficient in order that λ?(XB) < ∞, or equivalently,
γ̄(XB) <∞ for πλ?-a.a. γ̄ ∈ ΓX .

Proof. Using (3.3) we obtain

λ?(XB) =
∫

X
η(XB − x)λ(dx) =

∫
X

(∫
X

1XB
(ȳ + x)λ(dx)

)
η(dȳ). (3.19)

By definition (3.18), ȳ + x ∈ XB if and only if x ∈ ⋃
yi∈ȳ(B − yi) ≡ DB(ȳ)

(see (2.18)). Hence, (3.19) can be rewritten as

λ?(XB) =
∫

X

(∫
X

1DB(ȳ)(x)λ(dx)
)
η(dȳ)

=
∫

X
λ
(
DB(ȳ)

)
η(dȳ) =

∫
Γ ]

X

λ
(
DB(γ ′0)

)
µ0(dγ

′
0),
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by the change of measure (3.1). Thus, the bound λ?(XB) < ∞ is nothing else but
condition (2.20) applied to B. The second part follows by Proposition 2.4(a).

Let us consider the cluster configuration space Γ ]
X over the space X with generic

elements γ̄ ∈ Γ ]
X. Our next goal is to define a Poisson measure πλ? on Γ ]

X with
intensity λ?. However, as Remark 3.3 and Example 3.1 indicate, the measure λ?

may not be σ-finite, in which case a general construction of the Poisson measure as
developed in Section 2.2 would not be applicable. It turns out that Proposition 3.4
provides a suitable basis for a good theory.

Proposition 3.5. Suppose that condition (2.20) of Theorem 2.7(a) is fulfilled for
any set B ∈ B(X) such that λ(B) <∞. Then the measure λ? on X is σ-finite.

Proof. Since the measure λ on X is σ-finite, there is a sequence of sets Bk ∈
B(X) (k ∈ N) such that λ(Bk) < ∞ and

⋃∞
k=1Bk = X . Hence, by Proposi-

tion 3.4, λ?(XBk
) < ∞ for each Bk, and from the definition (3.18) it is clear that⋃∞

k=1 XBk
= X.

By virtue of Proposition 3.5 and according to the discussion in Section 2.2, the
Poisson measure πλ? on the configuration space Γ ]

X does exist. Moreover, due to Re-
mark 2.6, this is true even without any extra topological assumptions, except that of
σ-finiteness of the basic intensity measure λ. The construction of πλ? may be elabo-
rated further by applying Proposition 2.2 to X =

⊔
n∈Z+

Xn and λ? =
⊕

n∈Z+
pnλ

?
n;

namely, one first defines the Poisson measures πpnλ?
n

on the constituent configura-
tion spaces Γ ]

Xn (of course, the measures λ?
n are σ-finite together with λ?) and then

constructs the Poisson measure πλ? on Γ ]
X = Xn∈Z+

Γ ]
Xn as a product measure,

πλ? =
⊗

n∈Z+
πpnλ?

n
.

Remark 3.5. A degenerate Poisson measure πp0λ?
0

on Γ ]
X0 is defined as πp0λ?

0
:=

δ{γ̄∞}, where γ̄∞ = ({∅}, {∅}, . . . ), i.e., γ̄∞(X0) = ∞. The component πp0λ?
0

is
actually irrelevant in the projection construction described in the next section.

3.3 Poisson cluster measure via the Poisson measure πλ?

We can lift the projection mapping (2.2) to the configuration space Γ ]
X by setting

Γ ]
X 3 γ̄ 7→ p(γ̄) :=

⊔
x̄∈γ̄

p(x̄) ∈ Γ ]
X . (3.20)

Disjoint union in (3.20) highlights the fact that p(γ̄) may have multiple points, even
if γ̄ is proper. It is not difficult to see that (3.20) is a measurable mapping. Indeed,
using the sets Dn

B introduced in (2.4), for any cylinder set Cn
B ⊂ Γ ]

X (B ∈ B(X),
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n ∈ Z+) we have p−1(Cn
B) = An

B ∈ B(Γ ]
X), where, for instance,

A0
B = {γ̄ ∈ Γ ]

X : γ̄(X \D0
B) = 0},

A1
B = {γ̄ ∈ Γ ]

X : γ̄(D1
B) = 1},

A2
B = {γ̄ ∈ Γ ]

X : γ̄(D2
B) = 1 or γ̄(D1

B) = 2},

and, more generally, An
B =

⋃
(nk)

⋂∞
k=1{γ̄ ∈ Γ ]

X : γ̄(Dk
B) = nk}, where the union

is taken over integer arrays (nk) = (n1, n2, . . . ) such that nk > 0 and
∑

k knk = n.

Finally, we introduce the measure µ on Γ ]
X as a push-forward of the Poisson

measure πλ? under the mapping p,

µ(A) := (p∗πλ?)(A) ≡ πλ?(p−1(A)), A ∈ B(Γ ]
X). (3.21)

The next theorem is the main result of this section.

Theorem 3.6. The measure µ = p∗πλ? on Γ ]
X defined by (3.21) coincides with the

Poisson cluster measure µcl.

Proof. According to Section 2.1, it is sufficient to compute the Laplace functional
of the measure µ. For any f ∈ M+(X), by the change of measure (3.21) we have∫

Γ ]
X

e−〈f,γ〉 µ(dγ) =
∫

ΓX

e−〈f, p(γ̄)〉 πλ?(dγ̄) =
∫

ΓX

e−〈f̃ , γ̄〉 πλ?(dγ̄), (3.22)

where f̃(ȳ) :=
∑

yi∈ȳ f(yi) ∈ M+(X). According to (2.9) and (3.4), the right-hand
side of (3.22) takes the form

exp
{
−
∫

X

(
1− e−f̃(ȳ)

)
λ?(dȳ)

}
= exp

{
−
∫

X

∫
X

(
1− e−f̃(ȳ+x)

)
η(dȳ)λ(dx)

}
= exp

{
−
∫

X

(∫
X

(
1− e

−
∑

yi∈ȳ
f(yi+x)

)
η(dȳ)

)
λ(dx)

}
,

which, after the change of measure (3.1), coincides with the expression (2.17) for
the Laplace functional of the Poisson cluster measure µcl.

Remark 3.6. As an elegant application of the technique developed here, let us give
a transparent proof of Theorem 2.7(a) (cf. the Appendix, Section 6.1). Indeed, in
order that a given compact setK ⊂ X contain finitely many points of configuration
γ = p(γ̄), it is necessary and sufficient that (i) each cluster “point” x̄ ∈ γ̄ is locally
finite, which is equivalent to the condition (a-i), and (ii) there are finitely many
points x̄ ∈ γ̄ which contribute to the set K under the mapping p, the latter being
equivalent to condition (a-ii) by Proposition 3.4.

3.4 An alternative construction of the measures πλ? and µcl

The measure πλ? was introduced in the previous section as a Poisson measure on
the configuration space ΓX with a certain intensity measure λ? prescribed ad hoc by
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equation (3.3). In this section, we show that πλ? can be obtained in a more natural
way as a suitable skew projection of a canonical Poisson measure π̂ defined on a
bigger configuration space Γ ]

X×X, with the product intensity measure λ⊗ η.

More specifically, given a Poisson measure πλ in Γ ]
X , let us construct a new

measure µ̂ in Γ ]
X×X as the probability distribution of random configurations γ̂ ∈

Γ ]
X×X obtained from Poisson configurations γ ∈ Γ ]

X by the rule

γ 7→ γ̂ := {(x, ȳx) : x ∈ γ, ȳx ∈ X}, (3.23)

where the random vectors {ȳx} are i.i.d., with common distribution η(dȳ). Geo-
metrically, such a construction may be viewed as pointwise i.i.d. translations of the
Poisson configuration γ ∈ X into the space X × X,

X 3 x↔ (x, 0) 7→ (x, ȳx) ∈ X × X.

Remark 3.7. Vector ȳx in each pair (x, ȳx) ∈ X × X can be interpreted as a mark
attached to the point x ∈ X , so that γ̂ becomes a marked configuration, with the
mark space X (see [16,24]).

Theorem 3.7. The probability distribution µ̂ of random configurations γ̂ ∈ Γ ]
X×X

constructed in (3.23) is given by the Poisson measure π
λ̂

on the configuration space
Γ ]

X×X, with the product intensity measure λ̂ := λ⊗ η.

Proof. Let us check that, for any non-negative measurable function f(x, ȳ) on
X × X, the Laplace functional of the measure µ̂ is given by formula (2.9). Using
independence of the vectors ȳx corresponding to different x, we obtain∫

Γ ]
X×X

e−〈f, γ̂ 〉 µ̂(dγ̂) =
∫

Γ ]
X

∏
x∈γ

(∫
X

e−f(x,ȳ) η(dȳ)
)
πλ(dγ)

= exp
{
−
∫

X

(
1−

∫
X

e−f(x,ȳ) η(dȳ)
)
λ(dx)

}
= exp

{
−
∫

X

∫
X

(
1− e−f(x,ȳ)

)
λ(dx) η(dȳ)

}
= exp

{
−
∫

X×X

(
1− e−f(x,ȳ)

)
λ̂(dx, dȳ)

}
=
∫

Γ ]
X×X

e−〈f, γ̂ 〉 π
λ̂
(dγ̂),

where we have applied formula (2.9) for the Laplace functional of the Poisson
measure πλ with the function f̃(x) = − ln

(∫
X e−f(x,ȳ) η(dȳ)

)
∈ M+(X).

Remark 3.8. The measure µ̂, originally defined on configurations γ̂ of the form
(3.23), naturally extends to a probability measure on the entire space Γ ]

X×X.

Remark 3.9. Theorem 3.7 can be regarded as a generalization of the well-known
invariance property of Poisson measures under random i.i.d. translations (see, e.g.,
[14,16,22]). A novel element here is that starting from a Poisson point process in
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X , random translations create a new (Poisson) point process in a bigger space,X×
X, with the product intensity measure. On the other hand, note that the pointwise
coordinate projection X × X 3 (x, ȳx) 7→ x ∈ X recovers the original Poisson
measure πλ, in accord with the Mapping Theorem (see Proposition 2.3). Therefore,
Theorem 3.7 provides a converse counterpart to the Mapping Theorem. To the best
of our knowledge, these interesting properties of Poisson measures have not been
pointed out in the literature so far.

Theorem 3.7 can be easily extended to more general (skew) translations.

Theorem 3.8. Suppose that random configurations γ̂+ ∈ Γ ]
X×X are obtained from

Poisson configurations γ ∈ Γ ]
X by pointwise translations x 7→ (x, ȳx + x), where

ȳx ∈ X (x ∈ X) are i.i.d. with common distribution η(dȳ). Then the corresponding
probability measure µ̂+ on Γ ]

X×X coincides with the Poisson measure of intensity

λ̂+(dx, dȳ) := λ(dx) η(dȳ − x). (3.24)

Corollary 3.9. Under the pointwise projection (x, ȳ) 7→ ȳ applied to configura-
tions γ̂+ ∈ Γ ]

X×X, the Poisson measure µ̂+ of Theorem 3.8 is pushed forward to the
Poisson measure πλ? on Γ ]

X with intensity measure λ? defined in (3.3).

Proof. By the Mapping Theorem (see Proposition 2.3), the image of the measure
µ̂+ under the projection (x, ȳ + x) 7→ ȳ + x is a Poisson measure with intensity
given by the push-forward of the measure (3.24), that is,∫

X
λ̂+(dx,B) =

∫
X
η(B − x)λ(dx) = λ?(B), B ∈ B(X),

according to the definition (3.3).

Remark 3.10. According to Corollary 3.9, σ-finiteness of the intensity measure λ?

(see Proposition 3.5) is not necessary for the existence of the Poisson measure πλ? .

Finally, combining Theorems 3.7, 3.8 and Corollary 3.9 with Theorem 3.6, we
arrive at the following result.

Theorem 3.10. Suppose that all the conditions of Theorems 3.7 and 3.8 are ful-
filled. Then, under the composition mapping

p̃ : (x, ȳ) 7→ (x, ȳ + x) 7→ ȳ + x 7→ p(ȳ + x),

the Poisson measure π
λ̂

constructed in Theorem 3.7 is pushed forward from the
space Γ ]

X×X directly to the space Γ ]
X where it coincides with the prescribed Poisson

cluster measure µcl,

(p̃∗π
λ̂
)(A) ≡ π

λ̂
(p̃−1(A)) = µcl(A), A ∈ B(Γ ]

X).

Remark 3.11. The construction used in Theorem 3.10 may prove instrumental
for more complex (e.g., Gibbs) cluster processes, as it enables one to avoid the
intermediate space Γ ]

X where the push-forward measure (analogous to πλ?) may
have no explicit description.
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4 Quasi-invariance and integration by parts

From now on, we restrict ourselves to the case where X = Rd. We shall as-
sume throughout that conditions (a-i) and (a-ii) of Theorem 2.7 are fulfilled, so that
µcl-a.a. configurations γ ∈ Γ ]

X are locally finite. Furthermore, all clusters are as-
sumed to be a.s. finite, hence p∞ ≡ µ0{ν0 = ∞} = 0 and the component X∞

may be dropped from the disjoint union X =
⊔

nX
n. We shall also require the ab-

solute continuity of the measure λ? (see the corresponding necessary and sufficient
conditions in Corollary 3.2). By Proposition 3.3, this implies that configurations γ
are µcl-a.s. simple (i.e., have no multiple points). In particular, these assumptions
ensure that µcl-a.a. configurations γ belong to the proper configuration space ΓX .

Under these conditions, in this section we prove the quasi-invariance of the mea-
sure µcl with respect to the action of compactly supported diffeomorphisms of X
and establish an integration-by-parts formula. We begin with a brief description
of some convenient “manifold-like” concepts and notations first introduced in [5],
which provide the suitable framework for analysis on configuration spaces.

4.1 Differentiable functions on configuration spaces

Let TxX be the tangent space of X = Rd at point x ∈ X . It can be identified in
the natural way with Rd, with the corresponding (canonical) inner product denoted
by a “fat” dot · . The gradient on X is denoted by ∇. Following [5], we define
the “tangent space” of the configuration space ΓX at γ ∈ ΓX as the Hilbert space
TγΓX := L2(X → TX; dγ), or equivalently TγΓX =

⊕
x∈γ TxX . The scalar

product in TγΓX is denoted by 〈·, ·〉γ . A vector field V over ΓX is a mapping ΓX 3
γ 7→ V (γ) = (V (γ)x)x∈γ ∈ TγΓX . Thus, for vector fields V1, V2 over ΓX we have

〈V1(γ), V2(γ)〉γ =
∑
x∈γ

V1(γ)x ·V2(γ)x , γ ∈ ΓX .

For γ ∈ ΓX and x ∈ γ, denote by Oγ,x an arbitrary open neighbourhood of x in
X such that Oγ,x ∩ γ = {x}. For any measurable function F : ΓX → R, define the
function Fx(γ, ·) : Oγ,x → R by Fx(γ, y) := F ((γ \ {x}) ∪ {y}), and set

∇xF (γ) := ∇Fx(γ, y)|y=x , x ∈ X,

provided Fx(γ, ·) is differentiable at x.

Denote by FC(ΓX) the class of functions on ΓX of the form

F (γ) = f(〈φ1, γ〉, . . . , 〈φk, γ〉), γ ∈ ΓX , (4.1)

where k ∈ N, f ∈ C∞
b (Rk) (:= the set of C∞-functions on Rk bounded together

with all their derivatives), and φ1, . . . , φk ∈ C∞
0 (X) (:= the set of C∞-functions

on X with compact support). Each F ∈ FC(ΓX) is local, that is, there is a compact
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set K ⊂ X (which may depend on F ) such that F (γ) = F (γK) for all γ ∈ ΓX .
Thus, for a fixed γ there are only finitely many non-zero derivatives ∇xF (γ).

For a function F ∈ FC(ΓX), its Γ -gradient ∇ΓF is defined as follows:

∇ΓF (γ) := (∇xF (γ))x∈γ ∈ TγΓX , γ ∈ ΓX , (4.2)

so the directional derivative of F along a vector field V is given by

∇Γ
V F (γ) := 〈∇ΓF (γ), V (γ)〉γ =

∑
x∈γ

∇xF (γ)·V (γ)x, γ ∈ ΓX .

Note that the sum on the right-hand side contains only finitely many non-zero terms.
Further, let FV(ΓX) be the class of cylinder vector fields V on ΓX of the form

V (γ)x =
k∑

i=1

Ai(γ)vi(x) ∈ TxX, x ∈ X, (4.3)

where Ai ∈ FC(ΓX) and vi ∈ Vect0(X) (:= the space of compactly supported
C∞-smooth vector fields on X), i = 1, . . . , k (k ∈ N). Any vector filed v ∈
Vect0(X) generates a constant vector field V on ΓX defined by V (γ)x := v(x). We
shall preserve the notation v for it. Thus,

∇Γ
v F (γ) =

∑
x∈γ

∇xF (γ)· v(x), γ ∈ ΓX . (4.4)

Recall (see Proposition 2.4(a)) that if λ(Λ) <∞ then γ(Λ) <∞ for πλ-a.a. γ ∈
ΓX . This motivates the definition of the class FCλ(ΓX) of functions on ΓX of the
form (4.1), where φ1, . . . , φk areC∞-functions with λ(suppφi) <∞, i = 1, . . . , k.
Any function F ∈ FCλ(ΓX) is local in the sense that there exists a set B ∈ B(X)
(depending on F ) such that λ(B) < ∞ and F (γ) = F (γB) for all γ ∈ ΓX . As
in the case of functions from FC(ΓX), for a fixed γ there are only finitely many
non-zero derivatives ∇xF (γ).

The approach based on “lifting” the differential structure from the underlying
space X to the configuration space ΓX as described above can also be applied to
the spaces X =

⊔∞
n=0X

n and ΓX. First of all, the space X is endowed with the
natural differential structure inherited from the constituent spaces Xn. Namely, the
tangent space of X at point x̄ ∈ X is defined piecewise as Tx̄X := Tx̄X

n for x̄ ∈ Xn

(n ∈ Z+), with the scalar product in Tx̄X induced from the tangent spaces Tx̄X
n

and again denoted by the dot · ; furthermore, for a function f : X → R its gradient
∇f acts on each space Xn as ∇f(x̄) = (∇x1f(x̄), . . . ,∇xnf(x̄)) ∈ Tx̄X

n, where
∇xi

is the “partial” gradient with respect to the component xi ∈ x̄ ∈ Xn. A vector
field on X is a map X 3 x̄ 7→ V (x̄) ∈ Tx̄X; in other words, the restriction of V to
Xn is a vector field on Xn (n ∈ Z+). The derivative of a function f : X → R along
a vector field V on X is then defined by ∇V f(x̄) := ∇f(x̄) ·V (x̄) (x̄ ∈ X).

The functional class C∞(X) is defined, as usual, as the set of C∞-functions
f : X → R; similarly, C∞

0 (X) is the subclass of C∞(X) consisting of functions
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with compact support. Since differentiability is a local property, C∞(X) admits a
component-wise description: f ∈ C∞(X) if and only if for each n ∈ Z+ the restric-
tion of f to Xn is in C∞(Xn). However, this is not true for the class Ck

0 (X) which,
according to Remark 2.1, involves a stronger condition that f(x̄) ≡ x̄ (x̄ ∈ Xn)
for all large enough n.

Now, lifting this differentiable structure from the space X to the configuration
space ΓX can be done by repeating the same constructions as before with only ob-
vious modifications, so we do not dwell on details. This way, we introduce the
tangent space Tγ̄ΓX =

⊕
x̄∈γ̄ Tx̄X, vector fields V over ΓX, and differentiable func-

tions Φ : ΓX → R. Similarly to (4.1) and (4.3) one can define the spaces FC(ΓX),
FCλ?(ΓX) and FV(ΓX) of C∞-smooth local functions and vector fields on X, and
we shall use these notations without further explanation.

4.2 Diff0-quasi-invariance

In this section, we discuss the property of quasi-invariance of the measure µcl

with respect to diffeomorphisms of X . Let us start by describing how diffeomor-
phisms of X act on configuration spaces. For a measurable mapping ϕ : X → X ,
its support suppϕ is defined as the smallest closed set containing all x ∈ X such
that ϕ(x) 6= x. Let Diff0(X) be the group of diffeomorphisms of X with com-
pact support. For any ϕ ∈ Diff0(X), we define the “diagonal” diffeomorphism
ϕ̄ : X → X acting on each space Xn (n ∈ Z+) as follows:

Xn 3 x̄ = (x1, . . . , xn) 7→ ϕ̄(x̄) := (ϕ(x1), . . . , ϕ(xn)) ∈ Xn.

Remark 4.1. Although K := suppϕ is compact in X , note that the support of the
diffeomorphism ϕ̄ (again defined as the closure of the set {x̄ ∈ X : ϕ(x̄) 6= x̄}) is
given by supp ϕ̄ = XK (see (3.18)) and hence is not compact in the topology of X

(see Remark 2.1). However, λ?(XK) <∞ (by Proposition 3.4), which is sufficient
for our purposes.

The mappings ϕ and ϕ̄ can be lifted to measurable “diagonal” transformations
(denoted by the same letters) of the configuration spaces ΓX and ΓX, respectively:

ΓX 3 γ 7→ ϕ(γ) := {ϕ(x), x ∈ γ} ∈ ΓX ,

ΓX 3 γ̄ 7→ ϕ̄(γ̄) := {ϕ̄(x̄), x̄ ∈ γ̄} ∈ ΓX .
(4.5)

Let I : L2(ΓX , µcl) → L2(ΓX, πλ?) be the isometry defined by the projection p,

(IF )(γ̄) := F (p(γ̄)), γ̄ ∈ ΓX, (4.6)

and let I∗ : L2(ΓX, πλ?) → L2(ΓX , µcl) be the adjoint operator.

Remark 4.2. The definition implies that I∗I is the identity operator in L2(ΓX , µcl).
However, the operator II∗ acting in the space L2(ΓX, πλ?) is a non-trivial orthogo-
nal projection, which plays the role of an infinite particle symmetrization operator.
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Unfortunately, general explicit form of the operators I∗ and II∗ is not known, and
may be hard to obtain.

By the next lemma, the action of Diff0(X) commutes with the operators p and I.

Lemma 4.1. For any ϕ ∈ Diff0(X), we have ϕ ◦ p = p ◦ ϕ̄ and furthermore,
I(F ◦ ϕ) = (IF ) ◦ ϕ̄ for any F ∈ L2(ΓX , µcl).

Proof. The first statement follows from the definition (3.20) of the mapping p and
the diagonal form of ϕ̄ (see (4.5)). The second statement then readily follows by
the definition (4.6) of the operator I.

Let us now consider the configuration space ΓX equipped with the Poisson mea-
sure πλ? introduced in Section 3.2. As already mentioned, we assume that the inten-
sity measure λ? is a.c. with respect to the Lebesgue measure on X and, moreover,

s(x̄) :=
λ?(dx̄)

dx̄
> 0 for a.a. x̄ ∈ X. (4.7)

This implies that the measure λ? is quasi-invariant with respect to the action of
diagonal transformations ϕ̄ : X → X (ϕ ∈ Diff0(X)) and the corresponding
Radon–Nikodym derivative is given by

ρϕ̄
λ?(x̄) =

s(ϕ̄−1(x̄))

s(x̄)
Jϕ̄(x̄)−1 for λ?-a.a. x̄, (4.8)

where Jϕ̄ is the Jacobian determinant of ϕ̄ (we set ρϕ̄
λ?(x̄) = 1 if s(x̄) = 0 or

s(ϕ̄−1(x̄)) = 0).

Proposition 4.2. The Poisson measure πλ? is quasi-invariant with respect to the
action of diagonal diffeomorphisms ϕ̄ : ΓX → ΓX (ϕ ∈ Diff0(X)). The corre-
sponding Radon–Nikodym density Rϕ̄

πλ?
:= d(ϕ̄∗πλ?)/dπλ? is given by

Rϕ̄
πλ?

(γ̄) = exp
{∫

X

(
1− ρϕ̄

λ?(x̄)
)
λ?(dx̄)

}
·
∏
x̄∈γ̄

ρϕ̄
λ?(x̄), γ̄ ∈ ΓX, (4.9)

where ρϕ̄
λ? is defined in (4.8).

Proof. The result follows from Remark 4.1 and Proposition 6.1 in the Appendix
below (applied to the space X with measure λ? and mapping ϕ̄).

Remark 4.3. The function Rϕ̄
πλ?

is local in the sense that, for πλ?-a.a. γ̄ ∈ ΓX, we
have Rϕ̄

πλ?
(γ̄) = Rϕ̄

πλ?
(γ̄ ∩ XK), where K := suppϕ.

Remark 4.4 (Explicit form of Rϕ̄
πλ?

). Let the measure η(dȳ) be a.c. with respect to
Lebesgue measure dȳ on X, with density h(ȳ) (see (3.8)). According to (4.8),

ρϕ̄
λ?(ȳ) =

∫
X h(ϕ

−1(y1)− x, . . . , ϕ−1(yn)− x)λ(dx)∫
X h(y1 − x, . . . , yn − x)λ(dx)

n∏
i=1

Jϕ(yi)
−1, ȳ ∈ Xn,
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where Jϕ(ȳ) = det(∂ϕi/∂yj) is the Jacobian determinant of ϕ (note that Jϕ̄(ȳ) =∏n
i=1 Jϕ(yi) for ȳ ∈ Xn). Then Rϕ̄

πλ?
(γ̄) can be calculated using formula (4.9). In

particular, if clusters have i.i.d. points, so that h(ȳ) =
∏n

i=1 h0(yi), then

ρϕ̄
λ?(ȳ) =

∫
X

∏n
i=1 Jϕ(yi)

−1h0(ϕ
−1(yi)− x)λ(dx)∫

X

∏n
i=1 h0(yi − x)λ(dx)

, ȳ = (y1, . . . , yn) ∈ Xn,

and

Rϕ̄
πλ?

(γ̄) = C
∏
ȳ∈γ̄

∫
X

∏
y∈ȳ Jϕ(y)−1h0(ϕ

−1(y)− x)λ(dx)∫
X

∏
y∈ȳ h0(y − x)λ(dx)

, γ̄ ∈ ΓX,

where C := exp
{∫

X(1− ρϕ̄
λ?(ȳ))λ?(dȳ)

}
is a normalizing constant.

Now we can prove the main result of this section.

Theorem 4.3. Under condition (4.7), the Poisson cluster measure µcl on ΓX is
quasi-invariant with respect to the action of Diff0(X) on ΓX . The Radon–Nikodym
densityRϕ

µcl
:= d(ϕ∗µcl)/dµcl is given byRϕ

µcl
= I∗Rϕ̄

πλ?
, where the densityRϕ̄

πλ?
=

d(ϕ̄∗πλ?)/dπλ? is defined in (4.9).

Proof. According to Theorem 3.6 (see (3.21)) and Lemma 4.1,

ϕ∗µcl = (p∗πλ?) ◦ ϕ−1 = πλ? ◦ (ϕ ◦ p)−1

= πλ? ◦ (p ◦ ϕ̄)−1 = (ϕ̄∗πλ?) ◦ p−1 = p∗(ϕ̄∗πλ?).

Hence, by the change of variables γ = p(γ̄), for any non-negative measurable
function F on ΓX we obtain∫

ΓX

F (γ) (ϕ∗µcl)(dγ) =
∫

ΓX

F (γ) p∗(ϕ̄∗πλ?)(dγ) =
∫

ΓX

IF (γ̄) (ϕ̄∗ πλ?)(dγ̄)

=
∫

ΓX

IF (γ̄)Rϕ̄
πλ?

(γ̄) πλ?(dγ̄) =
∫

ΓX

F (γ) (I∗Rϕ̄
πλ?

)(γ)µcl(dγ),

where we have also used formula (4.6) and Proposition 4.2. Thus, the measure
ϕ∗µcl is a.c. with respect to the measure µcl, with the Radon–Nikodym density
Rϕ

µcl
= I∗Rϕ̄

πλ?
, and the theorem is proved.

Remark 4.5. We do not know an explicit form of the densityRϕ
µcl

(cf. Remark 4.2).

Remark 4.6. The Poisson cluster measure µcl on the configuration space ΓX can
be used to construct the canonical unitary representation U of the diffeomorphism
group Diff0(X) by operators in L2(ΓX , µcl), given by the formula

UϕF (γ) =
√
Rϕ

µcl(γ)F (ϕ−1(γ)), F ∈ L2(ΓX , µcl).

Such representations, which can be defined for arbitrary quasi-invariant measures
on ΓX , play a significant role in the representation theory of the diffeomorphism
group Diff0(X) [20,33] and quantum field theory [17,18]. An important question
is whether the representation U is irreducible. According to [33], this is equivalent
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to the Diff0(X)-ergodicity of the measure µcl, which in our case is equivalent to
the ergodicity of the measure πλ? with respect to the group of transformations ϕ̄,
where ϕ ∈ Diff0(X). The latter is an open question.

4.3 Integration-by-parts formula

The main objective of this section is to establish an integration-by-parts (IBP)
formula for the Poisson cluster measure µcl, in the spirit of the IBP formula for
Poisson measures proved in [5]. To this end, we shall use the projection operator
p and the properties of the auxiliary Poisson measure πλ? . Since our framework is
somewhat different from that in [5], we give a proof of the IBP formula for πλ? .

First, recall that the classical IBP formula for a Borel measure $ on a Euclidean
space Rm (see, e.g., [13, Ch. 5]) is expressed by the following identity that should
hold for any vector field v ∈ Vect0(Rm) and all functions f, g ∈ C∞

0 (Rm):∫
Rm

f(y)∇v g(y)$(dy) = −
∫

Rm
g(y)∇vf(y)$(dy)

−
∫

Rm
f(y)g(y)β v

$(y)$(dy),
(4.10)

where ∇vφ(y) is the derivative of φ along v at point y ∈ Y and β v
$ ∈ L1

loc(Rm, $)
is a measurable function called the logarithmic derivative of $ along the vector
field v. It is easy to see that β v

$ can be represented in the form

β v
$(y) = β$(y)· v(y) + div v(y),

where the corresponding mapping β$ : Rm → Rm is called vector logarithmic
derivative of $. Suppose that the measure $ is a.c. with respect to the Lebesgue
measure dy, with density w such that w1/2 ∈ H1,2

loc (Rm) (:= the local Sobolev
space of order 1 in L2(Rm; dy), i.e., the space of functions on Rm whose first-order
partial derivatives are locally square integrable). Then the measure $ satisfies the
IBP formula (4.10) with the vector logarithmic derivative β$(y) = w(y)−1∇w(y)
(note that w(y) 6= 0 for $-a.a. y ∈ Rm).

Assume that the density s(x̄) = λ?(dx̄)/dx̄ (x̄ ∈ X) satisfies the condition
s1/2 ∈ H1,2

loc (X) (:= the local Sobolev space of order 1 in L2(X; dx̄)). By formula
(3.10) and decompositions (3.5) and (3.11), the latter condition is equivalent to the
set of analogous conditions for the restrictions of s(x̄) to the spaces Xn. That is,
assuming without loss of generality that pn 6= 0, for each sn(x̄) = λ?

n(dx̄)/dx̄
(x̄ ∈ Xn) we have s1/2

n ∈ H1,2
loc (X

n). By the general result alluded to above, this
ensures that the IBP formula holds for each measure λ?

n , with the vector logarithmic
derivative βλ?

n
(x̄) = (β1(x̄), . . . , βn(x̄)) (x̄ ∈ Xn), where

βi(x̄) :=
∇i sn(x̄)

sn(x̄)
=

∫
X ∇ihn(x1 − x, . . . , xn − x)λ(dx)∫

X hn(x1 − x, . . . , xn − x)λ(dx)
(4.11)

if sn(x̄) 6= 0 and βi(x̄) := 0 if sn(x̄) = 0.
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For any v ∈ Vect0(X), let us define the vector field v̄ on X by setting

v̄(x̄) := (v(x1), . . . , v(xn)), x̄ = (x1, . . . , xn) ∈ Xn (n ∈ Z+). (4.12)

The logarithmic derivative of the measure λ?
n along the vector field v̄ is given by

β v̄
λ?

n
(x̄) =

∑
xi∈x̄

(
βi(x̄)· v(xi) + div v(xi)

)
, x̄ ∈ Xn. (4.13)

Proposition 4.4. The measure λ? satisfies the following IBP formula:∫
X
f(x̄)∇v̄ g(x̄)λ

?(dx̄) =−
∫

X
g(x̄)∇v̄f(x̄)λ?(dx̄)

−
∫

X
f(x̄)g(x̄)β v̄

λ?(x̄)λ?(dx̄),
(4.14)

where f, g ∈ C∞
0 (X) and β v̄

λ?(x̄) = β v̄
λ?

n
(x̄) if x̄ ∈ Xn (n ∈ Z+).

Proof. The result easily follows from the decomposition (3.5) of the measure λ?

and the IBP formula for each measure λ?
n such that pn 6= 0 (n ∈ Z+).

Remark 4.7. Formula (4.14) can be rewritten in the form∫
X
f(x̄)

∑
x∈p(x̄)

(
∇x g(x̄)· v(x)

)
λ?(dx̄) =−

∫
X
g(x̄)

∑
x∈p(x̄)

(
∇xf(x̄)· v(x)

)
λ?(dx̄)

−
∫

X
f(x̄)g(x̄)β v̄

λ?(x̄)λ?(dx̄).

Recall that the functional classesFC(ΓX),FC(ΓX), andFCλ?(ΓX) of local func-
tions on the configuration spaces ΓX and ΓX are defined in Section 4.1.

Theorem 4.5. For each v ∈ Vect0(X) and any F,G ∈ FC(ΓX), the following IBP
formula holds:∫

ΓX

F (γ)∇Γ
v G(γ)µcl(dγ) =−

∫
ΓX

G(γ)∇Γ
v F (γ)µcl(dγ)

−
∫

ΓX

F (γ)G(γ)B v
µcl

(γ)µcl(dγ),
(4.15)

where ∇Γ
v is the Γ -gradient along the vector field v defined by (4.4), B v

µcl
(γ) :=

I∗〈β v̄
λ? , γ̄〉, and β v̄

λ? is the logarithmic derivative of λ? along the corresponding
vector field v̄ (see (4.12)).

Proof. Denote

Q(γ) := F (γ)∇Γ
v G(γ) = F (γ)

∑
x∈γ

∇xG(γ)· v(x),

then
(IQ)(γ̄) = (IF )(γ̄)

∑
x∈p(γ̄)

∇xG(p(γ̄))· v(x). (4.16)
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Note that IQ ∈ FCλ?(ΓX), so we can use (2.8) in order to integrate IQ with
respect to πλ? . Using Theorem 3.6 (see (3.21)) and formula (4.16), we obtain∫

ΓX

F (γ)∇Γ
v G(γ)µcl(dγ) =

∫
ΓX

(IF )(γ̄)
∑

x∈p(γ̄)

∇xG(p(γ̄))· v(x)πλ?(dγ̄)

= e−λ?(XK)
∞∑

m=0

1

m!

∫
(XK)m

F ({p(x̄1), . . . , p(x̄m)})

×
m∑

i=1

∑
x∈p(x̄i)

∇xG({p(x̄1), . . . , p(x̄m)})· v(x)
m⊗

i=1

λ?(dx̄i)

= e−λ?(XK)
∞∑

m=0

1

m!

m∑
i=1

∫
(XK)m−1

(∫
XK

F ({p(x̄1), . . . , p(x̄m)})

×
∑

x∈p(x̄i)

∇xG({p(x̄1), . . . , p(x̄m)})· v(x)λ?(dx̄i)

)⊗
j 6=i

λ?(dx̄j).

(4.17)

By the IBP formula for λ?, the inner integral in (4.17) can be rewritten as

−
∫

XK

G({p(x̄1), . . . , p(x̄m)})

 ∑
x∈p(x̄i)

∇xF ({p(x̄1), . . . , p(x̄m)})· v(x)

+ F ({p(x̄1), . . . , p(x̄m)}) β v̄
λ?(x̄i)

λ?(dx̄i).

Hence, the right-hand side of (4.17) is reduced to

− e−λ?(XK)
∞∑

m=0

1

m!

∫
(XK)m

G({p(x̄1), . . . , p(x̄m)})

×

 ∑
x∈p({x̄1,...,x̄m})

∇xF ({p(x̄1), . . . , p(x̄m)})· v(x)

+ F ({p(x̄1), . . . , p(x̄m)})B v̄
πλ?

({x̄1, . . . , x̄m})

 m⊗
i=1

λ?(dx̄i)

= −
∫

ΓX

G(p(γ̄))

 ∑
x∈p(γ̄)

∇xF (p(γ̄))· v(x) + F (p(γ̄))B v̄
πλ?

(γ̄)

 πλ?(dγ̄)

= −
∫

ΓX

G(γ)∇Γ
vF (γ)µcl(dγ)−

∫
ΓX

F (γ)G(γ)B v
µcl

(γ)µcl(dγ),

where
B v̄

πλ?
(γ̄) :=

∑
x̄∈γ̄

β v̄
λ?(x̄) = 〈β v̄

λ? , γ̄〉, γ̄ ∈ ΓX, (4.18)

andBv
µcl

:= I∗B v̄
πλ?

. Note thatB v̄
πλ?

is well defined since λ?(supp v̄) <∞, so there
are only finitely many non-zero terms in the sum (4.18). Moreover, finiteness of the
first and second moments of πλ? implies that B v̄

πλ?
∈ L2(ΓX, πλ?).
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Remark 4.8. The logarithmic derivativeB v̄
πλ?

can be written in the form (cf. (4.11))

B v̄
πλ?

(γ̄) =
∑
x̄∈γ̄

∑
xi∈x̄

(
βi(x̄)· v(xi) + div v(xi)

)
=
∑
x̄∈γ̄

(
βλ?(x̄)· v̄(x̄) + div v̄(x̄)

)
, γ̄ ∈ ΓX.

Formula (4.15) can be extended to more general vector fields on ΓX . For any
vector field V ∈ FV(ΓX) of the form (4.3), we set

BV
µcl

(γ) :=
k∑

i=1

(
Ai(γ)B

vi
µ (γ) +

∑
x∈γ

∇xAi(γ)· vi(x)

)
, γ ∈ ΓX .

Theorem 4.6. For any V ∈ FV(ΓX) and all F,G ∈ FC(ΓX), we have

∫
ΓX

F (γ)∇Γ
V G(γ)µcl(dγ) =−

∫
ΓX

G(γ)∇Γ
V F (γ)µcl(dγ)

−
∫

ΓX

F (γ)G(γ)BV
µcl

(γ)µcl(dγ).
(4.19)

Proof. The result readily follows from Theorem 4.5 and linearity of the right-hand
side of (4.13) with respect to v.

Remark 4.9. An explicit form of BV
µcl

is not known (cf. Remarks 4.2 and 4.5).

Remark 4.10. The logarithmic derivative BV
µcl

can be represented in the form
BV

µcl
= I∗BIV

πλ?
, where BIV

πλ?
is the logarithmic derivative of πλ? along the vector

field IV (γ̄) := V (p(γ̄)). Note that the equality

Tγ̄ΓX =
⊕
x̄∈γ̄

Tx̄X =
⊕
x̄∈γ̄

⊕
xi∈x̄

Txi
X =

⊕
x∈p(γ̄)

TxX = Tp(γ̄)ΓX

implies that V (p(γ̄)) ∈ Tγ̄ΓX, and thus IV (γ̄) is a vector field on ΓX.

5 Dirichlet forms and equilibrium stochastic dynamics

In this section, we construct a Dirichlet form Eµcl
associated with the Pois-

son cluster measure µcl and prove the existence of the corresponding equilibrium
stochastic dynamics on the configuration space. We also show that the Dirichlet
form Eµcl

is irreducible. We assume throughout that the measure λ? satisfies all the
conditions set out at the beginning of Section 4 and in Section 4.3.
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5.1 The Dirichlet form associated with µcl

Let us introduce the pre-Dirichlet form Eµcl
associated with the Poisson cluster

measure µcl, defined on FC(ΓX) ⊂ L2(ΓX , µcl) by

Eµcl
(F,G) :=

∫
ΓX

〈∇ΓF (γ),∇ΓG(γ)〉γ µcl(dγ), F,G ∈ FC(ΓX), (5.1)

where ∇Γ is the Γ -gradient on the configuration space ΓX (see (4.2)). The next
proposition shows that the form Eµcl

is well defined.

Proposition 5.1. For any F,G ∈ FC(ΓX), we have Eµcl
(F,G) <∞.

Proof. The statement follows from the existence of the first moments of µcl. Indeed,
let F,G ∈ FC(ΓX) have representations

F (γ) = f(〈φ1, γ〉, . . . , 〈φk, γ〉), G(γ) = g(〈ψ1, γ〉, . . . , 〈ψ`, γ〉)

(see (4.1)), then a direct calculation shows that

〈∇ΓF (γ),∇ΓG(γ)〉γ =
∑
x∈γ

∇xF (γ) ·∇xG(γ) =
∑
i,j

Qij(γ)〈qij, γ〉,

where qij(x) := ∇φi(x)·∇ψj(x) ∈ C0(X) and

Qij(γ) := ∇if(〈φ1, γ〉, . . . , 〈φk, γ〉)∇j g(〈ψ1, γ〉, . . . , 〈ψ`, γ〉) ∈ FC(ΓX).

Denoting for brevity q(x) := qij(x) and setting q̃(x̄) :=
∑

x∈x̄ q(x), by Theorem
3.6 we have∫

ΓX

〈q, γ〉µcl(dγ) =
∫

ΓX

〈q, p(γ̄)〉 πλ?(dγ̄)

=
∫

ΓX

〈q̃, γ̄〉 πλ?(dγ̄) =
∫

X
q̃(ȳ)λ?(dȳ) <∞,

because λ?(supp q̃) = λ?(Xsupp q) < ∞ by Proposition 3.4. Therefore, 〈q, γ〉 ∈
L1(ΓX , µcl) and the required result follows.

Let us also consider the pre-Dirichlet form Eπλ? associated with the Poisson mea-
sure πλ? , defined on the space FC(ΓX) ⊂ L2(ΓX, πλ?) by

Eπλ? (Φ, Ψ) :=
∫

ΓX

〈∇ΓΦ(γ̄),∇ΓΨ(γ̄)〉γ̄ πλ?(dγ̄), Φ, Ψ ∈ FC(ΓX)

(here ∇Γ is the Γ -gradient on the configuration space ΓX, cf. (4.2)). Pre-Dirichlet
forms of such type associated with general Poisson measures were introduced and
studied in [5]. Finiteness of the first moments of the Poisson measure πλ? implies
that Eπλ? is well defined. It follows from the IBP formula for πλ? that

Eπλ? (Φ, Ψ) =
∫

ΓX

Hπλ?Φ(γ̄)Ψ(γ̄)πλ?(dγ̄), Φ, Ψ ∈ FC(ΓX), (5.2)
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whereHπλ? is a symmetric non-negative operator in L2(ΓX, πλ?) (called the Dirich-
let operator of the Poisson measure πλ? , see [5]) defined on the domain FC(ΓX) by

(Hπλ?Φ)(γ̄) := −
∑
x̄∈γ̄

(
∆x̄Φ(γ̄) +∇x̄Φ(γ̄)· βλ?(x̄)

)
(γ̄ ∈ ΓX). (5.3)

Since function Φ ∈ FC(ΓX) is local (see Section 4.1), there are only finitely many
non-zero terms in the sum (5.3).

Remark 5.1. Note that the operator Hπλ? is well defined by formula (5.3) on the
bigger space FCλ?(ΓX). Similar arguments as before show that the pre-Dirichlet
form Eπλ? (Φ, Ψ) is well defined on FCλ?(ΓX) and formula (5.2) holds for any
Φ, Ψ ∈ FCλ?(ΓX).

Consider a symmetric operator inL2(ΓX , µcl) defined onFC(ΓX) by the formula

Hµcl
:= I∗Hπλ?I. (5.4)

Note that the domain FC(ΓX) is dense in L2(ΓX , µcl).

Theorem 5.2. For any F,G ∈ FC(ΓX), the form (5.1) satisfies the equality

Eµcl
(F,G) =

∫
ΓX

Hµcl
F (γ)G(γ)µcl(dγ). (5.5)

In particular, this implies that Hµcl
is a non-negative operator on FC(ΓX).

Proof. Let us fix F,G ∈ FC(ΓX) and set Q(γ) := 〈∇ΓF (γ),∇ΓG(γ)〉γ . From
the definition (4.6) of the operator I, it readily follows that

(IQ)(γ̄) =
∑

x∈p(γ̄)

∇xIF (γ̄) ·∇xIG(γ̄) =
∑
x̄∈γ̄

∇x̄IF (γ̄) ·∇x̄IG(γ̄), (5.6)

where ∇x̄ := (∇x1 , . . . ,∇xn) when x̄ = (x1, . . . , xn) ∈ Xn (n ∈ N). Thus, by
Theorem 3.6 and formulas (4.6) and (5.6) we obtain

Eµcl
(F,G) =

∫
ΓX

Q(γ)µcl(dγ) =
∫

ΓX

(IQ)(γ̄)πλ?(dγ̄)

=
∫

ΓX

∑
x̄∈γ̄

∇x̄IF (γ̄) ·∇x̄IG(γ̄)πλ?(dγ̄) = Eπλ? (IF, IG) (5.7)

(note that IF, IG ∈ FCλ?(ΓX) ⊂ D(Eπλ? )). Finally, combining (5.7) with formula
(5.2) we get (5.5).

Remark 5.2. The operatorHµcl
defined in (5.4) can be represented in the following

form separating its diffusive and drift parts:

(Hµcl
F )(γ) = −

∑
x∈γ

∆xF (γ)− (I∗ΨF )(γ), F ∈ FC(ΓX), (5.8)

where ΨF (γ̄) :=
∑

x̄∈γ̄ ∇x̄IF (γ̄)· βλ?(x̄) (γ̄ ∈ ΓX).
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Remark 5.3. Formulas (5.5) and (5.8) can also be obtained directly from the IBP
formula (4.19).

5.2 The associated equilibrium stochastic dynamics

Formula (5.5) implies that the form Eµcl
is closable on L2(ΓX , µcl), and we pre-

serve the same notation for its closure. Its domain D(Eµcl
) is obtained as a comple-

tion of FC(ΓX) with respect to the norm

‖F‖Eµcl
:=
(
Eµcl

(F, F ) +
∫

ΓX

F 2 dµcl

)1/2

.

In the canonical way, the Dirichlet form (Eµcl
,D(Eµcl

)) defines a non-negative self-
adjoint operator in L2(ΓX , µcl) (i.e., the Friedrichs extension of Hµcl

= I∗Hπλ?I
from the domain FC(ΓX)), for which we keep the same notation Hµcl

. In turn, this
operator generates the semigroup exp(−tHµcl

) in L2(ΓX , µcl).

According to a general result (see [27, § 4]), it follows that Eµcl
is a quasi-regular

local Dirichlet form on a bigger space L2(
..

ΓX , µcl), where
..

ΓX is the space of all
locally finite configurations γ with possible multiple points (note that

..

ΓX can be
identified in the standard way with the space of Z+-valued Radon measures on X ,
cf. [5,27,30]). Then, by the general theory of Dirichlet forms (see [26]), we obtain
the following result.

Theorem 5.3. There exists a conservative diffusion process X = (Xt, t ≥ 0)

on
..

ΓX , properly associated with the Dirichlet form Eµcl
; that is, for any function

F ∈ L2(
..

ΓX , µcl) and all t ≥ 0, the mapping

..

ΓX 3 γ 7→ ptF (γ) :=
∫

Ω
F (Xt) dPγ

is an Eµcl
-quasi-continuous version of exp(−tHµcl

)F . Here Ω is the canonical
sample space (of

..

ΓX-valued continuous functions on R+) and (Pγ, γ ∈
..

ΓX) is
the family of probability distributions of the process X conditioned on the initial
value γ = X0. The process X is unique up to µcl-equivalence. In particular, X
is µcl-symmetric (i.e.,

∫
F ptG dµcl =

∫
GptF dµcl for all measurable functions

F,G :
..

ΓX → R+) and µcl is its invariant measure.

Remark 5.4. It can be proved that in the case of Poisson and Gibbs measures,
under certain technical conditions the diffusion process X actually lives on the
proper configuration space ΓX (see [30]). It is plausible that a similar result should
be valid for the Poisson cluster measure, but this is an open problem.

Remark 5.5. Formula (5.2) implies that the “pre-projection” form Eπλ? is closable.
According to the general theory of Dirichlet forms [26,27], its closure is a quasi-
regular local Dirichlet form on

..

ΓX and as such generates a diffusion process X̄ on
..

ΓX. This process coincides with the independent infinite particle process, which
amounts to independent distorted Brownian motions in X with drift given by the
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vector logarithmic derivative of λ (see [5]). However, it is not clear in what sense the
process X constructed in Theorem 5.3 can be obtained directly via the projection
of X̄ from

..

ΓX onto
..

ΓX .

5.3 Irreducibility of the Dirichlet form Eµcl

Let us recall that a Dirichlet form E is called irreducible if the condition E(F, F )
= 0 implies that F = const.

Theorem 5.4. The Dirichlet form (Eµcl
,D(Eµcl

)) is irreducible.

Proof. For any F ∈ D(Eµcl
), we have

‖F‖2
Eµcl

= Eµcl
(F, F ) +

∫
ΓX

F 2 dµcl

= Eπλ? (IF, IF ) +
∫

ΓX

(IF )2 dπλ? = ‖IF‖2
Eπλ?

,

which implies that ID(Eµcl
) ⊂ D(Eπλ? ). It is obvious that if IF = const (πλ?-

a.s.) then F = const (µcl-a.s.). Therefore, according to formula (5.7), it suffices to
prove that the Dirichlet form (Eπλ? ,D(Eπλ? )) is irreducible, which is established in
Lemma 5.6 below.

We first need the following general result (see [3, Lemma 3.3]).

Lemma 5.5. Let A and B be self-adjoint, non-negative operators in separable
Hilbert spaces H and K, respectively. Then Ker(A�B) = KerA⊗KerB, where
A � B is the closure of the operator A ⊗ I + I ⊗ B from the algebraic tensor
product of the domains of A and B.

Proof. KerA and KerB are closed subspaces of H and K, respectively, and so
their tensor product KerA⊗ KerB is a closed subspace of the space H⊗K. The
inclusion KerA⊗KerB ⊂ Ker(A�B) is trivial. Let f ∈ Ker(A�B). Using the
theory of operators admitting separation of variables (see, e.g., [8, Ch. 6]), we have

0 = (A�Bf, f) =
∫

R2
+

(x1 + x2) d(E(x1, x2)f, f)

=
∫

R2
+

x1 d(E(x1, x2)f, f) +
∫

R2
+

x2 d(E(x1, x2)f, f)

= (A⊗ If, f) + (I ⊗Bf, f), (5.9)

where E is a joint resolution of the identity of the commuting operators A⊗ I and
I ⊗B. Since both operators A⊗ I and I ⊗B are non-negative, we conclude from
(5.9) that

f ∈ Ker(A⊗ I) ∩Ker(I ⊗B) = KerA⊗KerB,

which completes the proof of the lemma.

Lemma 5.6. The Dirichlet form (Eπλ? ,D(Eπλ? )) is irreducible.
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Remark 5.6. Irreducibility of Dirichlet forms associated with Poisson measures on
configuration spaces of connected Riemannian manifolds was shown in [5]. How-
ever, the space X consists of countably many disjoint connected components Xn,
so we need to adapt the result of [5] to this situation.

Proof of Lemma 5.6. Let us recall that, according to the general theory (see, e.g.,
[4]), irreducibility of a Dirichlet form is equivalent to the condition that the ker-
nel of its generator consists of constants (uniqueness of the ground state). Thus, it
suffices to prove that KerHπλ? = {const}.

Let us consider the “residual” spaces X̃n :=
⊔∞

k=nX
k, n ∈ Z+ , endowed with

the measures λ̃?
n :=

∑∞
k=n pkλ

?
k . Hence, X = X0 tX1 t · · · tXn t X̃n+1, which

implies that ΓX = ΓX0×ΓX1×· · ·×ΓXn×ΓX̃n+1
and, according to Proposition 2.2,

πλ? = π0 ⊗ π1 ⊗ · · · ⊗ πn ⊗ π̃n+1 , where we use a shorthand notation πn := πpnλ?
n
,

π̃n := πλ̃?
n
. Therefore, there is an isomorphism of Hilbert spaces

L2(ΓX, πλ?) ∼= L2(ΓX , π1)⊗ · · · ⊗ L2(ΓXn , πn)⊗ L2(ΓXn+1 , π̃n+1).

Consequently, the Dirichlet operator Hπλ? can be decomposed as

Hπλ? = Hπ1 � · · ·�Hπn �Hπ̃n+1 . (5.10)

Since all operators on the right-hand side of (5.10) are self-adjoint and non-negative,
it follows by Lemma 5.5 that

KerHπλ? = KerHπ1⊗ · · · ⊗KerHπn ⊗KerHπ̃n+1 . (5.11)

The Dirichlet forms of all measures πk are irreducible (as Dirichlet forms of Pois-
son measures on connected manifolds), hence KerHπk

= R and (5.11) implies
that KerHπλ? = KerHπ̃n+1 . Since n is arbitrary, it follows that every function F ∈
KerHπλ? does not depend on any finite number of variables, and thus F = const
(πλ?-a.s.).

Remark 5.7. The result of Lemma 5.6 (and the idea of its proof) can be viewed as a
functional-analytic analogue of Kolmogorov’s zero–one law (see, e.g., [21, Ch. 3]),
stating that for a sequence of independent random variables (Xn), the correspond-
ing tail σ-algebra F∞ :=

⋂
nF≥n is trivial (where F≥n := σ{Xk : k ≥ n}), and in

particular, all F∞-measurable random variables are a.s. constants.

Remark 5.8. According to the general theory of Dirichlet forms (see, e.g., [4]), the
irreducibility of Eµcl

is equivalent to each of the following properties:

(i) The semigroup e−tHµcl is L2-ergodic, that is, as t→∞,

∫
ΓX

(
e−tHµclF (γ)−

∫
ΓX

F (γ)µcl(dγ)
)2

µcl(dγ) → 0.

(ii) If F ∈ D(Hµcl
) and Hµcl

F = 0 then F = const.
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6 Appendix

6.1 Proof of Theorem 2.7

Note that the droplet cluster DB(γ ′0) =
⋃

y∈γ ′0
(B− y) (see (2.18)) can be decom-

posed into disjoint components according to the number of constituent “layers”
(including infinitely many):

DB(γ ′0) =
⋃

1≤`≤∞
D`

B(γ ′0),

where
D`

B(γ ′0) := {x ∈ X : γ ′0(B − x) = `}, ` ∈ Z+.

(a) Set fq := − ln q · 1K ∈ M+(X) (0 < q < 1), then

Lµcl
[fq] =

∫
Γ ]

X

qγ(K) µcl(dγ) =
∞∑

n=0

qnµcl{γ ∈ Γ ]
X : γ(K) = n} (6.1)

→ µcl{γ ∈ Γ ]
X : γ(K) <∞} (q ↑ 1).

Therefore, γ(K) <∞ (µcl-a.s.) if and only if limq↑1 lnLµcl
[fq] = 0.

Clearly, condition (2.19) is necessary for local finiteness of µcl-a.a. configura-
tions γ ∈ Γ ]

X . Furthermore, (2.19) implies that, for any compact set K ⊂ X and
any x ∈ X , we have γ ′0(K − x) <∞ (µ0-a.s.). Hence, according to (2.17),

− lnLµcl
[fq] =

∫
X

(∫
Γ ]

X

(
1− qγ ′0(K−x)

)
µ0(dγ

′
0)

)
λ(dx)

=
∫

Γ ]
X

(∫
X

∞∑
`=0

(1− q`)1D`
K(γ ′0)(x)λ(dx)

)
µ0(dγ

′
0)

=
∫

Γ ]
X

∞∑
`=1

(1− q`)λ
(
D`

K(γ ′0)
)
µ0(dγ

′
0). (6.2)

Note that, for 0 < q < 1,

0 ≤
∞∑

`=1

(1− q`)λ
(
D`

K(γ ′0)
)
≤

∞∑
`=1

λ
(
D`

K(γ ′0)
)

= λ
(
DK(γ ′0)

)
,

so if condition (2.20) is satisfied then we can apply Lebesgue’s dominated con-
vergence theorem and pass termwise to the limit on the right-hand side of (6.2) as
q ↑ 1, which gives limq↑1 lnLµcl

[fq] = 0, as required.

Conversely, since

∞∑
`=1

(1− q`)λ
(
D`

K(γ ′0)
)
≥ (1− q)

∞∑
`=1

λ
(
D`

K(γ ′0)
)

= (1− q)λ
(
DK(γ ′0)

)
≥ 0,
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from (6.2) we must have

(1− q)
∫

Γ ]
X

λ
(
DK(γ ′0)

)
µ0(dγ

′
0) → 0 (q ↑ 1),

which implies (2.20).

(b) Let us first prove the “only if” part. Clearly, condition (2.21) is necessary in
order to avoid any in-cluster ties. Furthermore, each fixed x0 ∈ X cannot belong to
more than one cluster; in particular, for any 2 ≤ ` ≤ ∞,

λ
(
D`
{x0}(γ

′
0)
)

= 0 (µ0-a.s.) (6.3)

Let fq := − ln q · 1{x0} (0 < q < 1). The expansion (6.1) then implies that in order
for x0 to be simple (µcl-a.s.), Lµcl

[fq] must be a linear function of q. But from (6.2)
and (6.3) we have

Lµcl
[fq] = exp

{
−(1− q)

∫
Γ ]

X

λ
(
D`=1
{x0}(γ

′
0)
)
µ0(dγ

′
0)
}
,

and it follows that λ
(
D`=1
{x0}(γ

′
0)
)

= 0 (µ0-a.s.). Together with (6.3), this gives

λ
(
D{x0}(γ

′
0)
)

=
∑

1≤`≤∞
λ
(
D`
{x0}(γ

′
0)
)

= 0 (µ0-a.s.),

and condition (2.22) follows.

To prove the “if” part, it suffices to show that, under conditions (2.21) and (2.22),
with probability one there are no cross-ties between the clusters whose centres be-
long to a set Λ ⊂ X , λ(Λ) < ∞. Conditionally on the total number of cluster
centres in Λ (which are then i.i.d. and have the distribution λ(·)/λ(Λ)), the proba-
bility of a tie between a given pair of (independent) clusters is given by

1

λ(Λ)2

∫
Γ ]

X×Γ ]
X

λ⊗2
(
BΛ(γ1, γ2)

)
µ0(dγ1)µ0(dγ2),

where

BΛ(γ1, γ2) := {(x1, x2) ∈ Λ2 : x1 + y1 = x2 + y2 for some y1 ∈ γ1, y2 ∈ γ2}.

But

λ⊗2
(
BΛ(γ1, γ2)

)
=
∫

Λ
λ
(⋃

y1∈γ1

⋃
y2∈γ2

{x1 + y1 − y2}
)
λ(dx1)

≤
∑

y1∈γ1

∫
Λ
λ
(⋃

y2∈γ2
{x1 + y1 − y2}

)
λ(dx1)

=
∑

y1∈γ1

∫
Λ
λ
(
D{x1+y1}(γ2)

)
λ(dx1) = 0 (µ0-a.s.),

since, by assumption (2.22), λ
(
D{x1+y1}(γ2)

)
= 0 (µ0-a.s.) and γ1 is a countable

set. Thus, the proof is complete.
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6.2 Quasi-invariance of Poisson measures

The next general result is a direct consequence of Skorokhod’s theorem [32] on
the absolute continuity of Poisson measures (see also [5]). Although essentially
well known, we give its simple proof adapted to our slightly more general setting,
whereby transformations ϕ have support of finite measure rather than compact.

Suppose that πλ is a Poisson measure on the configuration space ΓX with inten-
sity measure λ. Let ϕ : X → X be a measurable mapping; as explained earlier
(see (4.5)), it can be lifted to a (measurable) transformation of ΓX :

ΓX 3 γ 7→ ϕ(γ) := {ϕ(x), x ∈ γ} ∈ ΓX . (6.4)

Proposition 6.1. Let ϕ : X → X be a measurable bijection such that λ(suppϕ) <
∞. Assume that the measure λ is quasi-invariant with respect to ϕ, that is, the push-
forward measure ϕ∗λ ≡ λ ◦ ϕ−1 is a.c. with respect to λ, with density

ρϕ
λ(x) :=

ϕ∗λ(dx)

λ(dx)
, x ∈ X. (6.5)

Then the measure πλ is quasi-invariant with respect to the action (6.4), that is,

ϕ∗πλ(dγ) = Rϕ
πλ

(γ)πλ(dγ), γ ∈ ΓX , (6.6)

where the density Rϕ
πλ

is given by

Rϕ
πλ

(γ) = exp
{∫

X

(
1− ρϕ

λ(x)
)
λ(dx)

}
·
∏
x∈γ

ρϕ
λ(x), γ ∈ ΓX , (6.7)

and moreover, Rϕ
πλ
∈ L2(ΓX , πλ).

Proof. Note that ρϕ
λ ≡ 1 outside the set K := suppϕ. By Proposition 2.4(a), the

condition λ(K) <∞ implies that, for πλ-a.a. γ ∈ ΓX , there are only finitely many
terms in the product

∏
x∈γ ρ

ϕ
λ(x) not equal to 1, thus the right-hand side of equation

(6.7) is well defined. Using formulas (6.5), (6.7) and Proposition 2.1, the Laplace
functional of the measure πϕ

λ := Rϕ
πλ
πλ is obtained as follows:

Lπϕ
λ
[f ] = exp

{∫
X

(
1− ρϕ

λ(x)
)
λ(dx)

}
·
∫

ΓX

e−〈f,γ〉 ∏
x∈γ

ρϕ
λ(x)πλ(dγ)

= exp
{∫

X

(
1− ρϕ

λ(x)
)
λ(dx)

}
· exp

{
−
∫

X

(
1− e−f(x)+ln ρϕ

λ
(x)
)
λ(dx)

}
= exp

{
−
∫

X

(
1− e−f(x)

)
ρϕ

λ(x)λ(dx)
}

= exp
{
−
∫

X

(
1− e−f(x)

)
ϕ∗λ(dx)

}
= Lπϕ∗λ

[f ],

and so πϕ
λ = πϕ∗λ. But, according to the Mapping Theorem (see Proposition 2.3),

we have πϕ∗λ = ϕ∗πλ, and formula (6.6) follows.
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To check that Rϕ
πλ
∈ L2(ΓX , πλ), let us compute its L2-norm:∫

ΓX

|Rϕ
πλ

(γ)|2 πλ(dγ) = exp
{∫

X

(
1− ρϕ

λ(x)
)
λ(dx)

}
·
∫

ΓX

e〈2 ln ρϕ
λ

, γ〉 πλ(dγ)

= exp
{∫

X

(
1− ρϕ

λ(x)
)
λ(dx)

}
· exp

{
−
∫

X

(
1− e2 ln ρϕ

λ
(x)
)
λ(dx)

}
= exp

{∫
X

(
|ρϕ

λ(x)|2 − ρϕ
λ(x)

)
λ(dx)

}
<∞,

because |ρϕ
λ(x)|2 − ρϕ

λ(x) = 0 outside the set K = suppϕ.
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[4] S. Albeverio, Yu. Kondratiev, M. Röckner, Ergodicity of L2-semigroups and
extremality of Gibbs states, J. Funct. Anal. 144 (1997) 394–423.
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