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I. Problem  Formulation 

n the present work the Multipoint Approximation Method
 
(MAM) by Toropov et al. (1993) has been applied to 

the shape optimization of an existing transonic compressor rotor (NASA rotor 37) as a benchmark case.  

Simulations were performed using the Rolls-Royce plc. PADRAM-HYDRA system (Shahpar and Lapworth 2003, 

Lapworth and Shahpar 2004) that includes the parameterization of the blade shape, meshing, CFD analysis, post-

processing, and objective/constraints evaluation.  The  parameterization approach adopted in this system is very 

flexible but can result in a large scale optimization problem.  

For this pilot study, a relatively coarse mesh has been used including around 470,000 nodes. The 

parameterization was done using 5 engineering blade parameters like axial movement of sections along the engine 

axis in mm (XCEN), circumferential movements of sections in degrees (DELT), solid body rotation of sections in 

degrees (SKEW), and  leading/trailing  edge recambering (LEM0/TEMO) in degrees. The design variables were 

specified using 6 control points at 0 % (hub), 20%, 40%, 60%, 80%, and 100% (tip) along the span. Thus the total 

number of independent design variables N was 30. B-spline interpolation was used through the control points to 

generate smooth design perturbations in the radial direction. 

The objective function is the adiabatic efficiency that has to be maximized 
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where P and T are total mass averaged pressure and temperature, respectively. The constraints are the pressure ratio 

and mass flow rate that have to be within 1% of the same characteristic for the datum blade, i.e. 2.15 ± 1.0% for 

pressure ratio and 20.1 kg/s ± 0.5% for mass flow rate. 

II. Software Tools 

In this work the Rolls-Royce SOFT-PADRAM-HYDRA design system (SOPHY) is used. SOPHY (Shahpar 

2004) is a fully integrated flexible aerodynamic design optimization system. The main elements of the SOPHY 

system are as follows: 

SOFT provides four state-of-the-art optimization libraries namely, local and global optimization algorithms, 

Design of Experiment (DoE), Statistical Variational Analysis (ANOVA) and Response Surface Methodology 

(RSM). SOFT also provides an integrating platform to define the automation strategy, see Figure 1.  

PADRAM is a multi-passage, multi-stage parametric geometry modeller and rapid meshing system. The 

PADRAM design space for the blades consists of global parameters such as stagger angle, camber angles at leading 

and trailing edges, lean and sweep at different spanwise locations and pitch (rotor and stator). The PADRAM design 

space has recently been extended to include an endwall profiling and fillet design capability. PADRAM uses an 

automatic multiblock mesh generator to create the grid consisting of O-H-C topology. The mesh generation is very 

fast and does not require user interaction during the optimization. The parametric design system has been extended 

to non-blading applications, for example nacelle design and exhaust design systems (Lapworth and Shahpar 2004).  
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HYDRA provides a linear and non-linear, parallel multistage Navier-Stokes steady/unsteady state, unstructured 

solver with the Spalart-Allmaras and K-ε turbulence models. Hydra also provides an Adjoint capability which has 

recently been demonstrated as part of the SOPHY system. Both mixing and sliding plane can be used to define the 

interface between the rotating and the stationary blade rows. The HYDRA parallel version allows for splitting a 

multi-stage analysis into several CPUs (one row per processor or by using a general domain decomposition), hence 

allowing for faster design evaluations. 

 
Figure 1: Flowchart of the SOPHY Optimization System 

 

III. Multipoint Approximation Method (MAM) 

This technique (Toropov et al., 1993) replaces the original optimization problem by a succession of simpler 

mathematical programming problems. The functions in each iteration present mid-range approximations to the 

corresponding original functions. These functions are noise-free. The solution of an individual sub-problem becomes 

the starting point for the next step, the move limits are changed and the optimization is repeated iteratively until the 

optimum is reached. Each approximation function is defined as a function of design variables as well as a number of 

tuning parameters. The latter are determined by the weighted least squares surface fitting using the original function 

values (and their derivatives, when available) at several points of the design variable space. This selection of points 

will be referred to as a plan (design) of numerical experiments. Some of the plan points are generated in a current 

iteration, and the rest is taken from the pool of points considered in the previous iterations. 

 A general optimization problem can be formulated as 

 ( ) ( ) ( ) ( )NiBxAMjFF iiij ,...,1,,...,11min,0 =≤≤=≤→ xx               (1) 

where x refers to the vector of design variables. In order to reduce the number of calls for the response function 

evaluations and to lessen the influence of noise, the MAM replaces the optimization problem by a sequence of 

approximate optimization problems: 
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where k is the iteration number.  

The selection of the noise-free approximate response functions ( ) ( )MjF
k
j ,...,0

~
=x  is such that their evaluation 

is inexpensive as compared to the evaluation of the response functions Fj, although they are not necessarily explicit 

functions of the design variables. The approximate response functions are intended to be adequate in a current 

search sub-domain. This is achieved by appropriate planning of numerical experiments and use of move limits 

defined by the side constraints k
iA  and k

iB . Moreover, it is attempted to achieve the best quality of the 
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approximation functions in those regions of the design variable space where the solution of the approximate 

optimization problem can be expected, e.g. on the boundary of the feasible region.  

The approximations are determined by means of weighted least squares:  

                   ( ) ( )[ ] min
~

)(
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2 →−= ∑
=
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p
jpjpjpjjj FFwG a,xxa                       (3) 

Here minimization is carried out with respect to the tuning parameters aj and wpj refers to the weight 

coefficients. Their selection will be discussed in a subsequent section.  

If the first order derivatives ( ) ( ) ijij xFF ∂∂= /, xx  at plant points xp are known, the least-squares surface fitting 

is equivalent to the minimization of the function  
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=
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ipjpj F

1

2
),(/1 xδ is a normalizing coefficient and 0 < γ <1 reflects the weight of the information on 

the sensitivities as compared to the information on the function values. 

Intrinsically Linear Approximations 

To construct the simplified expressions ( )x
k
jF

~
, it is necessary to define them as a function of tuning parameters a. 

The approximate response functions must be flexible enough to mimic the behaviour of the response functions with 

sufficient accuracy. On the other hand, they must be easy to evaluate and should not possess any significant level of 

numerical noise. To simplify notation, we will suppress the indices on the functions )(xjF  and ( )x
k
jF

~
. The 

simplest case is a linear function of the tuning parameters a : 
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Note that the structure of the simplified expression (5) is rather general because the individual regressors ϕl can 

be arbitrary functions of design variables.  

The procedure described above can be further generalized by the application of intrinsically linear functions 

(Draper and Smith, 1981). Such functions are nonlinear, but they can be led to linear ones by simple 

transformations. The most useful function among them is the multiplicative function  
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with the logarithmic transformation )(aaF
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Intrinsically linear functions have been successfully used for a variety of design optimization problems. The 

advantage of these approximation functions is that a relatively small number of tuning parameters ai is to be 

determined, and the corresponding least squares problem is solved easily. This is the most important feature of such 

approximations as it allows to apply them to large scale optimization problems.   
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Rational Approximations 

An approach is being investigated in the attempt to produce new high quality approximations valid for a larger 

range of design variables that is based on the use of rational approximations that are a particular class of functions 

nonlinear in unknown coefficients. This type of approximations was studied before by, e.g. Burgee  et al. (1994) and 

Salazar Celis et al. (2007). 

Due to rapidly growing number of coefficients for large N (that is the main objective of this work), the function 

structure has to be limited to low degree polynomials (e.g. linear) and small datasets: 

 

(7) 

 

 

The behaviour of rational approximations can be demonstrated by the following benchmark problem  based on 

Kotanchek function (see for example Salazar Celis et al.), on the [0,4]x[0,4] interval (Figure 2): 

 

 

  (8) 

 

 

 
    

Figure 2: Kotanchek function benchmark problem: exact function (left), second order approximation 

(centre), linear (right) 

 

It can be concluded that, although the linear form of the rational approximation describes the global behaviour 

rather poorly, such approximations can be useful in the mid-range approximation framework of MAM. 

Weight Coefficients 

The weight coefficients influence the relative contribution of information on function values (and their derivatives, 

if available). Their choice strongly influences the difference in the quality of the approximations in different regions 

of the design variable space. Since the optimum point usually belongs to the boundary of the feasible region, the 

approximation functions should be more accurate in that region. Thus, the information at the points located near the 

boundary of the feasible region is to be treated with greater weights. This can be achieved by allocating an 

appropriate weight to the value of a constraint function at a point, e.g. 
1)(4 −−

= pjFC
pj ew

x

.  

In a similar manner a larger weight 
O
pjw  can be allocated to a design with a better objective function, see 

Toropov et al. (1995), van Keulen et al. (1996, 1997), van Keulen and Toropov (1997) for more details. Numerical 

examples showed, however, that the effect of this additional weight coefficient is relatively small.  

The weight coefficients finally used for the weighted least squares fitting are now taken as 
O
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After a number of optimization steps have been carried out, a database with response function values becomes 

available. In addition to these design points available from the database, new designs are evaluated as part of a step 
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in the optimization process. In order to achieve good quality approximations in a current search sub-domain, a 

selection of plan points must be made. All designs located in the current search sub-domain will be included in the 

weighted least squares fitting (if the corresponding response function has been successfully evaluated, of course). 

Generally, points located far from the current search sub-domain would not contribute to the improvement of the 

quality of the resulting approximation functions in the current search sub-domain. For this reason only points 

located in the neighbourhood of the current search sub-domain are taken into account, as depicted in Figure 3. A box 

in the space of design variables, which is approximately 1.5 to 2.0 times larger than the box representing the current 

search domain, was found by numerical experimentation to be a reasonable choice for the size of the neighbourhood.  

 

Figure 3: Current search sub-domain and its neighbourhood  
(points marked °°°° are not included) 

Plan of Experiments 

Originally, a simple plan of experiments has been used (Toropov et al. 1993) which is based on N new points, 

where N is the number of design variables. The locations of these points were obtained by a perturbation of each 

design variable by a fraction of the corresponding size of the current search sub-domain. Generally, this scheme 

works well in conjunction with intrinsically linear approximations but, due to its simplicity, it may have some 

disadvantages. Firstly, it does not take into account design points which are already located in the present search 

sub-domain and, therefore, newly evaluated designs may be located too close to previously evaluated designs. 

Secondly, the scheme is inflexible with respect to the situation when the analysis crushed or did not converge 

(Toropov et al. 1999). 

In the present work, new sampling points are generated randomly. Each added point is checked for calculability 

of the response function and, if the check fails, a new point is generated until a required number of plan points (all 

passing the check) are obtained. To improve the quality of the random plan, a constraint on the minimal distance 

between the points is imposed.  Analytical tests have shown that this can improve the quality of the approximate 

functions and as a result reduce number of MAM iterations.  

Trust Region Strategy 

After having solved the approximate optimization problem, a new trust region (search subregion in the design 

variable space)  must be defined, i.e. its new size and its location have to be specified. This is done on the basis of a 

strategy summarized here.  

The first step is to evaluate several indicators which are the basis for the strategy. The first indicator is the 

quality index of the approximation functions. It is defined as the largest relative approximation error at the set of 

design variables corresponding to the solution of the approximate optimization problem. The quality of the 

approximation functions is then categorized as "bad", "reasonable" or "good". The second indicator is the location of 

the sub-optimum point in the current trust region. When the obtained point does not belong to the boundary of the 

trust region, the solution is considered as "internal", otherwise it is denoted as "external". The third and fourth 

indicators are based on the movement history. For that purpose the angle between the last two move vectors is 

calculated. This will be the basis to identify the movement as "backward" or "forward". If the move vectors are 

nearly parallel, the convergence history will be labelled as "straight", otherwise it is marked as "curved". The fifth 
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indicator, used in the termination criterion, is the size of the present trust region. According to this indicator, the size 

can be "small" or "large". The sixth indicator is based on the value of the most active constraint. It is used to label 

the current solution as "close" or "far" from the boundary of the feasible and infeasible regions in the space of design 

variables.  Once the indicators have been determined, the trust region is moved and resized. A summary of the move 

limit strategy as well as termination criteria is presented in Table 1.  

If the obtained point does not pass the check for calculability of the response functions, the trust region is 

reduced and the approximated problem (2) is solved again. The only essential assumption here is that all functions of 

the optimization problem exist at the starting point. 

 

Approximations “poor” 

“Small” “Large” 

“Straight” “Curved” Stop: No convergence 

found 
Reduce moderately or even 

enlarge 

Reduce 

Approximation “reasonable” 

“Internal” “External” 

“Small” “Large” “Backward” “Forward” 

“Close” “Far” “Straight” “Curved” Stop: 

Convergence 

found 
Reduce Reduce 

Reduce 

Enlarge Keep size 

Approximations “good” 

“Internal” “Boundary” 

“Small” “Large” “Backward” “Forward” 

“Close” “Far” “Straight” “Curved” Stop: 

Convergence 

found 
Reduce Reduce 

Reduce 

Keep model 

& Enlarge 

Keep 

model & 

Keep size 

 
Table 1:  Overview of trust region strategy 

 

IV. Optimization Results 

 

The results of the single point (100% speed) optimization are summarized in the pictures below.  The solution 

was obtained after 14 iterations of MAM using 101 CFD analyses. It should be mentioned that for this run the 

algorithm used a “cheap” option to build approximate functions  generating N+4 sampling points (N=30) in the 1
st
 

iteration and adding only 5 points in each next iteration.  

The averaged efficiency was increased by 1.28% (from 0.856 to 0.867). It can be noticed that a radial 

distribution of the efficiency was improved between 8-17% and 40-75% span but dropped down between 30-40% 

and 75-90% span (see Fig. 4). 
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Figure 4: Efficiency variations in radial direction for baseline  (red) and  obtained design (blue) 

 

 In order to improve the efficiency profile, a second optimization run was performed using additional constraints 

imposed on the efficiency at 6 points along the radial direction: ηoptimal ≥ ηbaseline..  For this case, MAM generated 

N sampling points in each iteration. The optimization has achieved 1.9% efficiency increase after 11 iterations and 

331 CFD analyses. As was expected, the optimal profile has been shifted in respect to the baseline curve toward 

increase over the full span range, Fig. 5. The initial and optimized blade shapes are compared in Fig. 6 using two-

dimensional radial sections cut on 0% (hub), 20%, 40%, 60%, 80%, and 100% (tip) span.   

 
Figure 5: Efficiency for baseline (red) and obtained design (blue) after the optimization with additional 

constraints on radial profile of the efficiency 
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Figure 6: Two-dimensional radial sections for baseline and obtained design 

 

 It should be noted that in the above cases the multiplicative approximate functions were used.  For comparison, a 

third case has been run based on rational functions. The optimization reached almost the same result after 6 MAM 

iterations. The quality of the approximations in each iteration has been categorizing as "good". 

 The obtained design has been checked for the off-design performance. It appeared that the entire characteristic 

was raised at a working point (100%) and also at 95% and 105% speed, Fig. 7. 

 Based on 30 processors (64 bit Opteron 2.4Hz) the above problem has been solved in 2 days. Work is now 

ongoing to solve the same problem on a larger scale with N>100. 
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Figure 7: Full characteristics for baseline (red) and obtained design (blue) 
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