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Abstract 

Polarised growth in fungi occurs through the delivery of secretory vesicles along tracks 

formed by cytoskeletal elements to specific sites on the cell surface where they dock with 

a multiprotein structure called the exocyst before fusing with the plasmamembrane. The 

budding yeast, Saccharomyces cerevisiae has provided a useful model to investigate the 

mechanisms involved and their control. Cortical markers, provided by bud site selection 

pathways during budding, the septin ring during cytokinesis or the stimulation of the 

pheromone response receptors during mating, act through upstream signalling pathways 

to localise Cdc24, the GEF for the rho family GTPase, Cdc42. Cdc42 in its GTP-bound 

activates a multiprotein protein complex called the polarisome which nucleates actin 

cables along which the secretory vesicles are transported to the cell surface. Hyphae can 

elongate at a rate orders of magnitude faster than the extension of a yeast bud, so 

understanding hyphal growth will require substantial modification of the yeast paradigm. 

The rapid rate of hyphal growth is driven by a structure called the Spitzenkörper, located 

just behind the growing tip and which is rich in secretory vesicles. It is thought that 

secretory vesicles are delivered to the apical region where they accumulate in the 

Spitzenkörper. The Spitzenkörper then acts as vesicle supply centre in which vesicles exit 

the Spitzenkörper in all directions, but because of its proximity, the tip receives a greater 

concentration of vesicles per unit area than subapical regions. There are no obvious 

equivalents to the bud site selection pathway to provide a spatial landmark for polarised 

growth in hyphae. However, an emerging model is the way that the site of polarised growth 

in the fission yeast, Schizosaccharomyces pombe, is marked by delivery of the kelch 

repeat protein, Tea1, along microtubules. The relationship of the Spitzenkörper to the 

polarisome and the mechanisms that promote its formation are key questions that form the 

focus of current research. 
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Introduction 

Fungal hyphae grow almost exclusively from their tips. To do this, membranes and the raw 

materials and enzymes for the synthesis of new cell wall material are delivered to the tip in 

the form of secretory vesicles, which fuse with the plasma membrane at the tip. Research 

in the budding yeast Saccharomyces cerevisiae has served as a model for the processes 

involved and their regulation. Sites of polarised growth are marked by cortical markers 

formed by the bud site selection pathways, the site of septation in vegetative cells or the 

site of pheromone stimulation in mating projections. At these sites a small GTPase, 

Cdc42, is activated by its GEF, Cdc24p (Fig. 1). Activated Cdc42p promotes the formation 

of a multiprotein complex called the polarisome, which nucleates the formation of actin 

cables. Post-Golgi secretory vesicles are transported along these actin cables to dock with 

a second protein complex called the exocyst before fusion with the plasma membrane 

mediated by the interaction between v-SNARES on the vesicle and a t-SNARE complex 

on the membrane (Fig. 2). Polarised growth in S. cerevisiae has been the subject of an 

excellent recent review to which the reader is referred to for details of these processes 

(Park and Bi, 2007). 

 

The yeast model serves to highlight the different stages in this process where control over 

polarised growth can be exerted. First, polarised growth requires the establishment of the 

site, which may be subject to both temporal and spatial control. Second, once the site has 

been established the actin or tubulin cytoskeletons must be polarised toward this site. This 

requires the formation of a structure such as the polarisome whose formation and activity 

may be controlled. Third, the formation and flow of post Golgi secretory vesicles along the 

cytoskeletal tracks can be regulated. Fourth, the assembly of the exocyst and the docking 

of secretory vesicles with the exocyst may be controlled. Small GTPases, in particular 
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Cdc42p and the closely related Rac GTPase, play a key role at many of these levels (Park 

and Bi, 2007).  

 

This review takes the S. cerevisiae model as a base, but will seek to consider to what 

extent the yeast paradigm can be extended to fungi that grow in a hyphal rather than yeast 

form. Fungal hyphae can extend at a rate that is at least two orders of magnitude greater 

than a yeast bud or mating projection (Trinci, 1973). An indication that the budding yeast 

paradigm will require substantial modification is the presence of a structure called the 

Spitzenkörper, which is dominated by an accumulation of secretory vesicles at or just 

behind hyphal tips, for which there does not appear to be a counterpart in S. cerevisiae 

(Girbardt, 1969; Harris and Momany, 2004; Harris et al., 2005; Virag and Harris, 2006) (Fig 

3). It is thought that secretory vesicles are delivered to the Spitzenkörper along 

microtubules before onward delivery to the hyphal tip, possibly along microfilaments. 

Mathematical modelling showed that the hyphoid shape at the tip can be simply predicted 

by positing that the vesicles radiate from the Spitzenkörper in all directions with equal 

velocity and that the Spitzenkörper is maintained at a fixed distance from tip (Bartnicki-

Garcia et al. 1989; Bartnicki-Garcia, 2002).  

 

Some speices in the order Saccharomycetales can grow as hyphae. Ashbya gossypii is 

closely related to S. cerevisiae yet grows exclusively in a hyphal form (Philippsen et al., 

2005). So presumably, the components that generate bud growth in S. cerevisiae are also 

capable of generating hyphae. In the case of the polymorphic pathogen Candida albicans, 

its genome encodes components that support yeast, pseudohyphal or hyphal growth, 

including the formation of a Spitzenkörper-like structure in hyphae (Berman and Sudbery, 

2002; Sudbery et al., 2004; Crampin et al., 2005) (Fig. 3). Despite the ability of A. gossypii 

and C.albicans to form hyphae, it is likely that novel mechanisms exist that have not been 



 5 

exemplified by research in S. cerevisiae. The recent sequencing of a number of fungal 

genomes and advances in molecular genetic technology in fungi such as Neurospora 

crassa and Aspergillus nidulans have started to reveal new insights and this review will 

finish with a consideration of these developments. For a more detailed consideration of 

these issues, see (Sudbery and Court, 2007). 

Small GTPases 

Small GTPases of the Ras superfamily act as molecular switches in many biological 

processes. They cycle between a GDP-bound and GTP-bound state. Normally the GTP-

bound form is the active “on” state of the switch and the GDP-bound the inactive “off” 

state. In addition, the active state requires the GTPase to be attached to a membrane by 

prenylation at its C-terminus. However, it is becoming increasingly clear that in some 

cases GDP/GTP cycling is necessary for the GTPase to promote its biological function. 

Conversion of the GDP-bound to the GTP-bound form is mediated by a Guanine 

Exchange Factor (GEF) that is specific to the particular GTPase. Return to the GDP-bound 

form is mediated by specific GTPase activating proteins (GAPs). Together GEFs and 

GAPs control the activity of the GTPase. In addition, Guanine dissociation inhibitors may 

play a regulatory role. These proteins inhibit the dissociation of GDP from the GTPase and 

extract the GTPase from the membrane where they normally perform their biological 

function. During polarised growth a variety of GTPases mediate different aspects of 

polarised growth. Homologues of Ras itself play an upstream role in signal transduction of 

environmental signals. Rab GTPases such as Sec4 control vesicle trafficking (Walworth et 

al., 1992). Rho GTPases control the organisation of the cytoskeleton, the formation of the 

exocyst and docking of secretory vesicles, and cell wall biosynthesis. In yeast, Cdc42p 

plays a master role in orchestrating polarised growth at different levels (Fig. 1). In 

filamentous fungi the closely related Rac GTPase plays overlapping and distinct roles with 

Cdc42p in controlling developmental processes and polarised growth in hyphae. A critical 
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difference between Rac and Cdc42 GTPases is that the specificity of the activating GEF is 

determined by the identity of the amino acid at position 56 which is phenylalanine in Cdc42 

GTPases and tryptophan in Rac GTPases (Karnoub et al., 2001). 

Ras 

In S. cerevisiae Ras, encoded by two redundant genes RAS1 and RAS2, is essential for 

vegetative growth and for passage through Start. Ras is converted to its active GTP-bound 

form by its GEF Cdc25p and return to its GDP bound form by its GAPs Ira1p and Ira2p 

(Tanaka et al., 1990). Ras-GTP activates adenylate cyclase, encoded by CDC35, to 

increase cAMP levels (for a review of Ras proteins in S. cerevisiae see (Santangelo, 

2006). This results in the activation of cAMP-dependent protein kinase (PKA) as cAMP 

binds to the regulatory subunit Bcy1p and causing it to dissociate and so activates three 

catalytic subunits Tpk1p, Tpk2p and Tpk3p. Activated PKA targets transcription factors 

that promote transcription of genes involved in stress responses, ribosomal biogenesis 

and filamentous growth. Cells lacking functional Ras, Cdc25p or Cdc35p cease growing 

and arrest as unbudded cells in G1. As well as playing an essential role in vegetative 

growth and proliferation, Ras is an upstream regulator of polarised growth during 

pseudohyphal growth. It activates two separate signal transduction pathways. For a 

review, see (Pan et al., 2000). First Ras acts through Cdc42p to activate a MAP kinase 

module. Second, it activates the cAMP-based pathway. Both of these pathways ultimately 

converge on the transcription factor Flo11p, which has an exceptionally extensive and 

complex promoter that allows it to respond to a diverse range of signals.  

 

In C. albicans, Ras plays a key role in activating signal transduction pathways that mediate 

the transition from a yeast to a hypha (Fig. 4). As in S. cerevisiae, CaRas activates a MAP 

kinase pathway and a cAMP-based pathway, which target the Cph1p and Efg1p 

transcription factors respectively. Cells lacking Ras1p are viable but are unable to undergo 
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the yeast-hyphal transition; however, they are able to form pseudohyphae (Feng et al., 

1999; Leberer et al., 2001). Similarly, cells expressing the dominant negative RAS1A16 

allele show reduced hyphal growth, while cells expressing the dominant active RASV13 

allele showed enhanced hyphal growth and were able to filament on solid media in 

conditions that normally favour yeast growth. In the dimorphic pathogen Pencillium 

marneffei, the Ras homologue, RasAp, is required for polarised growth of both yeast and 

hyphal phases (Boyce et al., 2005). 

 

As well as mediating the yeast-to-hyphal transition, activation of these pathways initiates 

an extensive program of hyphal-specific transcription including cell wall genes, adhesins 

and secreted aspartyl proteases (Fig. 4). It is thought that the cAMP pathway, which 

targets Efg1p, plays a more major role than the Cph1p pathway. Other pathways also 

operate to stimulate the yeast to hyphal transition in response to environmental cues. 

These include neutral pH via the transcription factor Rim101, growth when embedded in a 

matrix via the transcription factor Crz1p and 5% CO2, which is sensed by adenylate 

cyclase. The developmental program is also negatively regulated by Rbf1p, Nrg1p-Tup1p 

and Rfg1p-Tup1. These pathways have been recently reviewed (Brown et al., 2007). 

Cdc42 and Rac GTPases  

Cdc42p was first identified in budding yeast through temperature sensitive cdc42 mutants 

that arrest as large multinucleate, unbudded cells with a completely depolarised actin 

cytoskeleton and random distribution of chitin (Hartwell et al., 1974; Adams et al., 1990).  

The continued isotropic growth of these cells suggests that Cdc42p is essential for bud 

formation and polarised growth, but not for isotropic growth. Cdc42p is activated by its 

GEF Cdc24p, which is essential for its function because temperature sensitive cdc24 

alleles also arrest as large unbudded cells (Hartwell et al., 1974; Zheng et al., 1994) (Fig. 

1). Cdc42p GAPs are encoded by BEM1 and RGA1/2 (Zheng et al., 1994; Stevenson et 
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al., 1995; Smith et al., 2002; Caviston et al., 2003). Yeast cells lacking all three GAPs 

show highly polarised growth suggesting that these genes act as negative Cdc42p 

regulators. However, simple activation of Cdc42p is not sufficient for cell viability as 

CDC42 G12V and CDC42 G61L alleles that lock Cdc42p in the GTP-bound state are dominant 

lethals.  Moreover, there is accumulating evidence that at least some functions of Cdc42p 

require cycling between GDP-bound and GTP-bound states as exemplified by the role of 

Cdc42p in septin formation in S. cerevisiae (Gladfelter et al., 2002) and in hyphal growth of 

Candida albicans (Court and Sudbery, 2007).  

 

In vegetative, cells Cdc24p is localised to sites of polarised growth by the action of the bud 

site selection pathways (Fig. 1) (for reviews see (Chant, 1999; Park and Bi, 2007)). 

Haploid yeast respond to the presence of their cognate mating pheromone by the 

formation of a mating projection that shows polarised growth against the gradient of the 

mating pheromone toward its source. Mating pheromone is sensed by seven-

transmembrane receptors encoded by STE2 (α-factor) and STE3 (a-factor). These 

receptors are complexed to a tripartite G-protein complex that dissociates upon 

pheromone binding into α and βγ subunits. The βγ dimer localises Cdc24p to promote 

polarised growth at the site of the activated receptor. In the unstimulated state, Cdc24p is 

sequestered in the nucleus. It is exported from the nucleus in a complex with Far1p when 

Far1p is phosphorylated by the MAP kinase Fus3p, activated by the mating pheromone 

response pathway. Cdc42p orchestrates diverse processes in polarised growth and 

morphogenesis that can be genetically separated from each other by specific mutations in 

its effector domain (Fig. 1). For reviews and references see: (Sudbery and Court, 2007; 

Park and Bi, 2007) 

• Cdc42p mediates the formation of the polarisome that nucleates the formation of actin 

cables for the delivery of vesicles.  



 9 

• Cdc42p recruits septin subunits to the incipient bud site and by cycling between GDP 

and GTP mediates the maturation of these subunits into a ring that acts as scaffold for 

proteins that mediate diverse processes required for cytokinesis. It may also act as a 

diffusion barrier to coral these proteins to the site of cytokinesis. 

• Together with Rho1, Cdc42p is required for the localisation of Sec3p that acts as 

spatial landmark for the formation of the exocyst complex. 

• Together with Rho3p, Cdc42p mediates the docking of secretory vesicles with the 

exocyst. 

Cdc42p is an evolutionarily conserved protein. In yeasts such as C. albicans, 

Schizosaccharomyces pombe and Ashbya gossypii Cdc42p is essential for polarised 

growth. C. albicans can grow in yeast, pseudohyphal and hyphal forms, and thus is a 

useful model to investigate the regulatory mechanisms that result in hyphal growth.  In C. 

albicans a low level of CDC42 expression from the regulatable MET3 promoter, which was 

sufficient for viability, was insufficient to sustain hyphal growth, indicating that more 

Cdc42p is required for the polarised growth of hyphae compared to yeast (Bassilana et al. 

2003).  Moreover, in C. albicans Cdc42p and Cdc24p were shown to be required for the 

expression of hyphal-specific genes (Bassilana et al. 2005). A bem3Δ/Δ rga2Δ/Δ mutant, 

which lacked all Cdc42p GAPs, showed more highly polarised growth, so that cells grown 

under pseudohyphal-promoting conditions displayed a hyphal morphology (Court and 

Sudbery, 2007). Moreover, septin rings appeared within the germ tube rather than at the 

bud neck, a characteristic feature of hyphae. This observation suggested that high levels 

of Cdc42p-GTP promoted hyphal development. However, a strain conditionally expressing 

CDC42G12V, in which Cdc42p is locked in the GTP-bound state, formed swollen cells when 

grown under pseudohyphal-promoting conditions. This suggested that Cdc42p must also 

be capable of GDP/GTP cycling to promote the polarised growth seen in hyphae. The 

difference between the phenotypes of the bem3Δ/Δ rga2Δ/Δ and CDC42 G12V expressing 
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strains is probably due to the high intrinsic GTPase activity of wild type Cdc42, which 

would allow some cycling to occur in the bem3Δ/Δ rga2Δ/Δ strain even though the lack of 

Cdc42p GAPs would elevate the level of the GTP-bound form. In addition to the swollen 

cell phenotype, expression of the CDC42G12V prevented the maturation of septin subunits 

into a ring, consistent with the previous observation in S. cerevisiae that Cdc42pGDP/GTP 

cycling was necessary for assembly of subunits into a ring. The C. albicans genome also 

contains a member of the Rac family of GTPases. Mutants lacking Rac1p have a normal 

phenotype except they are unable to form hyphae when embedded in a matrix (Bassilana 

and Arkowitz, 2006). Thus, Rac1p plays a minor role compared to Cdc42p in C. albicans.  

 

In the dimorphic pathogen Penicillium marneffei the Cdc42p homologue is encoded by the 

cflA gene. Attempts to delete cflA were unsuccessful, suggesting that like yeasts, Cdc42p 

is essential for viability (Boyce et al., 2001). Its role was investigated by the expression of 

cflAD120A, which is equivalent to the S. cerevisiae CDC42D118A dominant negative allele. 

Colonial growth was reduced at 25°C that promotes hyphal growth. Conidia were slower to 

germinate and slower to become polarised to form hyphae, which were extensively curled. 

Yeast cells expressing CDC42D118A failed to initiate cytokinesis. However, the dimorphic 

switch and asexual development were not affected. Cells lacking the closely related Rac 

GTPase encoded by cflB failed to undergo asexual development, thus CflBp, rather than 

CflAp, is required for this developmental process (Boyce et al., 2003). Cells expressing a 

dominant negative cflB D123A allele were unable to polarise hyphae and the cytoskeleton 

was disrupted. Epistasis analysis showed that RasAp acted upstream of both CflAp and 

CflBp to regulate polarised growth in yeasts and hyphae, and spore germination (Boyce et 

al., 2005).  
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In the dimorphic pathogen Ustilago maydis, cells in which either cdc42 or rac1 had been 

separately deleted were viable but showed distinct phenotypes (Mahlert et al., 2006). 

Cdc42∆ mutants showed no gross morphological abnormalities but fail to separate after 

cytokinesis. Rac1∆ mutants were swollen and mishappen in the yeast phase and divided 

through a single, centrally located septum in the mother cell rather than two septa at the 

bud neck. Furthermore, rac1∆ cells were unable to generate dikaryotic filaments in 

response to expression of the heterodimeric transcription factor encoded by the bW and 

bE mating type genes. However, induction of ectopic expression of rac1 resulted in 

unscheduled filament formation. Thus, Rac1p is necessary and sufficient for hyphal 

formation. While Rac1p and Cdc42p mediate separate processes, they share a common 

essential function because depletion of both GTPases is lethal.  

 

Aspergillus nidulans contains homologues of Cdc42 and Rac called ModA and RacA 

respectively (Virag et al., 2007). Deletion of ModA is not lethal, but results in a delay of 

germinating spores to initiate polarised growth and the resulting germ tubes grow more 

slowly and show morphological abnormalities. Moreover, conidiation is reduced. In the 

absence Cdc42, polarisome components localise and a Spitzenkörper forms normally, 

however microtubules become essential for polarised growth. RacA deletion mutants only 

show a defect in conidiation; however a strain lacking both ModA and RacA was 

apparently inviable because no double mutants were recovered when the two single 

mutants were crossed together. A GFP-ModA allele showed impaired functionality; a GFP-

ModA racA∆ strain could be generated but was very sick. Thus, in A. nidulans ModA, the 

Cdc42 homologue, and RacA also share an essential overlapping function. A tentative 

picture that emerges is that in two ascomycetes (P. marneffei, A.nidulans) and a 

basidomycete (Ustilago maydis) the functions of Cdc42p in S. cerevisiae are divided 
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between Cdc42p and Rac1p (Boyce et al., 2001; Boyce et al., 2003; Boyce et al., 2005; 

Mahlert et al., 2006; Virag et al., 2007).   

Rho-type GTPases 

Other Rho-type GTPases also play essential roles in polarised growth.  In S. cerevisiae, 

Rho1p plays multiple roles in cell integrity and polarised growth including:  

• the activation of Pkc1p, the upstream activator of the cell-integrity MAP kinase 

pathway (Nonaka et al. 1995), 

• acting through Pkc1p to re-polarise actin after a shift to 37°C  (Nonaka et al. 1995; 

Kohno, 1996; Schmidt et al. 1997; Drgonova et al. 1999),  

• the activity of β (1-3)-D-glucanase, which synthesises a major component of the cell 

wall (Qadota et al. 1996; Drgonova et al. 1996), 

• together with Cdc42, Rho1p localises the exocyst landmark protein, Sec3p (Zhang 

et al. 2001; Guo et al. 2001). 

In S. cerevisiae, Rho3p promotes the localisation of the exocyst component Exo70p and 

the fusion of secretory vesicles with the exocyst, a role it shares with Cdc42p (Adamo et 

al., 1999; Adamo et al., 2001). Rho3p, together with Rho4p also acts on the formins to 

polarise the actin cytoskeleton (Dong et al. 2003).  In A. gossypii, loss of the Rho3p 

homologue resulted in a severe defect of polarised growth in which growth of the hyphal 

tips became isotropic resulting in swollen tips.  Polarised growth would often re-initiate at 

these tips, but with a different axis from that of the initial hypha (Wendland and Philippsen 

2001). In C. albicans Rho3p is required for polarised growth so that when cells are 

depleted of Rho3p hyphal tips become swollen (Dunkler and Wendland, 2007), suggesting 

that, as in S. cerevisiae, Rho3p is required for the docking and fusion of secretory vesicles 

with the plasma membrane (see below). Rho4p is required for normal cytokinesis (Dunkler 

and Wendland, 2007).  
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Control of vesicle traffic 

Secretory vesicles originate in the Golgi and in S. cerevisiae travel along actin cables to 

sites of polarised growth. The motive power for their transport is provided by the type V 

myosin encoded by Myo2p together with its regulatory light chain Mlc1p. The Rab GTPase 

Sec4p and its GEF Sec2p play a key role in regulating the exit of vesicles from the Golgi 

and their fusion with the exocyst (Boyd et al., 2004; Medkova et al., 2006; Novick et al., 

2007). The current model is described in Fig. 2. Sec2p is recruited to nascent vesicles in 

the Trans Golgi network by an upstream a pair of redundant GTPases Ypt31p and Ypt32p. 

Sec2p recruits Sec4p and converts it to the activated GTP-bound form. Once activated 

Ypt31/32p is displaced from Sec2p by the exocyst component Sec15p and the vesicle can 

now exit the Golgi network and travel along actin cables toward the site of polarised 

growth. Other members of the exocyst complex are also transported to the exocyst 

complex on secretory vesicles, with the exception of Sec3p and Exo70p: Sec3p is 

localised independently of the secretory pathway (Finger and Novick, 1997); Exo70p forms 

two pools: one is transported to sites of polarised growth on secretory vesicles while the 

other localises independently of the secretory pathway in a Rho3-dependent fashion 

(Adamo et al., 1999; Boyd et al., 2004). On arrival at the site of polarised growth, Sec4p-

GTP is required for fusion with the plasma membrane. The Sec4p GAPs, Msb3p and 

Msb4p are also required for vesicle docking, so it is possible that Sec4p GDP/GTP cycling 

is important for fusion. Msb3p and Msb4p also physically interact with the polarisome 

component Spa2p providing a physical bridge between the polarisome and vesicle traffic 

(Fig. 2) (Tcheperegine et al., 2005). Msb3p and Msb4p also physically bind Cdc42p, but in 

its GDP bound form. It has been suggested that this may maintain a pool of Cdc42p-GDP 

ready to be activated by Cdc24p (Tcheperegine et al., 2005). The exocyst component 

Sec15p also interacts with the Cdc42p GAP Bem1p, providing a further physical link 

between vesicle traffic and the establishment of polarity (France et al., 2006). It is not clear 
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how this model may be applied to hyphal growth (Walworth et al., 1992; Gao et al., 2003). 

In Aspergillus niger, the Sec4p homologue is dispensable for growth (Punt et al., 2001). It 

is not yet clear whether an unidentified protein can perform the function of Sec4p or 

whether the mechanism controlling vesicle transport is fundamentally different in 

filamentous fungi.  

 

In C. albicans hyphae Mlc1p, the regulatory light chain of Myo2p that provides the motive 

force for secretory vesicle transport, accumulates in a Spitzenkörper-like structure at the 

tip (Crampin et al., 2005). This suggests that the arrival of vesicles at the tip is more rapid 

than the rate of onward transport from the Spitzenkörper to the cell surface. Both 

microtubules and microfilaments appear to be required for polarised growth in C. albicans 

(Akashi et al., 1994; Crampin et al., 2005). However, they have different roles. The 

microtubular inhibitor, MBC prevents hyphal elongation and results in Mlc1-YFP being 

localised in a surface crescent characteristic of a polarisome. Cytochalasin A, which 

disrupts actin cables, results in tip swelling due to a switch from polarised to isometric 

growth. A model to explain these observations is that long distance transport is mediated 

by microtubules, whereas the short distance distribution from the Spitzenkörper to the 

hyphal tip mediated by actin cables. 

 

Recently, an interesting interaction between the exocyst landmark Sec3p and the septin 

Cdc11p has been uncovered during the growth of C. albicans hyphae (Li et al., 2007). 

Mutants in which SEC3 has been deleted are viable at 30°C but are temperature sensitive 

for growth at 37°C – a similar phenotype to S. cerevisiae sec3∆ mutants. When challenged 

to make hyphae by growth at 37°C plus serum, C. albicans sec3∆/∆ initially produce 

apparently normal hyphal germ tubes. However, at the time that the first septin ring 

appears in the germ tube growth becomes isotropic and the tips become swollen. The 



 15 

swollen tip phenotype, but not the growth defect, is rescued by deletion of either of the 

CDC10 or CDC11 genes, which encode septin subunits. Furthermore, Cdc11p and Sec3p 

have been shown to physically associate by co-immuneprecipitation.  

 

Cells lacking either of the cyclins Cln3p or Ccn1p and induced to form hyphae also show 

the phenotype where germs tubes initially form normally but subsequently become swollen 

at the tip (Loeb et al., 1999b; Chapa y Lazo et al., 2005; Bachewich and Whiteway, 2005). 

Ccn1p-Cdc28p has been shown to phosphorylate Cdc11p at residue 394 (Sinha et al., 

2007). This phosphorylation is dependent on prior phosphorylation at position 395 by the 

Gin4p kinase. A Cdc11 S394D S395D phosphomimetic allele rescues the swollen-tip 

phenotype of a ccn1∆/ccn1∆ allele. Thus, the only Ccn1p function required for hyphal 

growth is to enable phosphorylation of Cdc11p by Cdc28p. A model to explain these 

observations is that after the septin ring forms, Cdc11 competes with the hyphal tip for 

localisation of the exocyst landmark Sec3. Phosphorylation of Cdc11 by Ccn1-Cdc28 

weakens the affinity of Cdc11 for Sec3, allowing tip localisation to predominate and 

polarised growth to continue (Sudbery, 2007). 

Protein kinases 

PAK kinases 

Cdc42p interacts with and activates a pair of related kinases called Ste20p and Cla4p 

which are members of the p21 activated (PAK) kinase family (Fig. 1). Both kinases localise 

to sites of polarised growth in a Cdc42p-dependent fashion (Cvrckova and Nasmyth, 1993; 

Peter et al., 1996). They each have separate identifiable functions, but a cla4∆ ste20∆ 

mutant is inviable implying that they are redundant for an essential function. Both proteins 

have a kinase domain in the C-terminal part of the protein. In the N-terminal extension to 

the kinase domain is a conserved domain CRIB domain (Cdc42/Rac Interactive Binding) 
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that interacts with Cdc42p The CRIB of Ste20p is essential for polarised localisation and 

for the essential function shared with Cla4p (Peter et al., 1996; Leberer et al., 1997a). 

Ste20p functions in the pheromone response signalling pathway activating the Ste11p, 

which is a MAP kinase, kinase, kinase (MAP = Mitogen Activated Protein). Elements of the 

signalling pathway, including Ste20p are also required for pseudohyphal formation and 

invasive growth of haploids (Liu et al., 1993). The kinase domain is required for its role in 

signalling. The CRIB domain is autoinhibitory and its negative effect on kinase activity is 

relieved by Cdc42-GTP binding.  

 

Cla4p phosphorylates septins (Versele and Thorner, 2004). In the absence of Cla4p, 

septin bars form rather than a true ring, a phenotype that is enhanced when a cla4∆ 

mutation is combined with gin4∆ and/or nap1∆ alleles (Longtine et al., 2000). Cla4p also 

regulates polarised growth during the cell cycle of S. cerevisiae, however, there is 

disagreement about whether it acts in a positive or negative way. There is agreement that 

just after bud emergence Cla4p phosphorylates Cdc24p and that this phosphorylation 

depends on Cdc42-GTP and the scaffold protein Bem1. According to one report, this 

causes the dissociation of Bem1p from Cdc24p so that Cla4p is part of negative feedback 

loop that leads to the cessation of polarised growth (Gulli et al., 2000). However, a second 

report disagreed with this conclusion and argued that Cla4p formed part of a positive 

feedback loop to promote polarised growth (Bose et al., 2001). The essential functions 

shared between Cla4p and Ste20p may involve polarisation of both actin cortical patches 

and cables. Phosphorylation of Myo3/Myo5p is required for the formation of actin cortical 

patches (Wu et al., 1997). Polarisome function and activation of Bni1p is also dependent 

on phosphorylation by one of the PAK kinases (Goehring et al., 2003). The role of Cla4p 

homologues in other fungi has only been investigated in C. albicans and A.gossypii 
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(Leberer et al., 1997b; Ayad-Durieux et al., 2000; Li et al., 2007). Interestingly, in both 

organisms cla4∆ mutants can establish but not maintain hyphal growth 

Cdk1 

As well as spatial regulation, polarised growth requires temporal regulation. Polarised 

growth in the cell cycle of S. cerevisiae, and the budding yeast form of C. albicans, is 

restricted to the first part of the cell cycle when the bud is small (Kron and Gow, 1995). In 

the hyphal stage of C. albicans and during the growth of other hyphal fungi, polarised 

growth is continuous (Soll et al., 1985; Crampin et al., 2005). The temporal regulation of 

the growth pattern in S. cerevisiae is controlled by the cyclin-dependent kinase Cdk1, 

which controls progress through the cell cycle (for a review see (Mendenhall and Hodge, 

1998). Association of Cdk1p with Cln1p or Cln2p promotes hyphal growth, whereas the 

Cdk1-Clb1/2p kinase promotes isotropic growth (Loeb et al., 1999a). During a normal cell 

cycle Cln1/2p levels decline while Clb1/2p levels increase resulting in the switch to 

isotropic growth in late G2. The morphogenesis checkpoint, which delays mitosis and 

prevents the switch to isotropic growth, results in the stabilisation of Cln1/2p levels and a 

decrease in Clb2p levels (Lew and Reed, 1995; McCusker et al., 2007). In C. albicans, the 

homologue of CLN1/2 is called HGC1 (Zheng et al., 2004). HGC1 is only expressed in 

hyphae and is required for hyphal growth. Yeast growth in C. albicans requires the CLN3 

homologue (Chapa y Lazo et al., 2005; Bachewich and Whiteway, 2005). CLN3 is 

essential for viability, but cells can be depleted of Cln3p using expression from the highly 

regulatable MET3 promoter. When cells are depleted of Cln3p in this way, they 

spontaneously form hyphae in the absence of the normal hypha-inducing signals. So 

Cln3p is required for yeast growth but not hyphal growth, and Hgc1p is required for hyphal 

growth but not yeast growth. Thus Cdk1p takes on specialist roles in hyphal and yeast 

phases which are determined by the particular cyclin with which it associates. 
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NDR kinases 

NDR (Nuclear DBF2-Related) kinases are a group that are conserved from yeast to man 

and act in mechanisms involved in polarised growth and morphogenesis (Tamaskovic et 

al., 2003; Hergovich et al., 2006). Dbf2p, the eponymous founding member of the group, 

was characterised in S. cerevisiae where it forms the target of the Mitotic Exit Network 

(MEN) that permits exit from mitosis after anaphase has been successfully completed (for 

a review see (McCollum and Gould, 2001)). It physically associates with its partner Mob1p, 

which allows it to be phosphorylated and activated by an upstream kinase, Cdc15p. 

Cdc15p is related to Ste20p kinase family, but is a member of a subfamily called Germinal 

Centre kinases that lack the Cdc42p interacting domain of Ste20 kinases. This regulation 

of Dbf2p is emerging as a standard pattern for NDR kinases: they are part of a network 

that includes a Cdc15-related kinase and a Mob binding partner. However, although 

Cdc15p has been directly shown to bind and activate Dbf2, direct activation has so far not 

been demonstrated for any other of the related kinases that are part of NDR kinase 

networks. Dbf2p targets Net1p a protein which retains a phosphatase, Cdc14p, in the 

nucleolus. Once released from the nucleolus Cdc14p dephosphorylates and stabilises the 

Clb-Cdk1 kinase inhibitor, Sic1p. Cdc14p also promotes the destruction of G2 cyclins 

necessary for mitotic exit by dephosphorylating and stabilising Cdh1p that targets Clb 

cyclins to the Anaphase Promoting Complex (APC).  

 

In diverse fungi, NDR kinases are required for both polarised growth and cell separation. 

In S. cerevisiae, Cbk1p, closely related to Dbf2p, is required for polarised growth and was 

uncovered in a screen for defects in polarised growth of mating projections. It is also 

required for cell separation after cytokinesis (Racki et al., 2000; Bidlingmaier et al., 2001; 

Colman-Lerner et al., 2001). Cbk1p is part of a physically interacting network of proteins 

called the RAM network (Regulation of Ace2 activity and morphogenesis) (Nelson et al., 



 19 

2003). The RAM network targets the transcription factor Ace2p to the daughter nucleus 

where it programs the expression of CTS1 and SCW1, which encode proteins that will 

degrade the primary septum and allow cell separation. The RAM network includes a 

number of proteins that are commonly found elsewhere to be associated with NDR 

kinases. Mob2p is an NDR-activating partner closely related to Mob1p. Kic1p is related to 

Cdc15p and is assumed to be an upstream activating kinase although this has not been 

directly demonstrated. Tao3p may be a scaffold protein. Ssd1p is a protein whose function 

is obscure but allelic polymorphisms have been found to modify the phenotypic effects of 

mutations affecting a wide variety of cellular processes.  

 

In S. pombe, NDR kinases are encoded by orb6+ and sid2+. As their name suggests orb6- 

mutants are spherical rather than rod-shaped and fail to polarise the actin cytoskeleton 

(Verde et al., 1995). Orb6p interacts with Mob2p which is required for its activation by the 

Cdc15-related kinase Nak1p/Orb3p (Leonhard and Nurse, 2005) (Hou et al., 2003).  Sid2p 

is part of the Septum Initiation Network (SIN) Sid2 - mutants are defective in septum 

formation. Sid2p interacts with Mob1p and this interaction is required both for localisation 

of Sid2p to a medial ring where the septum will form and for Sid2p catalytic activity (Hou et 

al., 2004). Sid2p may promote septum formation by activating the S. pombe homologue of 

Ace2p, but the precise mechanism of how it does this remains unclear (Jin et al., 2006). A 

Cdc15-related kinase, Cdc7p, is also required for septum formation; however direct 

activation of Sid2p by Cdc7p has not been demonstrated (Mehta and Gould, 2006).  

 

In N. crassa, cot-1, which  encodes an NDR kinase (Yarden et al., 1992) has been 

recognised for many years at a genetic level as temperature sensitive cot-1- alleles cause 

hyper-branching and a more compact “colonial” colony morphology (Collinge et al., 1978). 

At the restrictive temperature cot-1- mutants are defective in tip elongation and like other 
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similar such colonial mutants show excessive hyphal branching. cot-1- mutants are 

suppressed by culture and stress conditions that lower cAMP levels and by an inhibitor, 

KT5720, that inhibits cAMP-dependent protein kinase (PKA) (Gorovits and Yarden, 2003). 

Thus, it seems likely that cAMP signalling acts in opposition to COT1 in regulating hyphal 

growth. Interestingly, an allele of GUL1, which encodes an Ssd1p homologue, also 

suppresses the cot-1- mutation, suggesting that Ssd1p is part of a complex with cot1, as it 

is in S. cerevisiae. In wild type cells, COT1 is localised in a punctate fashion along the 

hyphal length, but excluding the Spitzenkörper region at the tip. Cot-1- mutations are also 

suppressed by ropy mutations affecting the dynein/dynactin minus-end directed 

microtubular motor complex.  In these mutants COT1 becomes concentrated at the tips 

(Seiler et al., 2006). An interpretation of this result is that COT1 is transported along 

microtubules to the hyphal tip by plus-end directed microtubule motors and away from the 

tip along microtubules by the dynein/dynactin complex. Suppression of the cot-1- mutation 

by ropy mutations could arise by the increased concentration of the defective COT1 at the 

tips. COT1 physically and genetically interacts with pod6, a Cdc15p-related kinase. 

Temperature sensitive pod-6 mutants are suppressed by the same mutations and 

environmental stresses as cot-1-. Moreover, a pod-6- cot-1- double mutant shows the same 

phenotype as each single mutant (Seiler et al., 2006). Taken together these observations 

suggest that COT1 and POD6 act in the same pathway. However, neither the kinase 

activity nor the localisation of either kinase was dependent on the function of the other; nor 

does overexpression of one kinase rescue the phenotype of temperature sensitive alleles 

of the other kinase. Thus, it seems unlikely that POD6 directly phosphorylates and 

activates cot1. 

 

Interestingly, in dimorphic human pathogen Cryptococcus neoformans the Cbk1p 

homologue appears to negatively regulate polarised growth (Walton et al., 2006). This 



 21 

fungus grows in a filamentous form at 25°C and as yeast at 37°C. A screen for colony 

morphology mutants recovered mutant alleles affecting homologues of the S. cerevisiae 

RAM pathway, including Cbk1p. Surprisingly, when grown at 37°C, which normally favours 

yeast form growth, these mutants were elongated and the actin cytoskeleton 

hyperpolarised.  

 

Beyond the yeast paradigm 

The dramatic differences in morphology between the hyphae of filamentous fungi and 

budding yeast such as S. cerevisiae make it seem unlikely that hyphal growth only utilises 

the same components as bud growth. The sequencing of many different fungal genomes, 

including species such as A. nidulans and N. crassa, which have well developed and 

tractable genetic systems, provide the opportunity to search for mechanisms that have not 

so far been exemplified in yeast. One such mechanism in A. nidulans was uncovered by a 

screen for mutations that enhanced the phenotype of cells depleted for the formin SepAp. 

One of the mutants recovered, mesA-, showed polarity defects and tip splitting typical of 

colonial mutants such as cot-1 (Pearson et al., 2004). In mesA- mutants, SepAp localised 

to a crescent at the hyphal tip but not to a spot, in contrast to wild type cells where SepAp 

localises to a spot and crescent at the hyphal tip. Furthermore, formation of actin cables 

and polarised sterol rich membrane domains (lipid rafts) was disrupted. These 

observations suggested that MesAp acts to facilitate the localisation of SepAp at the 

hyphal tip possibly by promoting the formation of the sterol–rich domains. MesA 

homologues are present in the genomes of other filamentous fungi and the fission yeast S. 

pombe, but the only possible homologue in S. cerevisiae shows very limited homology. 

However, both the clear homologue in S. pombe and the weak S. cerevisiae homologue 

have been shown to physically interact with components of the spindle pole body. One 
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possible rationalisation of this observation and the role of MesAp in hyphal polarity, is that 

MesAp is a microtubule-interacting protein. 

 

In N. crassa, a large scale screen has been carried out for mutants showing abnormal 

hyphal growth (Seiler and Plamann, 2003). A total of 900 mutants were recovered that 

were assigned by genetic analysis to 100 complementation groups. The availability of an 

ordered cosmid library of the N. crassa genome then allowed the rapid identification of the 

genes affected in 45 of the mutants. Reassuringly the screen recovered genes already 

known to be centrally involved in polarised growth such as cdc-24, cdc-42, cot-1 and 

genes encoding proteins of the secretory pathway. However, the screen also identified 

genes for which there are no obvious homologues in the ascomycete yeasts. This provides 

a fruitful resource to characterise mechanisms and pathways for which there are no 

obvious counterparts in the yeasts. 

 

A central aspect of the S. cerevisiae paradigm is that sites of polarised growth are 

determined by physical markers – cortical bud site proteins in vegetative cells, pheromone 

receptors in haploid cells responding to mating pheromone and sites of cytokinesis. In A 

gossypii and C. albicans, Rsr1p has been shown to be necessary to stabilise the axis of 

hyphal growth. Proteins of the bud site selection pathways of S. cerevisiae are poorly 

conserved in filamentous fungi (Harris and Momany, 2004). What is responsible for the 

spatial localisation of polarised growth to the hyphal tip? There are two possibilities. First, 

in S. cerevisiae Cdc42p is localised evenly around the cell cortex in the absence of polarity 

landmarks. However, localised stochastic variations in Cdc42p activity become amplified 

because Cdc42p itself is delivered to the cortex along the actin cables that are promoted 

by activated Cdc42p (Irazoqui et al., 2003; Wedlich-Soldner et al., 2003; Wedlich-Soldner 

et al., 2004). This results in a self-sustaining feedback loop that allows buds in random 
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pattern when the bud site selection pathway is disrupted. A self-sustaining feedback loop 

of this sort could be responsible for the polarised growth at the hyphal tip. A second 

possiblity is provided by the way in which sites of polarised growth are marked in S. 

pombe. The kelch repeat protein Tea1p is transported to cell ends along microtubules by 

the kinesin motor protein Tea2p (Mata and Nurse, 1997; Behrens and Nurse, 2002). Once 

delivered to the cell ends Tea1p initiates polarised growth by stimulating Cdc42p. The A. 

nidulans homologue of Tea2p is encoded by kipA. A strain in which kipA has been deleted 

grows in a conspicuously wavy shape, microtubules failed to converge at the tip and the 

Spitzenkörper moves from side to side within the hyphal tip (Konzack et al., 2005). Thus, 

A. nidulans hyphae may also rely on cortical markers to stabilise the axis of growth. In 

addition, microtubules may fix the Spitzenkörper in its position in the centre of the hyphal 

tip. 
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Figure Legends 
 
Fig. 1. Cdc42p orchestrates morphogenesis in S. cerevisiae. Cdc42p is activated by 
its GEF Cdc24p and returned to its GDP-bound state by its GAPs Rga1/2p and Bem3p. 
Cdc24p is activated by upstream bud site selection pathways and by the γβ G-protein 
dimer released from the tripartite G-protein complex when the cognate mating pheromone 
interacts with the mating pheromone receptors. Acting through its immediate effectors, 
activated Cdc42p stimulates polarised growth, activation of the pheromone response 
pathway, pseudohyphal growth and cytokinesis. 
 
Fig. 2. Polarised secretion in Saccharomyces cerevisiae. Secretory vesicles bleb off 
from the late Golgi compartments and travel along actin cables, nucleated by the 
polarisome, to fuse with the plasma membrane at sites of polarised growth. The process is 
controlled by the Rab GTPase Sec4p which is activated by its GEF Sec2p. Numerals 
enclosed in circles refers to exocyst components encoded by Sec genes (e.g. Sec15p, 
Sec6p etc). Encircled 70 and 84 refers to Exo70 and Exo84. For details see text. 
 
 
Fig. 3. The Spitzenkörper. A: The Neurospora crassa Spitzenkörper revealed by brief 
FM4-64 staining which reveals secretory vesicles accumulating in a sub-apical spot 
(Fischer-Parton et al., 2000). B: Spa 2 accumulating in the Spitzenkörper of Ashbya 
gossypii hyphae (Knechtle et al., 2003). C – E Mlc1-YFP localising to the Spitzenkörper of 
Candida albicans (Crampin et al., 2005). C: Mlc1-YFP in a subapical spot and the 
cytokinetic ring. D: Mlc1-YFP localising to the tip where the apical membrane is stained 
with filipin. E: Computer modelling using the information in the Z-stack from panel D, 
shows that Mlc1 is a 3-dimensional sphere located within the hypha rather than a two-
dimensional surface crescent. F: The vesicle supply centre model of Bartnicki-Garcia et al. 
(1989): Secretory vesicles are delivered along microtubules (not to scale!). They 
accumulate in the Spitzenkörper before radiating in all directions. A greater concentration 
per unit area arrives at the tip compared to subapical areas, which drives tip growth. The 
shape is determined by the distance of the Spitzenkörper centre from the tip as the 
distance increases so also does hyphal width.   
 
Fig. 4. Signal transduction pathways regulated hyphal development in Candida 
albicans. External environmental cues stimulate multiple pathways that target 
downstream transcription factors. Note the central role played by AC (adenylate cyclase) 
and the transcription factor Efg1p. Cst1, Hst1, Cek1 and Cph1 are the homologues of S. 
cerevisiae proteins Ste20, Ste7, Fus3/Kss1 and Ste12 respectively that form the MAPK 
module mediates the pheromone response and promotes pseudohyphal growth. 
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