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I. Introduction 

 

n the present work  the Multipoint Approximation Method (MAM)  has been enhanced with 

new capabilities that allow to solve large scale design optimization problems more efficiently. 

The first feature is adaptive building of approximate models during the optimization search. 

And the second feature is a parallel implementation of MAM. 

 A traditional approach to adaptive building of metamodels is to check several types for their 

quality on a set of design points and select the best type. The technique presented in this paper is 

based on the assembly of multiple metamodels into one model using linear regression. The 

obtained coefficients of the model assembly are not weights of the individual models but 

regression coefficients determined by the least squares minimization method.  

 The enhancements were implemented within Multipoint Approximation Method (MAM) 

method related to mid-range approximation framework. The developed technique has been tested 

on several benchmark problems.  

II. Outline of Multipoint Approximation Method (MAM) 

 

  This technique (Toropov et al., 1993) replaces the original optimization problem by a 

succession of simpler mathematical programming problems. The functions in each iteration 

present mid-range approximations to the corresponding original functions. These functions are 

noise-free. The solution of an individual sub-problem becomes the starting point for the next 

step, the move limits are changed and the optimization is repeated iteratively until the optimum 

is reached. Each approximation function is defined as a function of design variables as well as a 

number of tuning parameters. The latter are determined by the weighted least squares surface 

fitting using the original function values (and their derivatives, when available) at several 

sampling points of the design variable space. Some of the sampling points are generated in the 

trust region, and the rest is taken from the extended trust region, i.e. the pool of points considered 

in the previous iterations (van Keulen et al., 1997). 

 A general optimization problem can be formulated as 

 ( ) ( ) ( ) ( )NiBxAMjFF iiij ,...,1,,...,11min,0 =≤≤=≤→ xx               (1) 
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where x refers to the vector of design variables. In order to reduce the number of calls for the 

response function evaluations and to lessen the influence of noise, the MAM replaces the 

optimization problem by a sequence of approximate optimization problems: 
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where k is the iteration number.  

The selection of the noise-free approximate response functions ( ) ( )MjF k

j ,...,0
~ =x  is such 

that their evaluation is inexpensive as compared to the evaluation of the response functions Fj, 

although they are not necessarily explicit functions of the design variables. The approximate 

response functions are intended to be adequate in a current search sub-domain. This is achieved 

by appropriate planning of numerical experiments and use of the trust region defined by the side 

constraints k

iA  and k

iB . 

III. Building of approximations 

 

In the present work an approach is investigated based on the assembly of different 

approximate models into one metamodel in the form 

)(bF
NF

l

ll xx ∑
=

=
1

)(
~ ϕ                  (3) 

The use of multiple metamodels has recently been studied for example by F.Viana et al. (2008) 

and  E.Acar et al. (2008) where coefficients bl  in (3) were treated as weights reflecting the 

accuracy of the individual surrogates on a set of validation points. Thus, more accurate 

components ϕl  obtain larger values of  the multipliers and vice versa provided that  

             ∑
=

=
NF

l

lb
1

1                                 (4) 

Individual surrogates such as Polynomial Response Surface (PRS), Kriging (KRG) and Radial 

Basis Functions (RBF), Gaussian Process (GP), and Support Vector Regression (SVR) were 

considered in the above studies. 
 

This work considers an alternative approach for building the expression (3).  The idea to use 

the regression analysis for combining different metamodels instead calculating the weights for 

each component was motivated by our early work (Toropov, 1989) where the regressors  were 

intended to describe the behavior of separate  structural (mechanical) sub-systems. In the present 

work, under “sub-systems” we imply individual metamodels obtained by any analytical or 

numerical method. 

 The procedure is based on the minimization of the weighted least squares problem 
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~
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that leads to solving the linear system of  NF equations with NF unknowns bl where NF is the 

number of  regressors in the model bank {ϕl}.  Here the coefficients bl  are regression coefficients 

that should not be considered as weight factors, e.g. could be positive or negative. The 

parameters wpj refer to the weights that reflect the inequality of data obtained in different 

sampling points P, see Toropov et al. (1993).  

 The functions ϕl in (3) are determined in the similar manner  

                   ( )[ ] min)(
1

2 →−∑
=

P

p

jpjpjpj Fw a,xx ϕ                   (6) 

where minimization is carried out with respect to the tuning parameters aj. This is done prior to 

the procedure (5) has been applied. 

 

The selection of the regressors ϕl is based on the number of sampling points currently located 

in the trust region.  In the mid-range approximation framework, inexpensive approximate models 

for objective and constraint functions are built using minimum required number of sampling 

points. The simplest case is a linear function of the tuning parameters a: 

∑
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N
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ii xaa
1

0)(xϕ                                            (7) 

This structure can be extended to an intrinsically linear function (Box, Draper 1987). Such 

functions are nonlinear, but they can be led to linear ones by simple transformations. The most 

useful function among them is the multiplicative function  
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Intrinsically linear functions have been successfully used for a variety of design optimization 

problems. The advantage of these approximation functions is that a relatively small number N+1 

(N is number of design variables) of tuning parameters ai is to be determined, and the 

corresponding least squares problem is solved easily. This is the most important feature of such 

approximations as it allows applying them to large scale optimization problems.   

Other intrinsically linear functions may be considered in the model bank, e.g. 
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As more points are added to the trust region the approximations may be switched to higher 

quality models, e.g. rational model  

                                                                                                                                                                                    (12) 

 

 

This type of approximations was studied before by, e.g. Burgee et al. (1994) and Salazar Celis 

et al. (2007). Due to rapidly growing number of coefficients for large N (that is the main 

objective of this work), the function structure has to be limited to low degree polynomials (e.g. 

linear) and small data sets 

The coefficients in (12) are determined using a least squares approach which reduces to a 

nonlinear optimization problem with a constraint on the sign of the denominator (positive or 

negative). The latter is necessary in order to prevent denominator from crossing the zero axis 

within a specified trust region. One may note that this formulation yields the objective function 

with many local minima.  Currently this problem is resolved using optimization restarts from a 

specified number of initial guesses randomly generated in the trust region. 

Tests results demonstrated that, although the above functions (7-12) may describe the global 

behavior rather poorly, such approximations proved to be efficient in the mid-range 

approximation framework of MAM. 

It should be mentioned that functions ϕl  may also represent global approximations such as 

PRS, KRG, RBF, etc. This issue will be addressed to our next work. 

 

IV. Design of Experiments 

 

In the present work, new sampling points are generated randomly. The added points are 

checked for calculability of the response function and, if the check fails, a new set of points is 

generated until a required number of sampling points (all passing the check) are obtained. To 

improve the quality of the random plan, a constraint on the minimal distance between the points 

is imposed using the following expression: 

r
Diag

dist e

≥ ,                         (13) 
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In (13) Diag is a characteristic size of the trust region defined by lower Ai and upper Bi limits, e 

is number of a new sampling point, p is number of a previously generated point, and P is the 

total number of sampling points in the search sub-region.   
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The parameter r is initially set to 0.9. However if the condition (13) is not satisfied after a 

prescribed number of random generations for a new point, the value of the threshold ratio is 

iteratively reduced 

 

coeffrr ∗= ,   19.0 <≤ coeff  

until the constraint is satisfied. 

Figure 1 demonstrates the quality of design of experiments using a proposed technique. As an 

example, two patterns (20 and 100 points) were generated for the two-bar truss optimization test 

problem; see Toropov et al. (1993). 

 

   
Figure 1: Designs of experiments generated randomly without (left) and with (right) a 

constraint imposed on the minimal distance between sampling points  
 

  Analytical tests have shown that the above technique may improve the quality of the 

approximate functions and therefore reduce number of MAM optimization steps. 

 

V. Parallel implementation 

 

 Currently parallel processing has been developed without a CPU load testing mechanism (for 

example, using uptime option). MAM sets up the parallel jobs using a specified number of free 

processors (or nodes) NP available on a Linux cluster. It is assumed that this number is known a 

priory and is not changed during the optimization run, as for instance in implementation of van 

Keulen and Toropov (1999) for the case of heterogeneous computing environment.   
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 In  order to accelerate the performance of the algorithm, the number of sampling points 

generated in each step (starting from the second step) may be set equal to k×NP number where k 

≥ 1.  In terms of the wall clock time, the latter will be equivalent to k function evaluations per 

step. 

 To ensure that the head node is not overloaded, a submission script was implemented based 

on performing the individual jobs in local directories of the slave nodes for each DOE point.  

Otherwise such situation is likely to occur when a massive parallel run is submitted involving 

simulations that need reading and writing frequently to a disk. 

 

VI. Trust region strategy 

 

After having solved the approximate optimization problem, a new trust region must be 

defined, i.e. its new size and its location have to be specified. This is done on the basis of a set of 

parameters that estimate the quality of the approximations ("bad", "reasonable" or "good") and 

the location of the sub-optimum point in the current trust region. Once the parameters have been 

determined, the trust region is moved and resized.   

If the sub-optimum point does not pass the check for calculability of the response functions, 

the trust region is reduced and the approximated problem is solved again. The only essential 

assumption here is that all functions of the optimization problem exist at the starting point. 

In a parallel mode, a set of NP points (that includes the obtained optimum point of the 

iteration) is submitted for evaluation after each iteration.   
 

 

VII. Optimization examples and discussions 

 

 

The proposed method has been tested on several structural optimization problems. The results 

obtained for three test cases are presented in order to give some insight into the approach. 

Vanderplaats scalable beam 

 

    
Figure 2: Scalable beam with rectangular cross sections 

 

The problem is formulated as follows: minimize the volume of a cantilever beam 

i

S

i

ii lhbV ∑
=

=
1

 

under stress, aspect ratio, and tip deflection constraints  
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;1/ ≤σσ i   ;1)20/( ≤ii bh ;1/ ≤yyS  

with the lower limits on cross section sizes 

 

;1≥ib ;5≥ih  

 

 Three cases were considered depending on the number of elements in the beam: (a) S=5 

resulting in N=10 design variables and 11 constraints; (b) S=50 resulting in N=100 and 101 

constraints; (c) S=500 resulting in N=1000 and 1001 constraints. 

 Following the proposed procedure (3) - (6) for building the approximate models, the next 

intrinsically linear functions were included in the model bank to solve the optimization problem: 

 

1: linear 

2: linear in squared variables xi
2
 

3: multiplicative 

4: linear in reciprocal variables 1/xi 

5: linear in reciprocal squared variables 1/xi
2
 

 

 It was found that a multiplicative function (function 3 in the list) was given preference in the 

model building for the stress and aspect ratio constraints. As an example, the coefficients bi 

(i=1…5) obtained for one of the stress and aspect ratio constraints are shown below       

                  

b1=-0.86E-05    b2=-0.12E-04     b3=1.00003    b4=0.32E-04   b5=-0.61E-04 

 

 As can be seen, all the parameters except b3 actually equal to zero, i.e. the algorithm 

automatically selects a right model from the bank for a function whose behaviour is exactly 

described by that model.  

 In contrast to the stress and aspect ratio constraints, the models for the objective function and 

displacement constraint have non-zero coefficients bi for all the available regressors in the bank. 

An example of coefficients determined for the displacement constraint during the optimization 

search is given below 

 

b1=-0.119     b2=0.15E-01   b3=0.453     b4=0.207    b5=0.444 

 

It is interesting to note that the normalization condition (4), i.e.∑
=

=
5

1

1
l

lb  in this case, is 

automatically satisfied without explicit imposing a corresponding constraint on the regression 

coefficients. 

MAM’s optimization result for the case (a) is V=61914 (cm
3
) with the corresponding vector 

of design variables {2.99; 2.77; 2.52; 2.20; 1.75; 59.84; 55.55; 50.47; 44.09; 34.99} (cm). All 

stress and aspect ratio constraints are active in the optimal point except the displacement 

constraint which is fulfilled with a big capacity. For comparison, Vanderplaats’s solution 

obtained using exterior penalty function method is V=66169 (cm
3
) with the vector {3.24; 2.90; 

2.52; 2.26; 2.24; 56.77; 53.81; 50.30; 44.87; 41.71} (cm). 
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 The optimization results obtained for all three cases (a-c) using MAM method are 

summarized in Fig. 3. An important observation is that number of MAM steps did not depend on 

the number of design variables while number of calls for analysis depended linearly on N. 

 
 

 
 

Figure 3: Convergence plots for the optimization cases with (a) N=10, (b) N=100, and (c) 

N=1000 design parameters. The number of analyses for each case is 36, 306, and 3006 

respectively  

 

 

A cantilever scalable thin-wall beam 

 

 

     
Figure 4: Scalable beam with hollow square cross-sections 

 

In this test, a cantilever beam is built up of S elements with hollow square cross sections. The 

objective function is the weight of the beam that has to be minimized.  There is a constraint 

imposed on the tip displacement. The design variables are heights (widths) of the square cross 

sections, Fig. 4.  

Based on the discretization of five elements the optimization problem was formulated by 

Svanberg (1987) in a closed form: 

 

minimize   

∑
=

⋅=
5

1

0 0624.0)(
i

ixxF  
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with a  feasible starting point  xi=5 (i=1…5).  

 

 In order to solve the problem, the same set of 5 regressors was used as for the previous 

example. Typical values of the regression coefficients obtained during the optimization search 

for the displacement constraint were 

 

b1 =1.828     b2 =-0.746   b3 =0.15E-02   b4 = 3.419    b5 =-3.502 

 

that consistently satisfied the normalization condition (4). 

For the objective function the algorithm always selected b1 =1 and bi =0 (i=2…5). The 

solution was obtained after 5 MAM iterations and 31 analyses.  The optimum point is {6.015; 

5.309; 4.493; 3.502; 2.152}. The corresponding value of the objective function is 1.339. 

It is worth to note that this problem seemed to be tight for solving by approximation 

techniques. For instance, Svanberg’s MMA method converged after four iterations after some 

preliminary tuning while Fleury’s CONLIN optimizer didn’t converge at all. Using an earlier 

version of Toropov’s MAM (1993) with a multiplicative approximation (as a default type) for 

the constraint function the solution was achieved after 17 steps (104 analyses) that we considered 

as unsatisfactory.   

In order to verify the performance of the algorithm on the large-scale level, the problem was 

extended to 100 and 500 beam elements resulting in N=100 and N=500 design variables. The 

corresponding solutions are compared in Fig.5.   
 

 
Figure 5: Convergence plots for the optimization cases with N=5, N=100, and N=500 design 

parameters. The number of analyses for each case is 31, 841, and 4951 respectively 

Note that including a regressor 3

1

0 /)( i

N

i

i xaa ∑
=

+=xϕ  in the model bank can considerably 

improve the performance of the algorithm as the solution of the problem in this case requires one 

MAM iteration only. 

 

Unconstraint minimization problem 
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 The robustness of the proposed technique was tested on the unconstraint minimization 

problem considered by Vanderplaats (1999) for two-spring system. The objective is to find an 

equilibrium position of the springs by minimizing the total potential energy of the system 

 

[ ] [ ] 2211
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2
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2

21

2
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The constants Ki are spring stiffnesses, Pi are loads, li are the original spring lengths, and xi are 

displacements where K1=8 N/cm, K2=1 N/cm, P1=P2=5 N, l1=l2=10 cm.  The two-variable 

function space is shown in Fig. 6. In order to consider a positive range of variations for the 

function and design variables, the following scaling has been applied: PE=PE+100; xi=xi+6. 

Then the exact minimum of the scaled problem is {14.63; 10.45} (cm) with PE=58.19 (N·cm). 

In should be mentioned here that the method presented in this work is primarily developed for 

solving constraint optimization problems where optimum always belongs to the boundary of the 

feasible search domain. This is because simple monotonic functions were used as the 

metamodels in the mid-range approximation concept.  As it will be shown below, based on the 

proposed approximation scheme (3-5) the method is now capable to solve this sort of problems 

too. 

 
Figure 6: Two-variable function space for the spring-force system 

 

Depending on number of sampling points generated in the trust region, three solutions were 

obtained. The results are summarised in Table 1. The optima were identified as internal points of 

the trust region. Note that the minimum number of sampling points required to build the 

approximation model (3) is five as five regressors were used in the model bank for this case.  

 

sampling points 

per iteration 

x1
opt

 x2
opt

 PE iterations calls for 

function 

6 15.0 11.06 58.44 8 49 

15 14.77 10.72 58.22 8 121 

20 14.65 10.47 58.20 8 161 
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Table 1: Optimization results depending on the number of sampling points in the trust 

region 

 

 Typical regression coefficients for the model built in the first and last 8
th

 iteration using 20 

sampling points are  

 

1
st
 iteration:  b1 =-5.86           b2 = 3.87         b3 =5.67      b4 =-3.40          b5 =0.73 

8
th

 iteration:  b1 = -49603.9    b2 = 24828.1   b3 = 63.74   b4 =-24755.0    b5 =49468.1 

 

The meaning of the negative coefficients can now be illustrated. Figures 7-8 show how the 

technique defines different (positive/negative) slopes for monotonic functions ϕl from the model 

bank in order to assemble the adequate approximation with non-monotonic behaviour in the trust 

regions generated in the first and the last (8
th

) iterations during the optimization search. 
 

 

 
Figure 7: Actual function and metamodel assembly built of five regressors in the first 

MAM iteration 
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Figure 8:    Actual function and metamodel assembly built of five regressors in the 8th 

MAM iteration 

 
 

 

In order to compare the accuracy of different components ϕl with the performance of the 

assembled model F
~

, RMSE of scaled response values was used 

 

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

testK

i i

ii

test F

FF

K

1
 RMSE

1

2~

 

 

where Ktest  is number of testing points randomly generated in the trust region;  iF
~

  and iF  are 

model and actual function values at test points. For this case 500 test points were generated.  

 Values of RMSE depending on the number of sampling points are given in Tables 2 and 3. 
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Sampling points 

per iteration 
F
~

 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 

6 0.18 0.21 0.22 0.19 0.27 0.19 

15 0.12 0.21 0.23 0.18 0.19 0.17 

20 0.11 0.22 0.23 0.18 0.19 0.17 

30 0.12 0.21 0.22 0.18 0.19 0.17 

40 0.11 0.21 0.23 0.18 0.19 0.17 

Table 2: RMSE for metamodel assembly and individual regressors in the first MAM iteration 

 

The main finding from these results is that the accuracy of the assembled model is always 

higher than the accuracy of its components. The trend is kept for the different number of 

sampling points and is observed in different iterations. 

 

Sampling points 

per iteration 
F
~

 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 

6 3.00e-3 6.28e-3 6.23e-3 6.23e-3 6.32e-3 6.38e-3 

15 3.41e-3 3.88e-3 3.86e-3 3.88e-3 3.92e-3 3.90e-3 

20 3.25e-3 4.57e-3 4.58e-3 4.54e-3 4.54e-3 4.56e-3 

30 3.24e-3 3.56e-3 3.58e-3 3.53e-3 3.53e-3 3.54e-3 

40 1.02e-3 1.97e-3 1.96e-3 1.97e-3 1.99e-3 1.99e-3 

 

Table 3: RMSE for metamodel assembly and individual regressors in the 8
th

 MAM iteration 
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