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A buoyant flow structure in a magnetic field:

quasi-steady states and linear–nonlinear transitions

Binod Sreenivasan

School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom.

The confined evolution of a buoyant blob of fluid subject to a vertical magnetic

field is investigated in the limit of low magnetic Reynolds number. When the applied

magnetic field is strong, the rise velocity of the blob is small. As the vorticity

diffuses along the magnetic field lines, a quasi-steady state characterised by a balance

between the work done by buoyancy and Ohmic dissipation is eventually reached

at time tqs ∼ (L2/δ2)τ , where L is the axial dimension of the fluid domain, δ is the

radius of the buoyant blob and τ is the magnetic damping time. However, when the

applied magnetic field is weak or the axial length is sufficiently large compared to the

blob size, the growth of axial velocity eventually makes the advection of vorticity

significant. The typical time for the attainment of this nonlinear phase is tnl ∼

N
2/3

0
τ , where N0 is the magnetic interaction parameter at time t = τ . The order-

of-magnitude estimates for the timescales tqs and tnl are verified by computational

experiments that capture both the linear and nonlinear phases.
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1 Introduction

In liquid metal magnetohydrodynamics (MHD), magnetic fields are used to suppress mo-

tions in an electrically conducting fluid. Common examples of this effect are the the role

of a static magnetic field in the delayed onset of Rayleigh-Bénard convection in a fluid

heated from below [1] and the damping of free-surface waves by a vertical magnetic field

[2, 3]. As fluid flows are typically made up of an ensemble of localized eddies or buoyant

plumes, several previous studies focussed on these flow structures and thereby obtained

considerable insight into the behaviour of large scale flows. The spatio-temporal evolu-

tion of isolated vortices subject to static magnetic fields has been studied extensively in

[4, 5, 6]. Axisymmetric buoyant fluid blobs in a quiescent fluid were investigated for the

occurrence (or absence) of finite-time singularities in the “vortex sheets” that form at

their fronts [7, 8]. The presence of a strong, ambient magnetic field affects the evolu-

tion of a blob by inhibiting the formation of this vortex sheet [9]. In an infinite domain,

however, the magnetic field does not affect the vertical momentum of the blob, which

increases linearly with time. The evolution of buoyant blobs in a liquid metal may have

implications for the Earth’s dynamo. Isolated blobs of material are thought to be released

from the mushy zone near the Earth’s inner core boundary, each blob driving a Taylor

column [10]. The dynamics of such buoyant parcels under the combined influence of a

toroidal magnetic field and background rotation have been analysed in a geophysical con-

text [11]. In this paper I look at buoyant blobs in a confined fluid, where the dynamics are

controlled by both the strength of the ambient magnetic field and the size of the domain.

Under a strong magnetic field, the evolution is linear, in the sense that the diffusion of

vorticity along the magnetic field lines dominates over nonlinear advection. Eventually,

a quasi-steady state, produced by a balance between the work done by buoyancy and
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Ohmic dissipation of the flow, is reached. On the other hand, if the magnetic field is weak

or the fluid domain is large, the above linear phase is followed by a phase wherein non-

linear advection becomes significant. The timescale for this linear–nonlinear transition is

estimated from an order-of-magnitude analysis and verified independently by numerical

simulations.

This paper is organized as follows. In Section 2, the governing equations for the problem

and their interpretation are presented. In Section 3, the model problem is described

and the timescales of occurrence of the quasi-steady and nonlinear phases are derived.

Comparisons with the infinite-domain problem and previous analogous studies on MHD

vortices are made where appropriate. Section 4 is devoted to a computational study of

a buoyant blob in a cavity and comparison of the results with the estimates obtained in

Section 3. The main results are summarized in Section 5.

2 Governing equations

We consider the evolution of a localized density disturbance in an inviscid, incompressible,

Boussinesq fluid. The fluid has a density perturbation δρ, which is essentially δρ = −ραT ,

where α is the coefficient of thermal expansion (K−1) and T is the temperature relative to

the value at infinity, associated with the density variation. The fluid is penetrated by a

vertical, uniform magnetic field, Bêz. The magnetic Reynolds number [12], defined as the

ratio of the magnetic diffusion time, l2/η, to the the eddy turn-over time, l/u, is small.

(Here l and u are typical length and velocity scales and η is the magnetic diffusivity).

The condition

Rm =
ul

η
<< 1
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is usually satisfied in laboratory hydromagnetics. In the Earth’s liquid iron outer core of

size l = 2200 km, Rm is of order 102. However, isolated vortex “blobs” of l ∼ 6 km would

still have Rm ∼ 1, if we assume u = 3 × 10−4 ms−1 and η = 2 m2s−1. The assumption

of low Rm is useful in vortex dynamics because the back-reaction of the velocity field on

the magnetic field can be neglected. In other words, the locally induced magnetic field is

small relative to the global, ambient field.

The initial configuration of the buoyant blob is shown in figure 1 (a). The blob has a

maximum temperature T0 at its centre. We restrict our analysis to axisymmetric motion

in cylindrical polar coordinates (r, θ, z), with the gravitational acceleration g aligned with

the z-direction. The temperature distribution creates a poloidal velocity field u that

causes the blob to rise against gravity. The electromagnetic forces, on the other hand,

tend to suppress this motion. The governing equation of motion is,

Du

Dt
= −∇

(p

ρ

)

+ gαT êz + j × B/ρ, (1)

where p is the fluid pressure, D/Dt is the total derivative, and j is the electric current

density. For small Rm, Ohm’s law has the form [1]

j = σ(−∇φ + u × B), (2)

where φ is the electric potential and σ is the electrical conductivity. Now, the poloidal

velocity field u interacts with B to produce electric currents that are purely azimuthal.

These current lines automatically form closed loops without the need for a net induced

electric potential gradient. Hence, the induced current is,

jθ = −σurBêθ,

and the “braking” Lorentz force is given by [9],

Fp = jθ × B/ρ = −
ur

τ
êr, (3)
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where τ = ρ/σB2 is the typical electromagnetic damping time, also known as the Joule

time. Thus the governing equations of our problem are,

DT

Dt
= 0; (4)

Du

Dt
= −∇

(p

ρ

)

+ gαT êz −
ur

τ
êr, (5)

where we have neglected thermal diffusion. Although turbulent diffusion of momentum

and heat cannot be ignored either in a laboratory MHD experiment or in the Earth’s

liquid iron core [11], here we assume that these are small compared to magnetic diffusion

over the localized volume of a fluid blob.

The curl of equation (5) gives the vorticity equation:

D

Dt

(ωθ

r

)

= −
1

r

(

gα
∂T

∂r
+

1

τ

∂ur

∂z

)

. (6)

The growth of the azimuthal vorticity, ωθ is fed by ∂T/∂r, the process being checked by

the electromagnetic forces. The dissipative effect of the magnetic field may be understood

from the energy equation, obtained by taking the dot product of (5) with u and integrating

the result over the fluid volume:

d

dt

∫ (u2

2

)

dV =

∫

gαTuzdV −
1

τ

∫

u2

rdV. (7)

The first term on the right hand side of (7) is the rate of working of the buoyancy force

(usually, but not always positive) and the second term corresponds to Ohmic dissipation

of the flow. Now, using (4) we may write,

gαTuz =
D

Dt

[
gαTz

]
.

Thus the energy equation may be re-written as,

d

dt

[∫ (u2

2

)

dV
︸ ︷︷ ︸

KE

+

∫

g
δρ

ρ
z dV

︸ ︷︷ ︸

PE

]

=
1

τ

∫

u2

rdV. (8)
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As the blob rises, the kinetic energy (KE) grows at the expense of the potential energy

(PE), but the total energy falls as a result of Ohmic dissipation.

For axisymmetric motion, the poloidal velocity field u in (5) may be expressed in terms

of a streamfunction, ψ in cylindrical polar coordinates:

u = (ur, 0, uz) =
(

−
1

r

∂ψ

∂z
, 0,

1

r

∂ψ

∂r

)

,

so that, the azimuthal vorticity, ωθ, and ψ are related by [7],

rωθ = −

[∂2ψ

∂z2
+ r

∂

∂r

(1

r

∂ψ

∂r

)]

= −∇
2

?ψ. (9)

Hence, (6) may be recast as an equation in ψ as follows:

D

Dt
∇

2

?ψ = r
∂

∂r
(gαT ) −

1

τ

∂2ψ

∂z2
. (10)

The second term on the right hand side of (10) represents diffusion of streamlines along

the magnetic field lines, which competes with the generation of the poloidal flow by

temperature gradients, given by the first term on the right.

In the next section, the evolution of a blob in a confined domain is discussed. Comparisons

with the results for an infinite domain are made where appropriate.

3 The model problem

Our model problem is shown schematically in figure 1(b). The buoyant parcel is located

at the centre of a tall cylindrical cavity containing quiescent, electrically conducting fluid.

The initial temperature distribution is

T = T0 exp
[

−

(

r2 + (z − L/2)2

)

/δ2

]

, (11)
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where T0 is the maximum temperature at the centre of the disturbance, L is the length of

the cavity, R is its radius and δ is the decay lengthscale of the temperature perturbation.

We choose L >> δ, so that the dynamics of the blob can be studied for a long period

of time before boundary effects come into play. As the blob rises, the generated flow is

marked by streamlines which have the closed pattern shown in figure 1(b). As we shall

see in Section 4, the choice of the above cylindrical geometry admits a simple spectral

solution of the model problem, while not affecting the generality of the analysis.

3.1 Integrals of vorticity and momentum

Integrating (6) over the entire volume yields

d

dt

∫ (ωθ

r

)

dV = 2π

∫ L

0

gαT (r = 0, z)dz −
2π

τ

∫ R

0

[
(ur)T − (ur)B

]
dr, (12)

where the subscripts T and B represent the top and bottom of the cavity. Note that

second term on the right side of (12) is positive for a rising blob, as the radial velocity of

the fluid is higher at the top than at the bottom. Hence, the growth of ωθ/r with time is

not monotonic as for an infinite domain [9], but restricted by the imposed magnetic field.

The linear momentum of the flow, given by [13]

L =
1

2

∫

(x×ω)dV

has the only non-zero component Lz = 1

2

∫
rωθ dV . The evolution of linear momentum

may thus be written as follows:

DLz

Dt
=

D

Dt
(
1

2
rωθ) = −

1

2
r
[ ∂

∂r
(gαT ) +

1

τ

∂ur

∂z

]

+ urωθ.
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Substituting for ωθ = (∂ur/∂z − ∂uz/∂r), invoking the continuity equation, and after

some manipulation, we obtain

D

Dt
(
1

2
rωθ) = gαT −

1

2r

∂

∂r
(r2gαT )−

r

2τ

∂ur

∂z
+

∂

∂z

(u2

r

2
−
u2

z

2

)
−

1

r

∂

∂r
(ruruz). (13)

Integrating (13) over the entire volume then yields,

d

dt

∫ (1

2
rωθ

)

dV =

∫

gαTdV−
π

τ

∫ R

0

r2
[
(ur)T−(ur)B

]
dr+π

∫ R

0

r
[
(u2

r)T−(u2

r)B

]
dr, (14)

as the remaining terms vanish. The first term on the right hand side of (14) is an invariant

as temperature is materially conserved by way of (4). Under a magnetic field, the second

term on the right side of (14) could be significant and of the same order as the first term,

cancelling out the temperature integral. The third term on the right is usually small as

it involves squares of radial velocities of opposite sign but comparable magnitudes. For

an infinite domain, both the second and third terms on the right hand side of (14) vanish

and hence the vertical momentum increases linearly with time, unaffected by the magnetic

field.

3.2 Long-time behaviour in a strong magnetic field: a quasi-

steady state

It is common to express the strength of the applied magnetic field in terms of a dimen-

sionless number, the magnetic interaction parameter, defined as the ratio of the eddy

turn-over time to the Joule time [1]:

N =
l/u

τ
=
σB2δ

ρu
. (15)

In classical hydrodynamics, the velocity of a buoyant fluid blob is commonly estimated by

u ∼ (gαT0δ)
1/2, from a balance between the buoyancy and nonlinear inertial forces in the
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equation of motion. However, in the presence of a strong magnetic field, nonlinear inertia

is negligible in comparison with the Lorentz force and so the magnetic field determines

the fluid velocity from time t ∼ τ . The radial velocity at t ∼ τ is estimated from (5) as

ur ∼ gαT0τ.

Thus, the interaction parameter at t ∼ τ is given by

N0 =
δ

gαT0τ 2
. (16)

For times t > τ , the flow diffuses along the magnetic field lines, and the dominant com-

ponent of the velocity would be the vertical (z) component, estimated by

uz ∼ gαT0τ
l‖
δ
, (17)

where l‖ is the lengthscale parallel to B. The maximum vertical velocity of the parcel in a

cavity of length L would thus be of order gαT0τL/δ. Note, however, that if the magnetic

field is strong, τ is small, and so is uz. This implies that the advection of the temperature

field is small and the blob is hardly displaced from its initial position at the centre of the

cavity in figure 1(b).

To obtain the long-time behaviour of the blob, we consider (6) in the limit of large N :

∂ωθ

∂t
= −gα

∂T

∂r
−

1

rτ

∂2

∂z2

[
∇

−2

? (rωθ)
]
, (18)

where ∇
−2

? is the inverse of the special Laplacian operator in (9). An order-of-magnitude

estimate of the electromagnetic force on the right hand side of (18) gives

∂ωθ

∂t
∼ −gα

∂T

∂r
+
δ2

τ

∂2ωθ

∂z2
. (19)
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The vorticity thus propagates along the z-coordinate with a pseudo-diffusivity δ2/τ .

(Compare this with the analogous problem of two-dimensionalization of an MHD tur-

bulent flow [14]). It is evident from (19) that, for a confined domain of length L, a

quasi-steady state is attained for

t = tqs &
(L2

δ2

)

τ. (20)

Under this steady-state condition, equation (6) reduces to

gα
∂T

∂r
+

1

τ

∂ur

∂z
= 0. (21)

The regime given by (21) presents a few interesting features that serve as diagnostics for

high N (a strong magnetic field). Since the temperature distribution at any time may be

assumed to be identical to that at t = 0, i.e. (11), the temperature gradients in (21) are

confined to the sections z1 and z2 that enclose the blob (see figure 2). The values of z1 and

z2 are determined by the decay length of the perturbation, δ. It follows that the radial

velocity, ur, in the outer region shown hatched in figure 2 is independent of z. Also, by

virtue of the symmetry of the temperature distribution about the z = L/2 plane, ur at

any section in the upper half of the cylindrical domain is equal and opposite to its value

at the section equidistant from the mid-plane in the lower half. Integrating (21) over z

between limits z1 and z2, we obtain,

V (r) =
τ

2

∫ z2

z1

gα
∂T

∂r
dz. (22)

Thus, the streamfunction, ψ, is given by

ψ(r, z) = rV (r)(L− z). (23)

10



Further, from (12) and (14), we obtain,
∫ R

0

urdr =
1

2
gατ

∫ L

0

T (r = 0, z)dz; (24)

∫ R

0

r2urdr =
τgα

2π

∫

TdV. (25)

The left hand side integrals in (24) and (25) may be evaluated for any z in the range

z2 < z < L.

3.3 A nonlinear regime

Let us now consider a buoyant blob of fluid evolving either (a) in a moderate/weak

magnetic field or (b) in a strong magnetic field but in a domain whose axial length is

considerably larger than the lengthscale of the density perturbation. We shall assume

that the Lorentz force is dominant at t ∼ τ , so that the initial evolution is linear and

governed by (18). However, the vertical velocity, given by (17), also becomes significant

as time progresses. As the convective turn-over time becomes shorter, the nonlinear

inertial forces in the momentum equation increase in magnitude and eventually become

comparable to the Lorentz force. The evolution of the blob then ceases to be linear. As

both the Lorentz and inertial forces are generally rotational, the relative magnitudes of

the two forces are estimated by

Nt =
∇× (j × B)

∇× (u · ∇u)
∼
δ/uz

τ

( δ

l‖

)2

, (26)

where Nt is the true value of the interaction parameter. Since (19) suggests that the

diffusive lengthscale, l‖ grows as ∼ δ(t/τ)1/2 in the initial linear phase, and the transverse

lengthscale δ is unaffected by the magnetic field, (26) is readily simplified as

Nt ∼ N0(t/τ)
−3/2, (27)

11



where N0 is the interaction parameter at t = τ . In other words, Nt decreases continuously

from its value at t = τ , and when t = tnl ∼ N
2/3

0
τ , a nonlinear phase of evolution is

reached. As the Lorentz force, given by (3), remains approximately constant, further

‘free’ evolution of the blob (i.e. unaffected by the boundaries) would lead to a dominance

of the inertial forces. This strongly nonlinear regime where Nt < 1 is marked by advection

of the temperature and vorticity fields, causing the blob to deform into the well-known

mushroom-like structure with steep gradients at its front [8].

It is worth comparing the linear–nonlinear transition of a buoyant blob with an equivalent

transition in the analogous problem of a freely-decaying vortex under a magnetic field

[5, 6]. Consider an isolated fluid vortex of radius δ with its axis aligned with a strong,

uniform magnetic field B at t = 0. While the flow diffuses along the magnetic field lines,

the convective turn-over time δ/u increases because the kinetic energy falls by Ohmic

dissipation. However, the electric current density also falls significantly during this phase

as the axial currents have to travel through longer paths, as evident from the curl of

Ohm’s law:

∇× j = σ(B · ∇)u ∼ σBu/l‖,

where σ is the conductivity of the fluid and l‖ is the lengthscale parallel to the magnetic

field direction. The rate of fall of the Lorentz forces is greater than the rate of fall of

the inertial forces, and eventually, the evolution enters a nonlinear phase wherein the

two forces are of the same of magnitude. Sreenivasan & Alboussière [5] found that the

interaction parameter for this case varies as

Nt ∼ N0(t/τ)
−1/2,

where N0 here is the interaction parameter at t = 0. When t = tnl ∼ N2

0
τ , the flow

becomes nonlinear.
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In summary, the evolution of a buoyant blob in a given magnetic field is influenced by

two timescales – one for the attainment of a quasi-steady state, tqs; and one for the onset

of nonlinear evolution, tnl. The long-time structure of the buoyant fluid blob would be

determined by whether tqs is less or greater than tnl.

4 Computational experiments

In this section, the evolution of a localized buoyant parcel of fluid contained in a finite

domain is studied numerically. The basic configuration is as in figure 1 (b), where the

initial axisymmetric temperature distribution of characteristic lengthscale δ, given by

(11), is located at the centre of a cylindrical cavity of length L = 20δ and radius R = 5δ.

Equations (4) and (5) are solved for the above initial condition. The blob radius is chosen

as 0.01 units, and the constant gαT0 is chosen to be 0.012, corresponding to values of

g = 10 ms−2, α = 6 × 10−5 and T0 = 20◦C. The temperature T is expanded as the

following Fourier-Bessel series:

T =
∑

m,n

T̂mnJ0(εnr/R) sin(mπz/L), (28)

where εn are the roots of J0(x). The temperature is zero at the boundaries, so the

maximum temperature difference, T0, drives a confined, axisymmetric poloidal velocity

field given by the streamfunction,

ψ =
∑

m,n

ψ̂mn
r

R
J1(εnr/R) sin(mπz/L). (29)

The numerical method involves time-stepping the spectral coefficients T̂ and ψ̂ and re-

covering the temperature and streamfunction using the inverse transformations of (28)
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and (29), quite similar to that used for the analogous problem of a swirling vortex in a

confined domain [5]. The induced electric currents do not need a boundary condition as

they are purely azimuthal. As temperature should be materially conserved by (4), the

maximum temperature is tracked during the simulation to check for accuracy. When the

maximum temperature falls by 0.5% of its value at t = 0, the simulation is stopped.

The magnetic field strength is determined by the value of τ in the model. All calculations

are performed for an interaction parameter, N0 >> 1, where N0 is defined at t = τ by

(16). At this stage, the Lorentz force is dominant, and the turn-over time δ/u is controlled

by the magnetic field, via (17). From the scaling for uz, the kinetic energy of the flow is

scaled based on its terminal value in this ‘linear’ phase:

E =
1

2

∫

u2dV ∼ (gαT0τ)
2L3. (30)

Secondly, since the axial location of the blob, zf is related to uz by dzf/dt = uz, we obtain

zf ∼ gαT0τ
2L/δ. (31)

Finally, the global linear momentum, L, scales as

L =
1

2

∫

rωθdV ∼ gαT0τL
2δ. (32)

Figure 3 (a) shows the evolution of the global kinetic energy density, 1

2
u2. The stronger

the magnetic field (the smaller the value of τ), the smaller the energy released to the

poloidal flow. When the energy is normalized by the scaling in (30), the curves collapse

into one, indicating a self-similar behaviour in the linear phase of evolution [figure 3 (b)].

The kinetic energy for N0 = 8.35 × 105 (τ = 10−3; case 1 in Table 1) saturates into

a quasi-steady state, showing that the work done by buoyancy is absorbed entirely by
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Ohmic dissipation in equation (7). Although the estimate (20) predicts a steady state

for t > 400τ for this geometry (L = 20δ), we find a gradual transition to this state up

to t ∼ 1500τ . The energies for N0 = 5.208 × 104 and 8333.3 (cases 2 & 3) depart from

self-similar behaviour at t ≈ 1000τ and t ≈ 300τ respectively, suggesting that the scaling

(17), valid for N >> 1, breaks down at these times. Now, the onset of nonlinear evolution,

described in Section 3.3, is expected to happen when t = tnl ∼ N
2/3

0
τ . A comparison of

the value of tnl in the computations with this theoretical estimate is given in Table 1,

cases 2–4. The ratio of the two times is of order unity.

It is evident from the computations that the evolution of the buoyant blob depends

entirely on the relative magnitudes of the timescales for attainment of the nonlinear

and quasi-steady states, tnl and tqs. In cases 2–4 in Table 1, tnl is either of the same

order of magnitude as, or significantly smaller than, tqs (tqs ∼ 1500τ in the computation).

Hence, the advection of temperature (and vorticity) becomes significant. For the strongest

magnetic field (N0 = 8.33 × 105; case 1), on the other hand, the theoretical estimate of

the linear–nonlinear transition time gives tnl ∼ 8854τ . This timescale being significantly

larger than tqs, the evolution never becomes nonlinear, but becomes quasi-steady when

the flow diffuses over the entire axial length of the domain (also see figure 7 below). A

cavity with axial dimension L & 50δ would be required to force a nonlinear regime in this

case. To test the competition between the timescales tqs and tnl in the problem, two runs

were performed for N0 = 8333.3 (see case 3), but in shorter cavities of L = 8δ and 5δ.

The kinetic energy readily enters a steady state from an initial linear phase when L = 5δ

because tqs < tnl for this geometry (figure 4). For L = 8δ, the kinetic energy departs from

the steady state at t ∼ 300τ , the timescale for nonlinear transition.

Figure 5 gives the vertical displacement of the blob as a function of time, obtained by
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tracking the axial location of the maximum temperature during the calculation. From

figure 5 (a) it is evident that the motion of the blob is severely restricted by a strong

magnetic field. The curves of normalized displacement in figure 5 (b) confirm the scaling

for N >> 1 but are less sensitive to the onset of nonlinear inertia. From the curves

of global linear momentum in figure 6, we find that the initial growth of momentum is

cancelled out by the magnetic field acting at t ∼ τ via equation (14). Again, a quasi-

steady state is reached for N0 = 8.33 × 105 and self-similarity holds with the scaling in

(32).

The structures of the temperature field and flow, given in figures 7–9 support our earlier

findings. Figure 7 shows the vorticity diffusing along the magnetic field lines, for N0 =

8.33× 105 (case 1, Table 1). At t ∼ 500τ , a quasi-two-dimensional state is reached where

the lines of vorticity fill the entire domain. This evolution is consistent with the (t/τ)1/2

growth of the parallel lengthscale. From figure 8, we note that the initial temperature

distribution is preserved throughout the simulation, pointing to negligible advection of

temperature for this case. The streamlines are spread out in radius during the initial phase

of growth of ψ, but are eventually confined to a thin cylindrical region that circumscribes

the density perturbation, where the radial temperature gradient is appreciable (note from

(10) that the structure of ∂T/∂r determines the structure of ψ when D/Dt = 0). For

N0 = 5.208 × 104, the temperature and vorticity fields undergo some distortion within

t ∼ 1000τ , indicating that the advection of these fields is not small. For N0 = 8333.3

(figure 9), this distortion is appreciable for t > 350τ . The blob develops steep gradients

at the front and an indentation at its base.

We finally return to the quasi-steady solution of case 1 (N0 = 8.33× 105), which presents

some interesting features as noted in Section 3.2. Figure 10 shows the radial velocity, ur
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at different axial locations, z. For z > 0.6L, where temperature gradients are small, ur

becomes independent of z and tends to the function V (r) in (22). In figure 11, the left

and right-hand sides of (25) are compared, with the left hand side evaluated at different

z. We find that the two quantities are equal in the range 0.6 < z/L < 1.0 that lies outside

the density perturbation, consistent with the discussion at the end of Section 3.2.

5 Conclusion

In this study, we have looked at the fundamental problem of the evolution of a buoyant

blob of fluid subject to a vertical magnetic field. Contrary to what is found for the

evolution of a blob in an infinite domain, both the vorticity and linear momentum of a

fluid blob in a finite domain are constrained by the magnetic field. The final state of

the blob is determined by two competing timescales: that for the attainment of a quasi-

steady state, and that for the emergence of nonlinear advection of vorticity. The relative

magnitudes of these timescales are dependent on the strength of the magnetic field as

well as the aspect ratio of the fluid domain. Under a strong-enough magnetic field, the

quasi-steady timescale controls the dynamics of the blob. In large fluid domains and weak

magnetic fields, the nonlinear timescale takes control, and the subsequent behaviour would

be similar to what we find in classical (nonmagnetic) flows.
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No. τ L u(t ∼ τ) N0 tnl (theor) tnl (comp)

1 10−3 20δ 1.2 × 10−5 8.33 × 105 8854τ —

2 4 × 10−3 20δ 4.8 × 10−5 5.208 × 104 1395τ 1000τ

3 10−2 20δ 1.2 × 10−4 8333.3 411τ 300τ

4 10−1 20δ 1.2 × 10−3 83.33 19τ 20τ

Table 1: Summary of the buoyant blob regimes considered in this study. The comparison be-

tween theoretical estimates and computed values of tnl is given where linear–nonlinear transitions

are found.
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Figure 1: (a) A hot fluid blob of maximum temperature T0 sits in a vertical magnetic

field, B. The radial temperature gradients generate the poloidal velocity field u which,

in turn, is damped by the magnetic field. (b) The model problem of a blob of radius δ in

a confined domain of height L and radius R. Only one half of the domain is shown.
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Figure 2: When N >> 1, the temperature gradients are confined to the region between

the sections z1 and z2. These gradients determine the streamfunction in the hatched

region.
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Figure 3: (a) Logarithmic plot of global kinetic energy, E, with values of τ shown near

each curve. (b) Global kinetic energy, normalized by the scaling in (30). The vertical

lines correspond to the times when self-similarity breaks down, indicating a transition to

the nonlinear phase of evolution.
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Figure 4: Global kinetic energy, normalized by the scaling in (30), for N0 = 8333.3. The

different domain geometries studied are (a) 5δ× 5δ (thick solid line); (b) 8δ× 5δ (dashed

line) and (c) 20δ × 5δ (thin solid line).
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Figure 5: (a) Axial displacement of the blob, zf , for N0 = 8.3×105 (circles), N0 = 5.2×104

(squares) and N0 = 8333 (crosses). (b) Axial displacement normalized by the scaling in

(31).
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Figure 6: Global Linear momentum normalized by the scaling in (32). The curves for

N0 = 8.3 × 105, N0 = 5.2 × 104 and N0 = 8333 collapse to a single curve.
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Figure 7: Contour plots of ωθ/r for N0 = 8.33×105, at times t = 5τ , 18τ , 100τ , 300τ and

500τ .
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Figure 8: Contour plots for the case N0 = 8.33 × 105, shown from left to right in this

order: temperature, T , at time t = 100τ ; T at t = 2500τ ; streamfunction, ψ, at t = 100τ ;

ψ at t = 2500τ .
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Figure 9: Contour plots for N0 = 8333.3, shown from left to right: T at time t = 350τ ; T

at t = 600τ ; ωθ/r at t = 600τ ; ψ at t = 600τ .
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Figure 10: Radial variation of ur at different axial locations, for N0 = 8.33 × 105 and

t = 2700τ (in the quasi-steady state). The curves from bottom to top are for z/L = 0.52

(solid line), 0.55 (dotted), 0.58 (dashed), 0.60 (dashed-dotted), 0.65 & 0.70 (superposed

solid lines).
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Figure 11: Comparison of the left hand and right hand sides of (25), given by I1 and I2

respectively, for N0 = 8.33 × 105 at t = 2700τ (quasi-steady state). The constant value

of I2 is given by the thin vertical line.
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