
promoting access to White Rose research papers

White Rose Research Online

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Lecture Notes in
Business Information Processing.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/4774/

Published paper
Kourtesis, Dimitrios and Paraskakis, Iraklis (2008) Web Service Discovery in the
FUSION Semantic Registry. In: Business Information Systems : 11th
International Conference, BIS 2008, Innsbruck, Austria, May 5-7, 2008.
Proceedings. Lecture Notes in Business Information Processing, 7 (9). Springer
Berlin Heidelberg , Germany, pp. 285-296.
http://dx.doi.org/10.1007/978-3-540-79396-0_25

eprints@whiterose.ac.uk

http://dx.doi.org/10.1007/978-3-540-79396-0_25

Web Service Discovery in the
FUSION Semantic Registry

Dimitrios Kourtesis and Iraklis Paraskakis

South East European Research Centre (SEERC),
Mitropoleos 17, 54624 Thessaloniki, Greece

{dkourtesis,iparaskakis}@seerc.org

Abstract. The UDDI specification was developed as an attempt to address the
key challenge of effective Web service discovery and has become a widely
adopted standard. However, the text-based indexing and search mechanism that
UDDI registries offer does not suffice for expressing unambiguous and
semantically rich representations of service capabilities, and cannot support the
logic-based inference capacity required for facilitating automated service
matchmaking. This paper provides an overview of the approach put forward in
the FUSION project for overcoming this important limitation. Our solution
combines SAWSDL-based service descriptions with service capability profiling
based on OWL-DL, and automated matchmaking through DL reasoning in a
semantically extended UDDI registry.

Keywords: Semantic Web Services, Web Service Discovery, Universal De-
scription Discovery and Integration (UDDI), Semantic Annotations for WSDL
(SAWSDL), Enterprise Interoperability.

1 Introduction

The Service Oriented Architecture (SOA) paradigm and its manifestation in the form
of the Web services technology stack promise to become prime enablers for business
agility in the modern enterprise by alleviating many of the barriers that stand on the
path to achieving Enterprise Application Integration (EAI). Integrating a set of
service-oriented business applications necessitates the assembly of services exposed
by the individual business applications into new service compositions. This in turn
requires discovering services that are suitable for performing each of the key tasks
that a business process workflow comprises. Notably, in a fully SOA-enabled
business application ecosystem with hundreds of deployed Web services, the task of
searching and identifying the ones that are most appropriate for a certain type of use
can become rather demanding.

This was the motivation behind the development of the Universal Description,
Discovery and Integration (UDDI) specification [1] as a standardised way to
catalogue and discover reusable services. UDDI registries however lack the means for
supporting automated service discovery [2], [3], [4]. The reason is that indexing and
retrieval in UDDI is not based on unambiguous, semantically rich representations of

D. Kourtesis and I. Paraskakis

Web service capabilities but on unstructured textual descriptions and categorisations
that are retrievable through keyword-based search. Keyword-based annotation and
search techniques cannot facilitate automated discovery since they do not provide any
way of differentiating among (i) services that have identical naming but perform
totally unrelated operations and (ii) services that have totally different names but offer
equivalent functionality. To illustrate this problem through real-world examples,
consider the case of two Web services that share “Address Validation” as their name
but offer different functionality: the first one1 validates postal addresses in the United
States, while the second one2 checks the validity of email addresses. Furthermore,
consider the case of a service categorised by the name “UK Location”3, able to check
the validity of United Kingdom postal addresses, and another service categorised by
the name “Global Address Verification”4 which can still be of use for the exact same
purpose, despite its apparently counter-intuitive name.

To overcome the problem of ambiguity that hinders automated service discovery
we need to describe service characteristics in a formal, machine-understandable
manner that is amenable to processing within semantically-enhanced UDDI registries.
The aim of this paper is to present the approach adopted in project FUSION and the
open source FUSION Semantic Registry5 towards this direction, improving and
elaborating on the preliminary work presented in [5]. FUSION is an EU-funded
research project6 aiming to promote efficient business process integration within and
across enterprises, by offering a semantics-based solution to achieving
interoperability among service-oriented business applications. The project aims at
delivering a complete reference framework and a methodology for semantics-based
Enterprise Application Integration (EAI), a reference implementation of the proposed
framework, and a validation of the proposed approach through three pilot studies on
intra- and inter-organisational integration. The introduction of semantics to Web
service discovery is an essential requirement for realising the approach that FUSION
puts forward, and encompasses: (i) describing service advertisements and service
requests in a way that is formal, unambiguous and semantically precise, and (ii)
realising a UDDI-based service registry that offers semantically-enhanced publication
and discovery functions.

The rest of this paper is organised as follows. Section 2 introduces the
requirements that FUSION puts forward for semantically describing service
advertisements and service requests. Section 3 presents an overview of the FUSION
Semantic Registry architecture, and provides a walkthrough on the core activities
performed during service publication and service discovery. Section 4 analyses the
matchmaking capabilities that the FUSION Semantic Registry supports, and its
applicability for evaluating the relevance among a service advertisement and a service
request at three distinct levels. Section 5 gives an overview and comparison of related
work in this area, and section 6 concludes the paper with a small synopsis of the
topics discussed.

1 http://ws2.serviceobjects.net/av/AddressValidate.asmx?WSDL
2 http://service.ecocoma.com/email/validate.asmx?WSDL
3 http://www.webservicex.net/uklocation.asmx?WSDL
4 http://ws.strikeiron.com/GlobalAddressVerification4?WSDL
5 http://www.seerc.org/fusion/semanticregistry/
6 http://www.fusion-strep.eu/

 Web Service Discovery in the FUSION Semantic Registry

2 Describing Service Characteristics in FUSION

By using a semantic representation formalism to express the characteristics of Web
services offered or needed, providers and requestors create definitions of service
capabilities that are automatically processable through reasoning and logic-based
inference. In turn, this can facilitate high-precision retrieval for services residing in a
semantically-enhanced service registry, and offer a significant improvement over the
capabilities of conventional UDDI registries. Evidently, the extent to which this can
be achieved depends on the semantic representation formalism that is adopted for this
purpose. The recent years have seen numerous Semantic Web Service frameworks
being proposed and promoted for standardisation through W3C member submissions.
The most prominent ones are OWL-S [6], WSMO [7], and the WSDL-S [8]
specification that evolved into the W3C Recommendation of SAWSDL [9].

Although the FUSION reference framework does not prescribe the use of a specific
Semantic Web Service framework, the reference implementation of the FUSION
System that the Semantic Registry is part of builds on SAWSDL. In contrast to
developing Web service descriptions at a high conceptual level and then linking these
specifications to concrete Web service interfaces that are described in WSDL (as
proposed in OWL-S and WSMO), the approach that SAWSDL puts forward is
bottom-up: the WSDL documents themselves are to be enriched with annotations that
capture machine processable semantics by pointing to concepts defined in externally
maintained semantic models. The advantages of this approach are many-fold, but the
most important one is that SAWSDL becomes agnostic to the knowledge
representation formalism that one adopts. This allows service providers to annotate
their services with concepts described in any modelling language, provided that these
concepts are uniquely identifiable through URIs so that they can be referenced from
within annotations. This promotes reusability for existing domain models and even
allows SAWSDL to be used in conjunction with OWL-S or WSMO to combine the
best of both worlds.

The semantic model that serves as the basis for creating, storing, and reasoning
upon representations of service capabilities in the FUSION project is the FUSION
Ontology [10]. Its multi-faceted structure reflects different types of concepts
necessary for modelling a service: the data structures a service exchanges through
messages (data semantics), the functionality categorisation of a service with regard to
a taxonomy (classification semantics), and the behaviour it may expose within a
complex and stateful process execution (behavioural semantics). The FUSION
Ontology is encoded in OWL-DL, a Description Logics fragment of the W3C
standard Web Ontology Language (OWL) that strikes a satisfactory balance between
expressiveness and computational completeness [11] and facilitates decidable
reasoning with the help of DL reasoning engines.

To represent the characteristics of a specific service advertisement or request in
FUSION, one needs to create a Functional Profile, and define its key attributes in
terms of references to the FUSION Ontology. A Functional Profile is expressed as a
named OWL class that is attributed a set of three different OWL object properties:

i. hasCategory: associates a FunctionalProfile with a TaxonomyEntity
concept from the service classification taxonomy that is part of the FUSION

D. Kourtesis and I. Paraskakis

Ontology, in order to represent the service’s functionality categorisation. The
cardinality of this property is exactly one.

ii. hasInput: associates a FunctionalProfile with an InputDataSet concept, in
order to represent the set of data parameters that comprise the request message
a service expects to receive and consume. The cardinality of this property is
zero in the case of an out-only Message Exchange Pattern (MEP), or one, in
the case of an in-out MEP.

iii. hasOutput: associates a FunctionalProfile with an OutputDataSet concept,
in order to represent the set of data parameters that comprise the response
message a service will produce if invoked. The cardinality of this property is
zero in the case of an in-only MEP, or one, in the case of an in-out MEP.

Finally, each InputDataSet and OutputDataSet concept is associated with one or
more DataFacetEntity concepts through a hasDataParameter object property, in
order to represent the data parameters that comprise the message.

Depending on the perspective from which the Functional Profile is viewed, that of
the provider or the requestor, we can differentiate among Advertisement Functional
Profiles (AFPs) and Request Functional Profiles (RFPs). The first are created
automatically by the FUSION Semantic registry at the time of service publication,
while the latter are created by the service requestor at the time of discovery (or even
at an earlier stage to be used as service request templates).

To allow for the construction of Advertisement Functional Profiles (AFPs), service
providers need to augment the WSDL interfaces of their provided services with
semantic annotations. The resulting SAWSDL interfaces must capture two elementary
types of semantics: (i) the semantics of the data structures that a service exchanges
through messages, and (ii) the semantics of a service’s categorisation with respect to
the functionality classification taxonomy. The semantics of a service’s input and
output data are captured by adding modelReference annotations to the appropriate
<xs:element> entities under <wsdl:types>, while functionality categorisation
semantics are captured with modelReference annotations on <wsdl:portType>
entities.

3 An Overview of the FUSION Semantic Registry Architecture

There are many ways to realise a UDDI-based service registry that performs
semantically-enhanced service matchmaking. A number of relevant attempts, each
addressing a different set of requirements, are reviewed in section 5. The FUSION
Semantic Registry architecture that is presented in this paper augments the purely
syntactic search facilities that a UDDI registry can offer without requiring any
modifications to the implementation of the UDDI server or the UDDI specification
API, and this can be an important advantage compared to other approaches. We
propose an architecture that positions a set of semantically-enabled modules externally
to the UDDI server. These modules provide a specialised Web service API to the
client, and are responsible for performing the necessary SAWSDL parsing, OWL
ontology processing, and DL reasoning operations. Approaches based on this principle
(i.e. relying on external components for specialised functionality while retaining the
UDDI server implementation intact) have been also proposed in [4] and [12].

 Web Service Discovery in the FUSION Semantic Registry

Fig. 1. FUSION Semantic Registry high-level architecture

As illustrated in Figure 1, the architecture that we propose comprises three core
modules: (i) the UDDI Server Module, (ii) the Publication Manager Module, and (iii)
the Discovery Manager Module. The UDDI server module is a typical server
implementation of the UDDI v2 specification by OASIS [1] and a description of its
functionality is beyond the scope of this paper. In the remaining of this section we
focus on describing the functionality of the other core modules, and especially on the
activities taking place during service publication and discovery.

3.1 Functionality of the Publication Manager Module

The Publication Manager Module provides an interface to the user for adding,
removing, or updating descriptions of Web services (service advertisements), as well
as adding, removing, or updating descriptions of service providers. A service provider
can be a company, a business unit within an organisation, or even a specific business
information system that offers some service on the network. The procedure of
publishing a service advertisement comprises four phases:

i. Parsing an SAWSDL document to extract syntactic and semantic information
ii. Using the extracted semantic information to construct an Advertisement

Functional Profile (AFP)
iii. Classifying the AFP in the registry’s OWL Knowledge Base (KB)
iv. Mapping the extracted syntactic information and the derived semantic

information to appropriate UDDI structures

The publication query that is used for initiating the publication process comprises
four elements (i) the service provider ID (each service is associated with a specific
service provider), (ii) a URL pointing to the SAWSDL document that contains the
service description to be published (iii) an optional name for the service, and (iv) an
optional free text description for the service.

D. Kourtesis and I. Paraskakis

The Publication Manager retrieves the SAWSDL document from the specified
URL and extracts discovery-related information. Notably, the most valuable type of
information to assist in discovery is not the syntactic characteristics of a service (e.g.
its port and binding protocol information), but its defined categorisation and
input/output messages, as already discussed in section 2. As depicted in Figure 1, this
information is extracted with the help of an SAWSDL API library7 that provides
parsing and serialisation facilities. The syntactic and semantic characteristics that are
extracted serve as input to a hybrid OWL-DL/UDDI indexing procedure.

Indexing begins by constructing an AFP and adding it to the registry’s internal
OWL Knowledge Base (KB) through the OWL API library8 depicted in Figure 1. The
Pellet DL reasoner9 is subsequently used for performing an “eager” semantic
classification of the new AFP against all known Request Functional Profiles (RFPs).
The purpose of this classification procedure is to identify RFPs representing service
requests that the newly added service advertisement can readily satisfy. We refer to
this classification procedure as “eager” since it takes place at publication-time. In
contrast, a “lazy” classification procedure would not have taken place before the
actual need for matchmaking arises during discovery-time. This approach may be
placing an overhead on the time required to complete the publication of a service
advertisement, but it substantially reduces the time required to perform matchmaking
at discovery-time, so it is considered particularly beneficial.

Three conditions must hold in order to claim that the new service advertisement
can satisfy a service request: (i) the InputDataSet concept associated with the RFP
must be subsumed by the InputDataSet of the AFP, (ii) the OutputDataSet of the
RFP must subsume the OutputDataSet of the AFP, and (iii) the TaxonomyEntity
concept associated with the RFP must subsume the TaxonomyEntity of the AFP. The
interoperability-oriented rationale that these classification conditions reflect, and the
way in which they collectively form a set of criteria for satisfactory matchmaking, is
explained in section 4.

Finally, the Publication Manager maps the syntactic information extracted from the
SAWSDL document and the semantic classification information derived by
classifying the AFP onto appropriate UDDI data structures (keyedReferences to
special-purpose tModels). Communication with the UDDI server module takes place
through the UDDI Client API library, as illustrated in Figure 1. The mapping follows
a well-defined methodology that is described in [13] and is beyond the scope of this
paper to analyse. When the publication algorithm completes, a new semantic service
advertisement has been created, registered with the UDDI registry, and is readily
available for discovery.

3.2 Functionality of the Discovery Manager Module

The Discovery Manager Module provides interfaces for semantic matchmaking of a
given service request against the published service advertisements, and for retrieving
analytical information about records of advertisements and their providers.

7 http://knoesis.wright.edu/opensource/sawsdl4j/
8 http://owlapi.sourceforge.net/
9 http://pellet.owldl.com/

 Web Service Discovery in the FUSION Semantic Registry

The discovery query that initiates the semantic matchmaking process comprises
two elements:

i. a URI pointing to some Request Functional Profile (RFP) that represents the
characteristics of the Web service sought

ii. an optional system ID indicating the preferred service provider, i.e. the
business information system that the service should originate from

The first step in the discovery procedure is to resolve the location of the RFP that is
referenced by the provided URI. The RFP may be defined either within the FUSION
Ontology that is shared by service providers and service requestors alike (i.e. be a
shared RFP), or in some third-party ontology that imports and extends the FUSION
Ontology (i.e. be a custom-built RFP). Depending on which of the two cases holds,
the algorithm would follow a different discovery path:

i. If the RFP is defined within the FUSION Ontology, a syntactic, UDDI-
compliant discovery query is generated and submitted directly to the UDDI
server through the UDDI Client API library depicted in Figure 1.

ii. If the RFP is defined in a third-party ontology that is not shared with the
service provider the Discovery Manager will load the ontology in which the
RFP is defined to the DL Reasoner and compute the subsumption hierarchy.

Due to the shared ontology assumption that is valid in FUSION, the first case is the
most typical type of discovery querying envisaged for the FUSION Semantic
Registry, and is also the simplest and fastest type of matchmaking possible. Since the
time-consuming process of concept classification has been already performed at
publication-time, the computational complexity of discovery-time matchmaking for
RFPs defined in a shared ontology is essentially as low as that of a conventional
UDDI server.

The result of the discovery process is a list of advertisements complying with the
matchmaking criteria captured by the RFP. If the optional system ID has been
specified as part of the discovery query to indicate the preferred service provider, the
registry uses it to filter-out services that are offered by systems other than the one
specified. The ID is defined as an optional parameter in the discovery query, as it
sometimes preferable to search for services that are offered anywhere within a service
ecosystem, regardless of which business application exposes them.

4 Matchmaking Capabilities of the FUSION Semantic Registry

Due to the employed approach of OWL-DL-based service capability profiling and
matchmaking, the FUSION Semantic Registry supports the evaluation of relevance
among a service advertisement and a request at three distinct levels: (i) categorisation-
level matching, (ii) message-level matching, and (iii) schema-level matching.

4.1 Categorisation-Level Matching

The end goal in this type of matchmaking is to determine if the categorisation value
attributed to a service request is equivalent, more specific, or more generic than the

D. Kourtesis and I. Paraskakis

one specified in some service advertisement. As an example consider the case of a
Request Functional Profile (RFP) classified under Supply Chain Management
services, and some Advertisement Functional Profile (AFP) classified under Freight
Costing services, a subcategory of Transportation services that is classified under
Supply Chain Management services. As already discussed in the previous section, the
TaxonomyEntity concept associated with an RFP must subsume the TaxonomyEntity
of the AFP in order to have a match. In this example this obviously holds since the
category of Supply Chain Management services with which the RFP is associated is
more generic (subsumes) the Freight Costing services category of the AFP.

4.2 Message-Level Matching

The end goal in this type of matchmaking is to determine the degree to which a
service can produce the set of output data that the requestor wants to obtain, and the
degree to which the requestor can provide the set of input data that a service needs to
receive when invoked. Positive matchmaking in this respect is essential for
guaranteeing flawless communication and interoperability among a chain of
composed services. By referring to sets of input and output data, instead of request
and response messages, we intend to abstract from the differences among complex
and atomic Web services. In the case of atomic, non-transactional Web service
operations, the set of input data trivially corresponds to an operation’s request
message, while the set of output data corresponds to its response message. In the case
of complex, transactional services involving the invocation of numerous Web service
operations to fulfil one goal, the set of input data corresponds to the superset of all
sets of input data exchanged as part of request messages for the operations involved,
while the equivalent holds for output data.

As a result, the degree of match among the inputs or outputs of an AFP and an RFP
would be determined by the degree to which their respective InputDataSet or
OutputDataSet contain common elements. To provide a formal definition of degree
of match we adopt the set-theoretic model from the work of [14] and [15]:

i. Exact Match: The advertisement consumes (for input-matching) or produces
(for output-matching) the data that is exactly specified in the request

ii. Plugin Match: The advertisement consumes or produces all data specified in
the request, but also consumes or produces some irrelevant data

iii. Subsumption Match: The advertisement consumes or produces only some of
the data specified in the request, and no irrelevant data

iv. Intersection Match: The advertisement consumes or produces only some of the
data specified in the request, but also consumes or produces irrelevant data

v. Non Match: The advertisement consumes or produces none of the data
specified in the request

When checking for input message compatibility the cases of exact and sub-
sumption match are the only ones that can be considered safe for interoperability and
thus satisfactory for positive matchmaking. In the rest of the cases the advertised
service is not guaranteed to receive all the input data it requires, and thus run-time
errors could arise. Similarly, if we were checking for output message compatibility,
the positive matchmaking cases are exact or plugin match. As a negative match

 Web Service Discovery in the FUSION Semantic Registry

example, consider the case of an RFP representing a request for a shipment cost
calculation service, having an InputDataSet that contains Product and Customer and
an OutputDataSet that contains ShipmentDetails. Consider also an AFP with an
InputDataSet that contains Address, Product, and Customer, and an OutputDataSet
containing ShipmentDetails and DigitalSignature. Despite the fact that the
OutputDataSet of the RFP subsumes the OutputDataSet of the AFP (i.e. the
advertised service can offer more than what is being asked for), the InputDataSet
concept of the RFP is not subsumed by the InputDataSet of the AFP (i.e. the
advertised service asks for more than what can be provided).

4.3 Schema-Level Matching

The end goal in this type of matchmaking is to determine the degree to which the
schema of some data parameter produced or consumed by an advertised service
contains all the attributes specified in the corresponding schema of the request. When
working under the assumption of a shared base ontology that can be specialised and
customised for niche application domains through subclassing and applying
quantification restrictions on properties, as in the case of the FUSION Ontology, the
case may arise where different partners have chosen to extend a base ontology
concept in different ways, thus creating potential interoperability problems. Figure 2
illustrates an example case in which the base concept of Address (depicted in the
middle column) has been subclassed and specialised in two different ways, for
modelling two different business applications.

Fig. 2. Schema-level mismatch due to concept subclassing (excerpted from [5])

Although System1_Address and System2_Address are subclasses of the same concept,
if they are used in the context of input and output data exchanged by the two systems,
interoperability cannot be always guaranteed. The schema of System2_Address is

D. Kourtesis and I. Paraskakis

more specific than that of System1_Address, since the first specifies more attributes than
the schema of the latter. In fact, if System1 was to consume a service exposed by System2,
and the service requested to be provided with address information as input, System2 could
consume all of the data included within System1_Address, but still require some
additional data (hasDistrict, hasFloor) that would not be provided, thus leading to
potential problems during process execution. As in message-level matching, the cases of
exact or subsumption match could be considered satisfactory for positive matchmaking
when checking for input compatibility, while the rest of the cases could not. When
checking for output compatibility the cases considered satisfactory for positive
matchmaking would be exact or plugin match.

5 Related Work

Recent years have seen an increasing interest on the use of semantics to represent
service capabilities and on the introduction of semantic matchmaking functionality to
UDDI registries, and numerous works could be considered relevant to ours. In this
section we however discuss only related works that build on the established Semantic
Web Service frameworks of OWL-S [6], WSMO [7], and WSDL-S [8].

In [2] and [16] the authors propose that discovery in UDDI registries should be
realised through semantic matchmaking of service capability descriptions that are
expressed as OWL-S Profiles and mapped onto UDDI structures. They propose the
incorporation of a matchmaking engine inside the UDDI registry, thereby
necessitating the modification of the UDDI server’s interface and implementation. In
a subsequent work [17] a revised mapping among OWL-S Profiles and the UDDI data
model is proposed, and an improved version of the matchmaking algorithm from [16]
is presented. Semantic classification and indexing are performed at publication-time
rather than discovery-time and as pointed out by the authors in the paper the proposed
solution is incomplete since discovery-time classification is not allowed.

In [18] the authors build on the approach proposed in [16] and present a method
that improves the effectiveness of service discovery in UDDI based on a two-stage
service discovery process, combining syntactic and semantic search. The
expressiveness of the semantics that the proposed matchmaking algorithm employs
are in the range of RDFS and OWL-Lite, and as a result the proposed solution cannot
be used for matchmaking over highly expressive schema descriptions (e.g. with
arbitrary cardinality restrictions on properties). Similarly to the approach by Paolucci
et al, the solution proposed in [18] also necessitates some changes to the API and
implementation of the UDDI server.

In [3], and later in [19], the authors present an approach for publishing
semantically annotated WSDL descriptions based on a methodology for WSDL-S to
UDDI mapping. Annotations are stored in UDDI and discovery is performed based on
a semantic request template that captures abstract service characteristics. To perform
matchmaking the described platform implements a semantic reasoner based on the
Jena API. The reasoner supports semantic entailments for OWL-Lite but does not
fully support OWL-DL, and therefore the proposed solution has some limitations as
the one in [18].

 Web Service Discovery in the FUSION Semantic Registry

A number of discovery engine implementations have been also developed in the
context of the WSMX Working Group [20] for supporting the three different
discovery approaches that are put forward in WSMO [15]: keyword-based discovery,
lightweight semantic discovery (based on WSML-Rule and WSML-DL), and
heavyweight semantic discovery (based on WSML-Flight). The specific works
however do not offer themselves to direct comparison with our work or the other
approaches discussed in this section, since they do not attempt to provide semantic
enhancements to UDDI but rather stand as independent WSMX environment
components and are not integrated with UDDI.

6 Conclusions

To promote interoperability among service-oriented business applications and
efficient business process integration, the FUSION project promotes the introduction
of semantics to Web service discovery in UDDI registries. In this paper we provided
an overview of how UDDI, OWL-DL semantics, SAWSDL annotations and DL
reasoning are employed within FUSION to enhance service discovery, we presented
the FUSION Semantic Registry architecture and provided a walkthrough of the main
activities performed during service publication and service discovery. Moreover, we
analysed the matchmaking capabilities of the FUSION Semantic Registry and
discussed its applicability in practical terms for evaluating the degree of match among
service advertisements and service requests at three distinct levels: categorisation-
level matching, message-level matching, and schema-level matching. To the best of
our knowledge this the first attempt to combine SAWSDL-based service descriptions
with OWL-DL based service capability profiling and automated matchmaking
through DL reasoning in a semantically extended UDDI registry.

Acknowledgments. Research project FUSION (Business process fusion based on
semantically-enabled service-oriented business applications) is funded by the
European Commission’s 6th Framework Programme for Research and Technology
Development under contract FP6-IST-2004-170835 (http://www.fusion-strep.eu/).

References

1. Bellwood, T., Bryan, D., Draluk, V., Ehnebuske, D., Glover, T., Hately, A., Husband,
Y.L., Karp, A., Kibakura, K., Kurt, C., Lancelle, J., Lee, S., MacRoibeaird, S., Manes,
A.T., McKee, B., Munter, J., Nordan, T., Reeves, C., Rogers, D., Tomlinson, C., Tosun,
C., von Riegen, C., Yendluri, P.: UDDI Version 2.04 API Specification, UDDI Committee
Specification (July 2002)

2. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic Matching of Web Service
Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, Springer,
Heidelberg (2002)

3. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding Semantics to Web Services
Standards. In: Proceedings of the 2003 International Conference on Web Services (ICWS
2003), Las Vegas, USA (June 2003)

D. Kourtesis and I. Paraskakis

4. Colgrave, J., Akkiraju, R., Goodwin, R.: External Matching in UDDI. In: Proceedings of
the 2004 IEEE International Conference on Web Services (ICWS 2004), USA (July 2004)

5. Kourtesis, D., Paraskakis, I., Friesen, A., Gouvas, P., Bouras, A.: Web Service Discovery
in a Semantically Extended UDDI Registry: the Case of FUSION. In: Camarinha-Matos,
L., Afsarmanesh, H., Novais, P., Analide, C. (eds.) IFIP International Federation for
Information Processing, Establishing the Foundation of Collaborative Networks, vol. 243,
pp. 547–554. Springer, Boston (2007)

6. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL Web
Ontology Language for Services (OWL-S). W3C Member Submission (November 22,
2004)

7. Bruijn, J.d., Bussler C., Domingue J., Fensel D., Hepp M., Keller U., Kifer M., Konig-Ries
B., Kopecky J., Lara R., Lausen H., Oren E., Polleres A., Roman D., Scicluna J., Stollberg,
M.: Web Service Modeling Ontology (WSMO). W3C Member Submission (June 3, 2005)

8. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.T., Sheth, A., Verma, K.:
Web Service Semantics (WSDL-S). W3C Member Submission (November 2005)

9. Farrell, J., Lausen, H. (eds.): Semantic Annotations for WSDL and XML Schema
(SAWSDL). W3C Recommendation (August 2007)

10. Bouras, A., Gouvas, P., Mentzas, G.: ENIO: An Enterprise Application Integration
Ontology. In: 1st International Workshop on Semantic Web Architectures For Enterprises,
18th International Conference on Database and Expert Systems Applications, Regensburg,
Germany, September 3-7 (2007)

11. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview, W3C
Recommendation (February 2004)

12. Pokraev, S., Koolwaaij, J., Wibbels, W.: Extending UDDI with Context Aware Features
based on Semantic Service Descriptions. In: Proceedings of the 2003 International
Conference on Web Services (ICWS 2003), Las Vegas, USA (June 2003)

13. FUSION project Deliverable D3.1 – Specifications of the Integration Mechanism (April
2007), http://www.fusion-strep.eu/

14. Li, L., Horrocks, I.: A Software Framework for Matchmaking Based on Semantic Web
Technology. In: Proceedings of the 12th International World Wide Web Conference
(WWW 2003), Budapest, Hungary (May 2003)

15. Keller, U., Lara, R., Polleres, A., Toma, I., Kifer, M., Fensel, D.: WSMO D5.1 – WSMO
Web Service Discovery (v0.1). WSML Working Draft (November 2004)

16. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Importing the Semantic Web in
UDDI. In: Proceedings of Web Services, E-Business and Semantic Web Workshop,
Toronto, Canada, May 2002, pp. 225–236 (2002)

17. Srinivasan, N., Paolucci, M., Sycara, K.: Adding OWL-S to UDDI, Implementation and
Throughput. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387,
Springer, Heidelberg (2005)

18. Akkiraju, R., Goodwin, R., Doshi, P., Roeder, S.: A method for semantically enhancing
the service discovery capabilities of UDDI. In: Proceedings of the Workshop on
Information Integration on the Web (IIWeb 2003), Acapulco, Mexico (August 2003)

19. Li, K., Verma, K., Mulye, R., Rabbani, R., Miller, J., Sheth, A.: Designing Semantic Web
Processes: The WSDL-S Approach. In: Cardoso, J., Sheth, A. (eds.) Semantic Web
Services, Processes and Applications, pp. 163–198. Springer, Heidelberg (2006)

20. WSMX (Web Service Modelling eXecution environment), http://www.wsmx.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

