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A Detailed Investigation into Low-Level Feature Detection in Spectrogram
Images

Thomas A. Lampert*, Simon E. M. O’Keefe*
Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK.

Abstract

Being the first stage of analysis within an image, low-level feature detection is a crucial step in the image
analysis process and, as such, deserves suitable attention. This paper presents a systematic investigation
into low-level feature detection in spectrogram images. The result of which is the identification of frequency
tracks. Analysis of the literature identifies different strategies for accomplishing low-level feature detection.
Nevertheless, the advantages and disadvantages of each are not explicitly investigated. Three model-based
detection strategies are outlined, each extracting an increasing amount of information from the spectro-
gram, and, through ROC analysis, it is shown that at increasing levels of extraction the detection rates
increase. Nevertheless, further investigation suggests that model-based detection has a limitation—it is not
computationally feasible to fully evaluate the model of even a simple sinusoidal track. Therefore, alternative
approaches, such as dimensionality reduction, are investigated to reduce the complex search space. It is
shown that, if carefully selected, these techniques can approach the detection rates of model-based strate-
gies that perform the same level of information extraction. The implementations used to derive the results
presented within this paper are available online from http://stdetect.googlecode.com.

Keywords: Spectrogram, Low-Level Feature Detection, Periodic Time Series, Remote Sensing, Line
Detection

1. Introduction

The problem of detecting tracks in a spectrogram (also known as a LOFARgram, periodogram, sonogram,
or spectral waterfall), particularly in underwater environments, has been investigated since the spectrogram’s
introduction in the mid 1940s by Koenig et al. [26]. Research into the use of automatic detection methods
increased with the advent of reliable computational algorithms during the 1980s, 1990s and early 21st
century. The research area has attracted contributions from a variety of backgrounds, ranging from statistical
modelling [41], image processing [1, 10] and expert systems [35]. The problem can be compounded, not only
by a low signal-to-noise ratio (SNR) in a spectrogram, which is the result of weak periodic phenomena
embedded within noisy time-series data, but also by the variability of a track’s structure with time. This
can vary greatly depending upon the nature of the observed phenomenon, but typically the structure arising
from signals of interest can vary from vertical straight tracks (no variation with time) and oblique straight
tracks (uniform frequency variation), to undulating and irregular tracks. A good detection strategy should
be able to cope with all of these.

In the broad sense this “problem arises in any area of science where periodic phenomena are evident
and in particular signal processing” [44]. In practical terms, the problem forms a critical stage in the
detection and classification of sources in passive sonar systems, the analysis of speech data and the analysis
of vibration data—the outputs of which could be the detection of a hostile torpedo or of an aeroplane engine
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which is malfunctioning. Applications within these areas are wide and include identifying and tracking
marine mammals via their calls [39, 36], identifying ships, torpedoes or submarines via the noise radiated
by their mechanical movements such as propeller blades and machinery [52, 7], distinguishing underwater
events such as ice cracking [16] and earth quakes [20] from different types of source, meteor detection, speech
formant tracking [47] and so on. Recent advances in torpedo technology has fuelled the need for more robust,
reliable and sensitive algorithms to detect ever quieter engines in real time and in short time frames. Also,
recent awareness and care for endangered marine wildlife [36, 39] has resulted in increased data collection
which requires automated algorithms to detect calls and determine local specie population and numbers.
The research presented in this paper is applicable to any area of science in which it is necessary to detect
frequency components within time-series data.

A spectrogram is a visual representation of the distribution of acoustic energy across frequencies and
over time, and is formally defined in [29]. The vertical axis of a spectrogram typically represents time, the
horizontal axis represents the discrete frequency steps, and the amount of power detected is represented as
the intensity at each time-frequency point. For a complete review of spectrogram track detection methods
the reader is referred to a recently published survey of spectrogram track detection algorithms [29].

The methods presented can be reduced to, and can therefore be characterised by, their low-level feature
detection mechanisms. Low-level feature detection is the first stage in the detection of any object within
an image and it is therefore key to any higher level processing. For a spectrogram, this stage results in the
identification of unconnected points that are likely to belong to a track, which are output in the form of
another image [18]. It is found that a number of mechanisms are in use, however, there exists no systematic
investigation into the advantages and disadvantages of each. Abel et al. [1], Di Martino et al. [9], Scharf
and Elliot [46] and Paris and Jauflret [41], to name but a few, take the approach of detecting single-
pixel instances of the tracks, therefore only intensity information can be exploited in the decision process.
Methods such as those presented by Gillespie [17], Kendall et al. [25] and Leeming [34] use windows in a
spectrogram to train neural network classifiers—the benefits of this, however, were not investigated and the
research was probably motivated for the ability to use neural networks. In addition to intensity information,
their approach allowed for information regarding the track structure to be exploited in the decision process.
Nevertheless, an empirical study of the differences and detection benefits between the two approaches is still
lacking. It would be expected that when intensity information degrades, such as in low signal-to-noise ratio
spectrograms, the structural information will augment this deficit and thus improve detection rates.

This paper presents such a study. Firstly three low-level feature detectors are defined, each of which acts
upon an increasing amount of information. These are termed ‘unconstrained’ detectors as they:

e perform an exhaustive search of the feature space;
e retain all of the information provided to them by the feature model;

e utilise the original, unprocessed, data.

The exhaustive search performed by these methods, however, means that they are computationally expen-
sive and, as such, a number of ‘constrained’ detectors are examined. These ‘constrained’ detectors are
characterised by one or more of the following:

e machine-learning techniques are utilised for class modelling;
e the data is transformed through dimensionality reduction;

e the data is transformed through preprocessing,

and therefore these detection techniques simplify the search space. All of the ‘constrained’ feature detectors
evaluated derive feature vectors from within a window and they therefore act upon intensity and structural
information. The ‘constrained’ detectors are split into two categories—data-based and model-based—to
reflect the source of the training samples utilised by their supervised learning process. Finally, the perfor-
mance of a model-based ‘unconstrained’ feature detector is compared against a model-based ‘constrained’
feature detector to ascertain the degree of performance divergence between the two approaches.



Furthermore, this paper presents a novel transformation that integrates information from harmonic
locations within the spectrogram. This is possible due to the harmonic nature of acoustic signals and is
defined with the aim of revealing the presence of an acoustic source at low signal-to-noise ratios by utilising
all of the information available. The benefits of performing low-level feature detection whilst combining
information from harmonic locations are shown at the end of this paper through a comparison with the
detection performance achieved by the low-level feature detectors when applied to the original spectrogram.

The remainder of this paper is organised as follows: Section 2 presents the low-level detection mechanisms;
these are evaluated in Section 3 and a discussion of findings is presented; and finally the conclusions of the
investigation are drawn in Section 4.

2. Method

In this section several low-level feature detection mechanisms are described and investigated. By defini-
tion, the detection of lines and edges forms two distinct problems and is commonly approached differently
[18]; an edge is defined by a step function, and a line by a ridge function. Edge detectors such as the
Canny operator, along with more recent methods [32], are specifically defined to detect step features and
are therefore not evaluated here. The Laplacian detector is, however, an edge detector which can be applied
to line detection [18] and therefore it is evaluated in Section 3 of this paper.

2.1. ‘Unconstrained’ Feature Detectors

Detection methods that utilise dimensionality reduction techniques such as principal component analysis
[22] to reduce the model or data complexity, lose information regarding the feature model in the process
[6]. Preprocessing of the data also introduces information loss. This information loss detracts from a
detector’s ability to detect features and therefore they produce sub-optimal detection results. A method
which models the data correctly and does not lose any information in the detection process will have the
most discrimination power as a feature detector, under the condition that it correctly models the features
to be detected. These types of detectors are more generally referred to as correlation methods in the image
analysis domain. In order for such methods to detect features that vary greatly, a model has to be defined
with parameters corresponding to each variation type that can be observed. An exhaustive search for the
parameter combination that best describes the data is conducted by matching the model to the unprocessed
data by varying its parameters. In this section are defined three detection methods with the properties
of an ‘unconstrained’ feature detector, i.e. no model reduction or approximation is performed during the
search for the feature, and no pre-processing of the data that may destroy information is carried out (for
example filtering or calculating gradient information). Three modes of detection have been identified, each
of which increases the amount of information available to the detection process from the previous mode:
individual pixels; local intensity distribution; and local structural intensity distribution. Individual pixel
classification performs detection based upon the intensity value of single pixels. By definition this method
makes no assumption as to the track shape and consequently is the most general of the methods in terms
of detecting variable structure. A track, however, “is a spectral representation of the temporal evolution
of the signal” [8] and, therefore, “can be expressed as a function of the time” [8], i.e. it is composed of a
collection of pixels in close proximity to each other. Performing the detection process using individual pixels
ignores this fact. An extension to this detection process is therefore to model the pixel value distribution in
a local neighbourhood, forming a detector that incorporates this information. Nevertheless, such a detector
still ignores the information that can be derived from the arrangement of pixels in the neighbourhood.
Such information will enable the detector to distinguish between a number of random high intensity pixels
resulting from noise and an arranged collection of pixels that belong to a track.

2.1.1. Bayesian Inference

A common method used to model the distribution of individual pixel values makes use of probability
density functions. A classification can then be made by testing the pixel’s class-conditional membership
to distributions describing each class, forming maximum likelihood classification, or, by extending this to
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act upon a Bayesian decision using the a posteriori probability. Assuming that the modelling is accurate,
maximum a posteriori classification acts upon the optimal decision boundary [12]. In the former case, the
class-conditional distribution to which the pixel value has the highest membership determines its classifica-
tion. In the latter, the decision is made according to the Bayes decision rule and this has been shown to be
optimal [12], i.e. it minimises the probability of error (subject to correct design choices).

In this case, Bayesian classification infers a pixel’s class membership based upon the probability that it
originates from a distribution model of the class’ intensity values. The distribution of the intensity values of
each class is determined prior to classification as a training stage; the model which best describes the data
is chosen and this is fitted to the data by determining applicable parameter values. A similar approach was
used by Rife and Boorstyn [45] and Barrett and McMahon [2] who applied maximum likelihood classification
to pixel values, however, a very simple class model was used in that work; the maximum value in each
spectrogram row was classified as a track position.

Intensity Distribution Models. In this problem, using synthetic data, it is possible to accurately estimate
the data’s density using the parametric approach, which usually allows the density function to be rapidly
evaluated for new data points [6]. In other cases, however, it may be necessary to employ the non-parametric
or semi-parametric approach. Nevertheless, the classification technique is equally valid when using different
forms of density estimation.

To estimate the parameters of the class-conditional distribution for each class, histograms describing the
frequency of intensity values were generated, one for each class, and parametric functions fitted to them.
The number of pixel intensity values used to train the models was 266 643 samples of each of the noise and
track classes (the data was scaled to have a maximum value of 255 in the training set). These were then
histogrammed into 1000 equally space bins spanning the range 0-255 to form a histogram. As there was a
large amount of training data available, the parameter values of each distribution function were determined
by maximum likelihood estimation [12] as this has been shown to reach the Bayesian estimation under such
conditions [6] and are simpler to evaluate [12] (under the case that there is little training data it may be
more appropriate to use Bayesian estimation). The Gamma and Exponential probability density functions
(PDF) were found to model the signal and noise distributions sufficiently well as they have a root mean
squared error of 0.00048 and 0.00084 (mean error per histogram bin) respectively; histograms of intensity
values and the resultant fittings for each class are presented in Figure 1. As such, the class-conditional
probabilities of a pixel value s;; in the spectrogram S = [s;;]nx s, given the hypotheses of noise h; and of
signal hg, are determined such that

P(hilsij) = Xexp{-Az}
P(hslsi;) = xo‘_l%i;ﬁx} (1)

where > 0, the term I' represents the gamma distribution and the distribution parameters were found to
be a = 1.1439, 5 = 20.3073 and A = 7.2764 (with standard errors of 0.0029, 0.0576 and 0.0144 respectively).

The histograms presented in Figure 1 highlight the fundamental limitation of these methods; there is a
large overlap between the distributions of values from each class. This overlap is exaggerated as the SNR is
reduced and it can be expected to impede the classification performance of this type of detector.

Decision Rules. The simplest form of Bayesian inference, referred to as maximum likelihood (ML) [38],
is to calculate the class for which the pixel intensity value has the maximum membership. By defining
a set of candidate hypotheses H = {h1, ha}, where hy and hs are the hypotheses that an observation is a
member of the noise or signal class, respectively, and the probability density functions corresponding to these
hypotheses, given the data s;;,Vi € N Aj € M, the likelihood that the data is a result of each hypothesis
is determined, such that
harr = argmax P(s;|h). (2)
heH
When all the hypotheses in H have equal likelihood of being true any convenient tie breaking rule can be
taken [12], in this case a random classification is made.
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Figure 1: Class-conditional probability density function fittings for the single-pixel noise, modelled using an
exponential PDF (a), and track, modelled using a gamma PDF (b), intensity value distributions. 266 643
randomly chosen pixel values for each class, taken from spectrograms having an SNR range of 0 to 8 dB
were histogrammed into 1000 bins linearly spaced between 0 and 255. The fittings for the signal and noise
histograms have a root mean squared error of 0.00048 and 0.00084 respectively.



A drawback of maximum likelihood classification is that it does not take into account the a priori
probability of observing a member of each class P(h). For example, in the case of taking a random observation
with each hypothesis having an equal likelihood of being true, the observation should in fact be classified as
belonging to the class that is most likely to be observed [12]. The a posteriori probability P(h|s;;), which
combines the class-conditional and prior, can be computed with Bayes formula,

P(sij|h)P(h)
P(h|s;;) = —2L~—~7, 3
(hlsi) = =55 3)
The form of Bayesian decision that incorporates this information, the hypotheses prior probabilities, to form
a decision is referred to as maximum a posteriori (MAP), such that

harap = argmax Ll PER)
heH P(Sij)

(4)

Note that the ML estimate can be thought of as a specialisation of the MAP decision in which the prior
probabilities are equal. The term P(s;;) is a normalisation term, which is independent of h, and therefore,
does not influence the decision. It can therefore be dropped [12] and Equation (4) reduces to

haap = argmax P(s;;|h)P(h). (5)
heH

In the case that the prior probabilities are unknown, which is common, they can be estimated as the
frequency of observing each hypothesis within a training set [6], irrespective of its value. In this case the
prior probabilities were determined by calculating the frequency of pixels belonging to each class in the
training set.

An example of a spectrogram’s membership of the noise and track class is presented in Figure 2, Figure 2a
presents the noise membership values of each pixel. It can be seen that the majority of noise pixels have
a large likelihood of belonging to the noise class. Nevertheless, the high noise values are found to have a
lower likelihood and some of the low SNR tracks are found to have a high likelihood of belonging to this
class. Figure 2b presents the likelihood of the pixels belonging to the track class and these emphasise the
overlap between the two classes. The noise pixels are given a high likelihood of belonging to the track class
and track pixels have a low likelihood of belonging to the track class. Taking the maximum membership
of each pixel, as defined by Equation (2), a classification of the spectrogram is obtained, Figure 3. Most
of the pixels that form a track are correctly classified, although gaps are present in low SNR tracks. The
amount of noise in the spectrogram is reduced but there is still a large amount present and this is reflected
in the classification percentages for the spectrogram pixels, 78.31% of noise and 71.51% of track is classified
correctly.

2.1.2. Bayesian Inference using Spatial Information

Classification based upon single-pixel values is limited to forming a decision using only intensity informa-
tion. Assuming that a track is defined as a narrowband component of energy that is present in a number of
consecutive time frames. A consequence of this is that track pixels will be in close proximity to each other—a
property that is not exploited using the classification methods defined above. An alternative method for
classification is to determine a pixel’s class membership based upon the distribution of pixel values in a local
neighbourhood centred upon the pixel, thus exploiting both sources of information. This form of classifica-
tion, applied to spectrogram track detection, has been investigated by Potter et al. [43], Sildam [48] and Di
Martino et al. [8] who demonstrate that it can produce high classification rates. A window function is now
defined to enable the previously defined classifiers to perform this form of classification.
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Figure 2: Likelihood of class membership, intensity represents likelihood of class membership (scaled to be
within 0 and 255). The tracks in this spectrogram have SNRs of, from left to right; first three: 3dB, middle
three: 6 dB and the last three: 9dB. The intensity of the each response is scale independently.

Window Function. The spectrogram S, can be broken down into I overlapping windows W of predefined
size, such that

Si—pj—y -+ Si—pj-1 Si—pj Si—pj+l -+ Sipjty
Si—lj—vy -+ Si-lj-1 Si-lj Si—lj+l .- Siclj4y
Wij=| Sij— -+ Sig=1  Sij  SigHl oo Sijiy (6)
Sitlj—y -+ Sitlg-1 Sitlj Siklj+l e Siljty
LSitpg—y -+ Sitpg=1  Sitpg  Sitpg+tl -0 Sidpgtoy

M’ N’
e
where M’ € N and N’ € N are odd numbers defining the size of the window (width and height respectively)
such that v < j < M —~ and p < i < N — p, and therefore I = (N — 2p)(M — 2v). A row vector, V" of

size d = M'N’, can be constructed from the values contained within window W; in a column-wise fashion
where C}’ contains values from the rth column of W;, such that

Cij = [Si—p7j—'y+r Si—p+1j—y4r --- 3i+p7j—'y+r] (7)

where r = 0,..., M’ — 1, and thus o By
T=lcy cY ... CYL ) (8)

Decision Rules. Using the window function, the ML hypothesis can be tested for the derived feature vector of
pixel values. When the dependency relationships between the pixels are unknown, i.e. under no assumption
of the track’s shape, the pixels are assumed to be conditionally independent given each hypothesis [12], such
that

heol [ = argmax HP ”|h) 9)
heH oy
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Figure 3: An example of maximum likelihood spectrogram pixel classification, in this image likelihood has
been encoded as the inverse of intensity and scaled to have a maximum value of 255. The tracks in this
spectrogram have SNRs of, from left to right; first three 3 dB, middle three 6 dB and the last three 9dB.

Similarly, the MAP classification is modified to take advantage of this information—forming the naive Bayes
rule,

d
heomtap = argmax HP hVi) (10)
heH k1
d
= argmax [ [ P(V}/|h)P(h) (11)
heH 1

where d = [V 2 M'N’ and V/ are the cardinality and kth element of the feature vector V*/ respectively.
Nota bene to avoid the problem of underflows during the calculation of heoprr, and heoarap, the sum of
the log likelihoods is taken instead of the product of the likelihoods [12].

2.1.3. Bar Detector

The two previous detectors have been defined to exploit intensity information and also the frequency of
intensity values within a window. A final piece of information that can be exploited in the classification
process is the arrangement of intensity values within the local window of spectrogram pixels. The inde-
pendence assumption made in the co-Bayes methods, defined previously, means that they only take into
account the presence of multiple track pixels within the window and not the arrangement of these pixels.
Thus two disjoint pixels in a window that have high membership to the track distribution will be classified
just as two pixels of the same value arranged in consecutive locations. The latter of the two is most likely
to be the result of a track being present in the window and the former the result of random noise. This
subsection describes a feature detector that exploits all the information that has been so far outlined. A
simple exhaustive line detection method is described that is able to detect linear features at a variety of
orientations and scales (width and lengths) within a spectrogram [30]. In accordance with the detectors
in this section, this detector can also be viewed as ‘unconstrained’ because it detects all variations of the
parameters defining the arrangement of pixels belonging to a track within a window in an exhaustive fashion
and it also performs this analysis upon the original unprocessed data.

First, consider the detection of an arbitrary fixed-length linear track segment and the estimation of its
orientation (subsequently this will be extended to include the estimation of its length). The process of
detection and inference proceeds as follows: a rotating bar is defined that is pivoted at one end to a pixel
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Figure 4: The bar operator, having the properties: width w, length [ and angle 6.

g = [z4,Y4], where 2z, € {0,1,...,M —1} and y, € {0,1,..., N —1}, in a spectrogram S, such that g € S
where s = [z5,ys], s € {0,1,...,M — 1} and ys € {0,1,..., N — 1}, and extends in the direction of the !
previous observations, see Figure 4. The values of the pixels that are encompassed by the bar template are
defined by the set F = {s € S: P(s,0,l) A P,(s,0,w)}, where

Pi(s,0,]) < 0<[cos(d),sin(9)][s —g]T <1
P,(s,0,w) <~ |[fsin(9),cos(9)][s fg]T| <7, (12)
and where 6 is the angle of the bar with respect to the x axis (varied between —% and 7 radians), w is the
width of the bar and [ is its length. The pixels in F' are summed, such that

B(6,1,w) = % > f. (13)

fer

To reduce the computational load of determining P, (s, 6,1) and P;(s, 8,1) for every point in the spectrogram,
s can be restricted to s = 25— ({+1),..., 24+ (—1) and ys = yg, ..., Yy + (I — 1) (assuming the origin is in
the bottom left of the spectrogram) and a set of templates can be derived prior to runtime to be convolved
with the spectrogram. The bar is rotated through 180 degrees, § = [~7, 7], calculating the underlying
summation at each A6.

Normalising the output of B(#,1,w) forms a brightness invariant response B(6,1,w) [40], which is also

normalised with respect to the background noise, such that

B(0,1,w) =

1
5 [BO.Lw) — (B (14)
where o is the standard deviation of the response and p its mean.

Once the rotation has been completed, statistics regarding the variation of B(6, [, w) can be calculated to
enable the detection of the angle of any underlying lines that pass through the pivoted pixel g. For example,
the maximum response, such that

0, = argmax B(0,1,w). (15)
0

Assuming that the noise present in a local neighbourhood of a spectrogram is random, the resulting responses
will be low. Conversely, if there is a line present, the responses will exhibit a peak in one configuration,

9



30

Figure 5: The mean response of the rotated bar operator centred upon a vertical line 21 pixels in length (of
varying SNRs). The bar is varied in length between 3 and 31 pixels whilst its width, w, is fixed at 1 pixel.

as shown in Figure 5. Thresholding the response at the angle B(6;,1,w) allows these cases to be detected.
This threshold will be chosen such that it represents the response obtained when the bar is not fully aligned
with a track segment.

Repeating this process, pivoting on each pixel g in the first row of a spectrogram and thresholding, allows
for the detection of any lines that appear during time updates.

This process will now be extended to facilitate the detection of the length [. For simplicity, and without
loss of generality, the line’s width is set to unity, i.e. w = 1. To estimate the line’s length Equation (15) is
replaced with

0, = arg max Z B(9,1,w), (16)
leL

where L is a set of detection lengths, to facilitate the estimation of the angle over differing lengths. Once
the line’s angle 6; has been estimated B(f;,[,w) is analysed as [ increases to estimate the line’s length.

The response of B is dependent on the bar’s length, as this increases, and extends past the line, it follows
that the peak in the response will decrease, as illustrated in Figure 5. The length of a line can therefore be
estimated by determining the maximum bar length in which the response remains above a threshold value:
l; = max(L,), where L, is defined such that

L,={leL:BO,l,w)> Zmax(é(@l,l,w))}. (17)

An arbitrary threshold of 3/4 of the maximum response found in B(6),1,w) is taken (the threshold value
could alternatively be learnt in a training stage).

Length Search. The estimation of a line’s length using the linear search outlined above is particularly
inefficient and has a high run-time cost. To reduce this, the uniform search strategy is replaced with the
more efficient binary search algorithm outlined in Algorithm 1. Implementing the search in this way reduces
the associated search costs from O(n) to O(logn), allowing searches to be performed for a large number of
line lengths. The same algorithm can be used to search for the line’s width, further reducing the cost.

2.2. ‘Constrained’ Feature Detectors

A limitation of the ‘unconstrained’, correlation detection methods is that they are computationally
feasible only for models with few parameters and small amounts of data. As the number of parameters
increase, the size of the search space increases exponentially—forming an intractable solution. For example,

10



Algorithm 1 Bar length binary search

Input: /iy, the minimum length to search for, lhigh, the maximum length to search for, T, a threshold, 6,
the line’s orientation, S, a spectrogram image

Output: [;, the length of an underlying line.

1: if B(Gl, llow; w) > T then

2: Plow < llow +1

3: Phigh < Zhigh +1

4: while Plow 7é Zlow N Phigh 7é lhigh do
5: Dlow < llow

6: Dlow < lhigh

7. | ¢ | Howthia |

8: if B(6;,1,w) > T then

9: liow < 1
10: else {the line’s length has been exceeded}
11: lhigh 1
12: end if
13: end while
14: I} < low
15: else {a line does not exist}
16: [} <0
17: end if

18: return [

a simple deterministic sinusoidal model contains five free parameters: fundamental frequency position;
scaling; track amplitude; phase; and frequency, and which requires a solution of O(n%) complexity.

Dimensionality reduction techniques remove potentially unneeded information and therefore reduce the
search space by simplifying the model or, alternatively, the data. This is an important step in the classifi-
cation process as the act helps to avoid the curse of dimensionality [12]; a problem that states that for each
additional dimension, exponentially more samples are needed to span the space. Moreover, data that has
some underlying low-dimensional structure may be embedded in high-dimensional space and the additional
dimensions are likely to represent noise [6]. If these additional dimensions can be removed, leaving the
low-dimensional structure intact, the problem is simplified.

As outlined earlier, these methods should not achieve the performance of the ‘unconstrained’ detectors
due to information loss. Nevertheless, the increase in computing performance, and the non-specificity that
occurs as a result of the problem simplification (‘unconstrained’ detectors are specific to detecting structures
that are dictated by their models) merits their use.

A low-dimension subspace is typically learnt by supervised learning methods and as such can be derived
in two ways: data-based and model-based. Data-based methods determine the subspace using real examples
of the data to be classified by constructing a training set. This training set could contain noise and random
variations of the feature that occur in the real world, however, it is often difficult to construct a training set
that fully represents these complex variations. On the other hand, model-based methods generate the data
used for training from a model and, therefore, are limited to the model’s ability to represent the complexity
of the problem. This subsection presents feature detection methods that are examples of both approaches.

2.2.1. Data-Based Subspace Learning

It is common in the area of machine learning that a classification, or decision, is based upon experience
[37]. The experience can take the form of a data set, a training set, which contains examples of the data
to be classified and labels describing the class to which the examples belong. This is what is referred to as
data-based learning. This data set should encompass the primary variations that are possible in the data
so that the classifier is able to learn the underlying process that generates the data [12]. In the problem of
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Figure 6: Windowed spectrogram PCA eigenvalues. The eigenvalues were determined using a data set of
1000 samples data samples of each class taken from spectrograms having a mean SNR of 8 dB.

remote sensing, data is scarce and it may not be possible to construct such a training set. Consequently,
techniques that utilise such machine-learning methods may be limited in their ability to generalise to unseen
complex track structures.

The window function outlined in Section 2.1.2 splits the spectrogram into overlapping windows and con-
structs high-dimensional feature vectors from the intensity values contained within these windows. Feature
vectors from multiple windows concatenated together form a set of data that can be used to train and test
the classification algorithms presented in this subsection.

Explicit Dimension Reduction. Dimensionality reduction techniques have been investigated throughout the
history of pattern recognition. They offer the ability to visualise high-dimensional data and to simplify the
classification process, for reasons previously outlined.

Recently there has recently been a renewed interest in the development of dimensionality reduction tech-
niques, with particular application to high-dimensional data visualisation. Recent algorithm contributions
are numerous and include, to name but a few: Laplacian eigenmaps (LE) [4], local tangent space aligning
(LTSA) [53], essential loops [33], neural networks [19], t-SNE [49], and general graph based frameworks
to unify different dimensionality reduction techniques [51]. Nevertheless, implemented as batch techniques,
these methods require all training and testing samples to be given in advance. Embedding a novel data point
into the space requires a complete recalculation of the subspace—a computationally expensive process. In
recent years there has been a move to address this issue and researchers are introducing incremental learning
algorithms [5, 31, 21]. It is beyond the scope of this manuscript to evaluate these methods with applica-
tion to this data and therefore this subsection concentrates on evaluating the well established techniques of
principal component analysis (PCA) [42, 15], linear discriminant analysis (LDA) [3] and neural networks.
These methods are suitable for classification problems as they calculate basis vectors that allow novel data
points to be projected into the low-dimensional space with no added computational burden.

Statistical methods such as PCA and LDA attempt to determine a subspace in which a measure of
the data’s variance is maximised. The key difference between the two methods is that they measure the
variance in different manners: PCA takes the data’s global variance, and LDA the within and between class
variances. Consequently, both methods determine subspaces that represent different features of the data,
PCA globally extracts the most significant features from the data set whereas LDA attempts to extract the
most significant features that separate the classes. Neural networks incrementally determine a subspace in
which the sum-of-squares error of a training or validation set is at a minimum [6]. If the correct network
and activation functions are applied to the data, this translates into a projection in which the properties of
the data that are most relevant to learning the target function are captured [38].

The eigenvalues obtained by applying principal component analysis to a training set comprising 1000
data samples (3 x 21 pixel, width and height, window instances) of each class randomly selected from
a spectrogram having a SNR of 8dB are presented in Figure 6. A majority of the data’s variance is
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Figure 7: A windowed spectrogram projected onto the first two principal components. The noise, which
is clustered between the three spokes, is represented as dots. Increasing the SNR of a track increases it’s
distance from the noise cluster; windows containing a 3 dB track are represented as a horizontal crosses and
those with 6 dB by diagonal crosses.

contained within the first three principal components and the remaining components have little variance.
Figure 7 presents the distribution of windows containing vertical tracks and noise (selected randomly from
spectrograms having SNRs of 3dB and 6 dB) after projection onto the first two principal components. In
this form the classes are neatly clustered. A high proportion of the noise is clustered in a dense region and
three protrusions from this cluster contain the data samples from the track class—each of the protrusions
corresponds to each of the three possible positions of a straight vertical track in a window three pixels wide.
As the SNR of the track contained within a window increases, its projected distance from the noise class
increases proportionally. There is some overlap between low SNR track data points and the noise cluster,
which emphasises the problems of separation between these two classes found earlier in the investigation.
The windows containing high SNR tracks (greater than 3dB) are well separated from the noise in this
projection.

Figure 8 presents the eigenvalues derived through LDA. The eigenvalues of LDA when applied to the
same data set as used previously for PCA indicate that all of the variance can be represented with one
component. The result of projecting the data onto the first two components is presented in Figure 9. The
samples from different locations of the window are not as cleanly separated as was found with PCA. The
most likely explanation for this is that LDA maximises the between-class variation and not the data’s global
variance. Nevertheless, the separate class clusters are preserved in the projection. As with PCA, LDA cannot
separate the overlap between the low SNR track samples and the noise cluster, but high SNR samples are
still well separated from the noise.

Implicit Dimension Reduction. Neural networks perform dimensionality reduction when in specific topolo-
gies [23]—a three-layer multi-layer perceptron (MLP) that has a hidden layer with fewer nodes than the
input and output layers compresses the data—thus implicitly reducing the data’s dimensionality [6]. The
same is true for the radial basis function (RBF) network, in which radial basis functions are used as the
activation functions. The self-organising map (SOM) [27, 28] performs dimensionality reduction in a very
different manner. The SOM reduces the dimensionality in a manner similar to the explicit dimensionality
reduction techniques discussed in the previous section. It often takes the form of a two-dimensional array of
nodes that use a neighbourhood function to model the low-dimensional structure in high-dimensional data.
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Classification Methods. To quantitatively evaluate the effectiveness of dimensionality reduction and to de-
termine the applicability of classifiers to this problem, the performance of a range of classifiers is evaluated
in this section. Each of the classifiers will be evaluated using the original, high-dimensional, data in addition
to the low-dimension data.

The following classifiers are evaluated in this section: the radial basis function (RBF); self-organising
map (SOM); k-nearest neighbour (KNN); and weighted k-nearest neighbour (WKNN). In addition to these,
simpler distance based classification schemes are also evaluated. The class ¢ that minimises the distance d,
for each feature vector V¥, is taken to be the classification of the feature vector, such that

* = argmin d(VY, p,). (18)
ceC

The distance measure d can be taken to be the Euclidean distance dy, or the Mahalanobis distance ds, such
that

(VI ) =\ (VI — )T (VI — ) (19)

da (VI 1) =/ (VI — )T (VY — ) (20)

where V" and p, and £ are the mean vector and the inverse of the covariance matrix of each class ¢ in the
training set, respectively. When the Mahanalobis distance is in use and the covariance matrix is diagonal,
the normalised Euclidean distance is formed, which will be evaluated as the third distance measure ds.
Furthermore, the structure observed in the low-dimensional representations obtained using PCA and
LDA suggest that the noise class can be modelled using a multivariate distribution. An additional classifier
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Classifier Window PCA 2D PCA 3D PCA 4D PCA 5D LDA 2D LDA 3D LDA 4D LDA 5D

KNN — tr 77.8 75.9 79.5 78.5 79.0 78.4 78.0 78.4 78.0
KNN — te 81.5 78.5 83.3 82.7 83.1 80.1 80.6 80.8 79.6
WKNN — tr 775 76.1 79.7 79.5 79.5 79.1 78.0 77.1 78.0
WKNN — te 80.8 77.0 83.4 83.1 82.2 81.0 80.6 0.3 80.5
RBF — tr 75.6 73.0 77.3 76.6 76.0 76.5 75.6 76.6 75.6
RBF — te 81.8 81.9 84.4 83.8 83.3 81.8 82.1 81.8 80.8
SOM — tr 80.4 78.8 81.3 81.5 80.5 80.3 80.2 79.2 80.2
SOM — te 79.6 74.3 80.8 79.9 80.5 7.5 78.3 77.0 76.1
Euclid. (dy) — tr 76.4 63.1 74.0 74.5 75.6 76.7 75.4 76.6 76.3
Euclid. (d1) — te 81.1 66.4 81.2 81.5 81.0 82.3 81.4 80.5 80.9
Mahalanobis (dz) — tr 54.9 60.2 71.2 69.4 67.3 75.8 71.6 71.1 69.4
Mahalanobis (d2) — te 54.6 65.3 81.2 77.5 77.0 81.8 79.7 79.1 75.8
N. Euclid. (d3) — tr 52.4 59.8 68.9 66.0 62.6 75.7 73.2 71.2 68.8
N. Euclid. (d3) — te 54.0 63.3 78.6 74.4 69.9 82.0 81.0 78.6 77.1
Gaussian (G(V7)) — tr 50.1 66.1 71.8 73.5 74.8 61.0 65.6 67.4 69.5
Gaussian (G(V¥)) — te 50.3 76.1 81.5 82.0 82.2 68.1 72.3 74.4 74.8

Table 1: Classification percentage on training (tr) and test (te) data using the proposed features. The
highest classification percentage for each classifier is highlighted in bold and the highest percentage for each
feature is underlined. The standard deviations of these results are presented separately in Table 2.

is therefore formed by modelling the noise class with a multivariate Gaussian distribution,

17\ __ _ - g Twx—1 g

where || and > ! are the determinant and inverse of the noise classes’ covariance matrix, respectively.
The output of which can be thresholded to determine the feature’s membership to the noise class, such that

hs otherwise. (22)

h{ hy if G(VY) > ¢,

The data used during this experiment was as follows; the training set consisted of 6732 samples of 3 x 21
pixel windows (width and height) taken from spectrograms that contain vertical tracks having SNRs of
0dB. This window size was chosen as during preliminary experiments it was found to provide acceptable
results (see Appendix A, Figure A.15). The test set, containing the same number of samples and window
configuration, contained examples of tracks having an SNR of 0, 3 and 6 dB. It was found during preliminary
experimentation that the multilayer perceptron neural network does not perform well when compared with
the RBF and SOM networks and therefore results obtained using this classifier are not included in this
manuscript.

Each of the classifier’s parameters was chosen to maximise generalisation performance and was deter-
mined through preliminary experimentation, these are as follows. The KNN and WKNN classifier used ten
nearest neighbours to determine the class of the novel data point. In the event of a tie, a random classi-
fication was made. An RBF classifier with five Gaussian activation functions and two training iterations
has been implemented as this was found to perform well in preliminary experimentation. The RBF basis
centres were determined by k-means clustering [6]; the variance of the basis functions were taken as the
largest squared distance between the centres. The RBF weights were determined using the pseudo inverse
of the basis activation levels with the training data [6]. A rectangular lattice of SOM nodes was used—the
size of which was determined automatically by setting their ratio to be equal to the ratio of the two biggest
eigenvalues of the data set [28]. The Gaussian model defined in Equation (21) was fitted to the noise class
by calculating its mean and standard deviation.

The classification performance of each classifier applied to the original data and the same data projected
into a low-dimensional subspace determined through PCA and LDA is presented in Table 1 (and the standard
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Classifier Window PCA 2D PCA 3D PCA 4D PCA 5D LDA 2D LDA 3D LDA 4D LDA 5D

KNN — tr 2.50 4.77 2.72 4.24 2.73 3.15 2.95 2.61 3.83
KNN — te 3.44 8.78 2.72 3.29 2.84 2.92 3.52 3.61 3.79
WKKN — tr 3.87 5.07 2.79 4.17 3.69 2.69 2.66 3.21 4.13
WKNN — te 4.44 7.44 1.97 3.58 2.51 4.53 2.37 4.48 3.67
RBF — tr 4.40 5.16 4.19 4.02 4.47 2.45 2.91 2.40 2.68
RBF — te 2.92 5.31 2.77 2.97 2.83 3.73 3.11 2.64 4.54
SOM — tr 1.74 3.06 2.41 2.67 1.97 3.22 3.08 2.73 3.52
SOM — te 4.63 7.00 3.80 3.55 5.29 6.84 5.35 3.78 4.55
Euclid. (dy) — tr 2.08 11.03 2.77 3.13 3.02 2.59 3.57 3.17 3.90
Euclid. (d1) — te 2.56 13.11 3.50 2.29 3.29 1.42 3.66 2.99 3.01
Mahalanobis (d2) — tr 2.47 14.06 2.90 3.35 3.80 3.27 2.94 4.38 3.45
Mahalanobis (d2) — te 3.12 19.96 2.92 2.00 4.52 2.21 3.06 4.14 5.50
N. Euclid. (d3) — tr 1.57 10.14 4.17 5.68 4.66 3.37 3.49 4.75 3.43
N. Euclid. (d3) — te 3.05 14.09 4.54 7.64 10.69 2.10 3.77 4.83 3.19
Gaussian (G(V7)) — tr 0.32 6.74 2.82 4.09 3.30 5.92 5.80 4.75 5.00
Gaussian (G(V¥7)) — te 0.50 10.69 2.59 4.80 2.07 2.84 5.77 5.47 3.07

Table 2: Standard deviation of the classification performance presented in Table 1.

deviations attributed to these results are presented in Table 2). These results demonstrate that classification
performance using these features can reach 84% with a standard deviation of 4% when applied to the test
dataset (using the RBF classifier in a three-dimensional subspace derived through PCA). The classification
performance using the training data set is lower than that observed using the test data set as the classifiers
were trained using more complex data than that with which they were tested. The training data comprised
of instances of windows containing noise and track having an SNR of 0dB and, upon this data, the majority
of classifiers obtain a classification percentage between 71 and 78% with standard deviations between 2% and
5%. These results demonstrate that the dimensionality reduction techniques extract meaningful information
from the data even at low SNRs. By testing the classifiers upon a dataset comprising windowed instances
of noise and tracks that have an SNR greater than or equal to 0dB (in this case 0, 3 and 6 dB) it is possible
to demonstrate that the dimensionality reduction techniques allow the classifiers to generalise to higher,
unseen, SNRs while trained upon track instances that have very low SNRs.

Several of the classifiers perform badly when applied to the original windowed data; the normalised
Euclidean, Mahalanobis, and Gaussian classifiers all have a classification performance between 50% and
55% upon the original test data. Nevertheless, when the data is projected into a lower dimension subspace
derived through PCA or LDA this performance increases to between 63% and 76%. This indicates that the
dimension reduction techniques have removed noise present in the original feature vectors and have allowed
the, relatively simple, classifiers to correctly model the data’s structure. Furthermore, this has reduced the
performance gap between these and the more complicated classifiers.

It was shown by Kendall et al. [25] that the generalisation performance of a neural network classifier,
when applied to this problem, can be further improved through Ockham’s networks [24]. These experiments,
however, were conducted, and shown to perform best, on a low number of training samples (121 examples)
and therefore this technique was not tested in this section.

2.2.2. Model-Based Subspace Learning

The previously evaluated techniques determine a low-dimension subspace using examples of the data to
be classified and in which the classification performance of this data is optimised. An alternative approach
to calculating the subspace is by utilising a model describing the data and not the data itself—a feature
detector in this vein is described by Nayar et al. [40]. In such techniques the data used to train the detection
mechanism is generated from a model that is constructed such that it describes each observable variation
that can exist in the problem. Training the detection mechanism in this way allows the exact underlying
nature of the problem to be captured by the learning technique.
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(a) Bar detection method. (b) Parametric manifold detection method.

Figure 10: Spectrogram detections (2.18dB SNR in the frequency domain) using the proposed bar method
and the parametric manifold detection method.

The feature detector proposed by Nayar et al. [40], like the bar detector proposed in Section 2.1.3, is a
model-based feature detection method. The primary difference between the two is that Nayar et al. propose
to construct a sampled manifold in a feature space derived through PCA. Detection is achieved by calculating
the closest point on the manifold to a sample taken from an image (nearest neighbour classification) and
thresholding the distance if necessary. The bar detector performs the detection without the construction of
the manifold, instead, the image sample’s responses as the model is varied are analysed and the best fit is
found from the match between sample response and model. This avoids the loss of information that is an
effect of dimensionality reduction. This equivalence justifies a direct comparison between the two methods
and, more importantly, a comparison between an ‘unconstrained’ and a ‘constrained’ detector that model
the data equivalently and differ only in the presence and absence of a dimension reduction step.

The execution times of the proposed method and that outlined by Nayar et al. were measured within one
398 x 800 pixel (N x M) spectrogram using Matlab 2008a and a dual-core 2.0 GHz Intel PC. As the method
proposed by Nayar et al. is not multi-scale the length of the bar is fixed L = 13 to facilitate a fair comparison,
additionally, the parametric manifold was constructed using the same parameter range and resolution as used
in the bar model. The bar detector performed the detection in 5.5 min whereas the comparison performed
the detection in 3.4min and the resulting detections can be seen in Figure 10. Although this is far from an
exhaustive test it does highlight a benefit of dimension reduction—the duration of the detection process is
reduced with the complexity of the model. In the detection results presented the threshold for each method
was chosen such that a true positive rate of 0.7 was achieved. This allows equivalent false positive rates to
be compared and it becomes apparent that the speed offered by the ‘constrained’ method is achieved at the
price of detection performance—the detector utilising the dimension reduction technique results in a false
positive rate of 0.163 and the bar detector a false positive rate of 0.025.

2.3. Harmonic Integration

An additional source of information that the detection process can exploit, other than local information as
previously explored, arises from the harmonic nature of acoustic energy. Enhancing the detection robustness
using this information was first explored by Barrett and McMahon [2], however, subsequent research has
ignored this and instead has focussed on detecting individual tracks.

The acoustic signal emitted by a source comprises of a fundamental frequency and its harmonic series at
frequencies that are integer multiples of the fundamental. Within a spectrogram these harmonic frequencies
result in multiple tracks at specific positions. Recall that noise is an uncorrelated phenomenon and is
therefore not harmonic in nature. A transformation can be defined upon the spectrogram, or output of a
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Figure 11: An example of the harmonic transform applied to a spectrogram. Intensity is proportional to
power in voltage-squared per unit bandwidth, that is V? /Hz.

detector, which integrates the energy or detection from harmonically related positions, such that

h
1
Siy =7 D Sl (23)
k=1
fori=1,2,...,N and j = 1, 1%, 1%, ..., M and where [kj] < M, the transformed spectrogram is S’ =

[s;]nxnn, the notation [kj] denotes the nearest integer function and the term h controls the number of
harmonics that will be integrated in the transformation. The x-axis of the transformation output is related
to fractional frequencies in the original spectrogram, this accounts for the frequency quantisation that occurs
during the FFT process. Quantisation rounds fractional frequencies into the nearest quantisation bin and
therefore the position of tracks harmonically related to a fundamental frequency may not reside in bins that
are integer multiples of the fundamental frequency. An example of the output of this transformation when
applied to a spectrogram is presented in Figure 11. It results in a more prominent fundamental frequency,
however, the transformation has actually decreased the spectrogram’s SNR from 6.56 dB to 6.23 dB. The
reason for this is concealed in the distribution statistics of the intensity values. The mean values of the
two classes are transformed closer together—being 41.48 and 7.50 in the original spectrogram and 39.82
and 7.66 after the transformation (signal and noise respectively)—and the ratio between these forms the
SNR estimate (Section 3.1). Nevertheless, the SNR estimate does not take into account the variance of
the two classes and the transformation has a large effect on this. The standard deviations of the classes’
intensity values in the original spectrogram are 25.50 and 7.55 and in the transformed spectrogram these
values are roughly halved to 12.00 and 3.85—the transformation has reduced the overlap between the two
classes, aiding in their separability.

3. Evaluation of Feature Detectors

The feature detectors that are outlined in this paper have been evaluated along with several common line
detection methods found in the literature: the Hough transform [11] applied to the original grey-scale spec-
trogram; the Hough transform applied to a Sobel edge detected spectrogram; convolution of line detection
masks [18]; Laplacian line detection [18]; Line Segment Detector (LSD) [50]; and pixel value thresholding
[18]. Due to its simplicity and comparable performance to more complex methods, the classification scheme
that combines PCA and the Gaussian classifier outlined in Section 2.2.1 will be evaluated here.

During preliminary experimentation it was found that forming a six dimensional subspace using —0.5dB
(mean SNR) samples provides the best detection performance (see Appendix A, Figure A.14) and, as
discussed in Section 2.2.1, that using a window size of 3 x 21 (width and height) provided acceptable results
(Appendix A, Figure A.15).
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The remaining operators are now formally defined and are all based upon the convolution operator which

is defined such that
ef
(S*g d Z Z Si—mn,j—mYnm; (24)

n=—wm=—w

wherew = |W/2|, W € Nis odd and is the size of the convolution filter (the size is equal in both dimensions),
the origin of the filter is the central element, and where i =w+1,..., N—wand j=w+1,..., M —w.
The convolution output was taken to be

S = [si;IN—2wxM—20 = [gleaé( |(S * g)ijl]N—20x M—20, (25)

where G = {g,,95,93,9,} and the line detection masks used during the convolution experiments were
defined such that

-1 2 -1 -1 -1 -1 2 -1 -1 -1 -1 2
g =|-12 -1],g,=| 2 2 2 |,g3=|-1 2 —1],g,=1]-1 2 =11].(26)
-1 2 -1 -1 -1 -1 ~1 -1 2 2 -1 -1

The Laplacian operator can be defined as the following kernel and implemented through a convolution
operation

S = [(S * 9)ij]N—20x M—20, (27)
where
0o 1 0
g=|1 -4 1. (28)
0 1 0

The Sobel edge detector, used as a preprocessing stage to the Hough transform, is implemented as the
magnitude of the gradient of two convolution operations, such that

S = {\/S*g1 +\/S*92 } (29)

N —2wXx M—2w

where
-1 0 1 1 2 1
g=|-2 0 2 |,9,= 0 0 0 . (30)
-1 0 1 -1 -2 -1

The performance of each feature detector can be characterised by determining its receiver operating
characteristic (ROC) [13]. A two-dimensional ROC graph is constructed in which the true positive rate
(TPR) is plotted in the x-axis and false positive rate (FPR) is plotted in the y-axis. The TPR (also known
as sensitivity, hit rate and recall) of a detector is calculated such that

TP
TPR= ——— 1
R TP+ FN (31)
where TP is the number of true positive detections and F'IN is the number of false negative detections. The
FPR (also known as the false alarm rate) is calculated such that

FP
FPR= ————— 32
FP+TN (32)
where F'P is the number of false positive detections and T'N is the number of true negative detections. For
a full introduction to ROC analysis the reader is referred to Fawcett [14], which appears in a special issue
of pattern recognition letters dedicated to ROC analysis in pattern recognition.
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Track Type Parameter Values

Vertical Signal Duration (s) 100
SNR (dB) —1-7
Oblique Track Gradient (Hz/s) 1,2, 4,8, & 16
Signal Duration (s) 100
SNR (dB) —1-7
Sinusoidal Period (s) 10, 15, & 20
Centre Frequency Variation (%) 1,2,3,4,& 5
Signal Duration (s) 200
SNR (dB) —2-6

Table 3: Parameter values spanning the synthetic data set.

3.1. Ezxperimental Data

A data set containing 748 spectrogram images is generated for use in the evaluation of the proposed low-
level feature detectors (this data set is available from http://www-users.cs.york.ac.uk/~tomal/data_
sets/). The spectrograms are formed by generating synthetic acoustic signals and transforming these to
form spectrograms using the process described. Time-series signals are created and contain a fundamental
frequency of wf = 120Hz (at constant speed), a harmonic pattern set Py = {1,2,3,4,5}, and have a
sampling rate of fs = 4000 Hz (to ensure high fidelity in the representation of frequency modulations). The
fundamental and harmonic series are chosen to be representative of values true to small boat observations.
Spectrograms are generated from these using a time resolution of one second with a half-second overlap, and
a frequency resolution of 1 Hz per STFT bin. The three variations of track appearance that are commonly
seen in this problem are: sinusoidal, representing a Doppler shifted signal; vertical, representing a constant
engine speed; and oblique, representing an accelerating engine. A number of noise-only spectrograms were
also included in the data set. A description of the parameter variations used for these three signal types
is outlined in Table 3. For each parameter combination, one spectrograms is generated to form a test set,
and another to form a training set to facilitate the application of the machine-learning techniques. The
parameters described in Table 3 determine the appearance of each type of track and are defined as:

Period—The time in seconds between two peaks of a sinusoidal track;

Centre frequency variation—The amplitude of a sinusoidal track relative to its frequency location,
expressed as a percentage of the track’s frequencys;

S_NR—The frequency domain SNR, described by SNR = 10log;, (%) where P, = \Tlt\ Z(i,j)eP,, Sij,
P, = le‘ >(ijyep, Sij and where Py = {(4, j)|s;; belongs to a track} is the set of points related to the

frequency components of the signal such that P; # () and P, = {(4,)|(¢,7) ¢ P:} is the set of points
which represent noise such that P, # ().

Track Gradient — The amount of change in the track’s frequency relative to time.

The values of these parameters are chosen to cover meaningful real-world observations. To ensure an accurate
representation of the SNR, the final value is calculated within the resulting spectrogram and therefore may
deviate from the value specified (all SNRs quoted within this paper are calculated in this manner).

Ground truth spectrograms were created by generating a spectrogram for each parameter combination
that have high SNRs (approximately 1000 dB), and then thresholding these to obtain binary bitmaps. These
have the value one in pixel locations where a track is present in the related spectrogram, and zero otherwise.
The data set is scaled to have a maximum value of 255 using the maximum value found within the training
set, except when applying the PCA detector, when the original spectrogram values are used.

During spectrogram image’s construction, the sampling frequency, fs, of the time-domain signal should be
chosen with respect to the highest frequency component to be detected (according to the Nyquist frequency)
to avoid aliasing. Assuming that this guideline is adhered to, each narrowband frequency component within
the allowed bandwidth will be represented in the spectrogram as a track and will therefore be detectable
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Detection Method Parameter Value

Laplacian & Convolution  Filter size (pixels) 3x3
Threshold value range 0-255 (step 0.2)
Bar (fixed-scale) width w (pixels) 1
length [ (pixels) 21
angle 6 (radians) — %% (step 0.05)
Threshold value range 0-255 (step 0.5)
Bar (muti-scale) width w (pixels) 1
length  (pixels) 6,7,8,9,10, 12,14, 16, 18 & 20
angle 6 (radians) — %% (step 0.05)
Threshold value range 0-255 (step 0.5)
Pixel Thresholding Threshold value range 0255 (step 0.2)
PCA Window size M’ x N’ (pixels) 3x21
Threshold value range 0-1 (step 0.001)
Data dimensionality 2
Nayar width w (pixels) 1
length [ (pixels) 21
angle 6 (degrees) — 5% (step 0.05)
Threshold value range (distance to manifold) 0-10 (step 0.1)
Data dimensionality 8
MLE & MAP A 7.2764
a 1.1439
8 20.3073
co-MLE & co-MAP Window size M’ x N'(pixels) 3x3
A 7.2764
a 1.1439
8 20.3073
Hough Threshold value range (peak detection threshold)  0.5-1 (step 0.001)

Table 4: The parameter values of each detection method that were used during the experimentation.

using low-level feature detection methods such as those outlined in this paper. A further consideration
when constructing the spectrogram is the choice of the frequency resolution of the STEFT, this should be
chosen with respect to the bandwidth of the expected frequency components so as to not spread the tracks
needlessly (which will also reduce their SNR and, in turn, make them harder to detect). Nevertheless, the
multi-scale line detectors outlined and evaluated in this paper are able to detect tracks with varying widths
and are therefore applicable to the detection of tracks with a single pixel width and those with greater
widths.

3.2. Results

In this subsection are presented the results obtained during experimentation upon the data set described
above. The implementations of the algorithms used during these experiments are available at http://
stdetect.googlecode.com. The parameters used for each method are described in Table 4 and the Gaussian
classifier using PCA was trained using examples of straight-line tracks and noise.

The ROC curves were determined by varying a threshold parameter that operates on the output of each
method—pixel values above the threshold were classified as signal and otherwise noise. The ROC curves for
the Hough transforms were calculated by varying the parameter space peak detection threshold. The TPR
and FPR for each of the methods were calculated using the number of correctly and incorrectly detected
track and noise pixels (discounting regions at the border of the images where detection is not possible). The
ROC curves are calculated over the whole data set described in Section 3.1, that is, combining results from
various SNRs. The performance of each detector at specific SNRs is presented in Appendix A, Figure A.16.

3.2.1. Comparison of ‘Unconstrained’ Detection Methods

One of the hypotheses proposed in this paper is as follows: as the amount of information made available
to the detection process is increased, the detector’s performance will also increase. Evidence for the validity
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Figure 12: Receiver operating characteristic curves of the evaluated detection methods. The true and false
positive rates are described by Equation (31) and Equation (32) respectively.

22



of this hypothesis is presented in the form of performance measurements for each detector described in this
paper, each of which acts upon a different amount and type of information, which is presented in Figure 12.

The MAP and ML detectors, operating on single-pixel values, achieve a TPR of 0.051 and 0.643, and a
FPR of 0.002 and 0.202, respectively (as no thresholding is performed ROC curves for these methods are
not presented). These results highlight the high class distribution overlap and variability in this problem.
The ML detector performs better than the MAP detector (although it also results in a higher FPR) due to
the very low a priori probability of observing the track class—the detector requires a very high conditional
probability for the decision to be made that the pixel belongs to the track class. These rates increase to
a TPR of 0.283 and 0.489, and FPR of 0.016 and 0.074 when the MAP and ML detectors are evaluated
within 3 x 3 pixel neighbourhoods (respectively). Again, the low a priori probability of the track class
hinders the MAP detector’s ability to detect tracks within the spectrograms as it does not reach the TPR
level of ML detector on single pixels. Nevertheless, the MAP detector’s TPR is increased when integrating
spatial information (at the expense of a slight increase in FPR). Moreover, spatial integration has reduced
the FPR of the ML detector quite dramatically, however, this is at the expense of a vast reduction of the
TPR. Therefore, spatial integration does increase the detector’s performance, however, due to the simplicity
of the detection strategies, this increase is manifested in either a large reduction in the FPR or a large
increase in the TPR, but not both. Finally, the bar detector was defined to exploit all of the information
available to a detector: the intensity, local frequency, and structure of the pixel values. Two forms of the
bar detector were evaluated, a multi-scale version and a fixed-scale version. The assumption of the feature’s
length in the fixed-scale implementation allows it to achieve a higher detection rate. This is in contrast to
the multi-scale version which empowers the detector to better fit piecewise linear features and approximate
curvilinear features, however, this increases the method’s sensitivity which impedes higher TPRs and FPRs.
Both detectors produce ROC curves that have large separations from existing line detection methods.

Taking an example TPR of 0.7 the best detectors are, in order of increasing performance: convolution
(FPR: 0.246); PCA (FPR: 0.213); bar multi-scale (FPR: 0.134); and bar fixed-scale (FPR: 0.102). These
results show that the combination of intensity information and structural information, rather than relying
on intensity information alone, increases detector reliability.

3.2.2. Comparison of ‘Constrained’ Detection Methods

The second hypothesis proposed in this paper was that ‘unconstrained’ detection methods will outperform
‘constrained’ detection methods. It was found that the feature detector proposed by Nayar et al. and the
fixed-scale bar detector would allow this comparison to be made, as they both utilise equivalent data models.
It can be seen in Figure 12 that the detection performance of the fixed-scale bar detector outperforms that
proposed by Nayar et al. over the full range of TPRs and FPRs, confirming the validity of this hypothesis.
It was found instead that the ‘constrained’ detection method that achieves the closest performance to the
bar-method was the Gaussian classifier using PCA. This indicates that the learning method is capturing the
correct type of information in the data set and results in a form in which it is faithfully represented and
modelled using the Gaussian distribution.

Of the other evaluated methods, the threshold and convolution methods achieve almost identical per-
formance over the test set. With the Laplacian and Hough on Sobel line detection strategies achieving
considerably less and the Hough on grey scale spectrogram performing the worst. It is possible that the
Hough on edge transform outperformed the Hough on grey scale due to the reduction in noise occurring from
the application of an edge detection operator. Nevertheless, both of these achieved detection rates that are
considerably less than the other methods. LSD achieves a TPR of 0.029 and a FPR of 0.001; the detection
strategy can be classed as a ’constrained’ detector as it is limited by its dependence upon the gradient
orientation in the image and therefore does not operate on the original data. In very low SNRs, such as
those encountered in spectrogram images, defining features in this way proves to be unreliable. None of the
existing methods that were evaluated had comparable performance to the ‘unconstrained’ or ‘constrained’
methods outlined in this paper.
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3.2.3. Harmonic Integration

To demonstrate the effectiveness of this simple transformation, the previous experiment is repeated
using the top performing detector, the bar detector, and this is applied to the transformed spectrograms,
S’, as defined by Equation (23) instead of the original spectrograms. As the harmonic set is integrated,
the detector’s performance is evaluated on the detection of the track corresponding to the fundamental
frequency and not all the frequency tracks as in the previous experiment. The results of this experiment,
in comparison to the detector’s previous performance, are presented in Figure 13 and they demonstrate the
vast improvement in the detector’s performance that is afforded by this relatively simple transformation.

4. Conclusions

This paper has presented a performance comparison within a group of novel and existing low-level
feature detection methods applied to spectrogram track detection. Initially, a group of ‘unconstrained’
feature detectors were defined so that each utilised increasing amounts of information from the spectrogram
when performing the detection and these were compared with each other. The information sources utilised
by each of these were: the intensity of an individual pixel, the intensity distribution within a window, and
the structural arrangement of pixels within a window. It was found that the ‘bar’ feature detector, which
utilises the structural and intensity information from within a window (and therefore incorporates all of
the available information), performed most favourably. Nevertheless, because of its exhaustive search, in
combination with a complex model, it was found to be computationally expensive. A consequence of these
findings is that the methods that are defined to operate on single pixel values, for example the solutions
utilising the hidden Markov model, multistage decision process and simulated annealing, that are present
in the literature cannot reach the performance of methods that utilise more information in the low-level
detection process.
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Subsequently, a group of ‘constrained’ feature detectors were defined that utilise machine-learning princi-
ples to simplify the detection process. These were also defined to utilise the maximum amount of information
available to facilitate their comparison to the ‘bar’ detector and were grouped into the categories of model-
based and data-based feature detectors; reflecting the source of the training samples used by their supervised
learning process. Due to the loss of information that is incurred by dimension reduction techniques these
feature detectors were not able to perform comparably to the ‘unconstrained’ ‘bar’ detector. Nevertheless,
a novel data-based feature detector that utilises principal component analysis was found to be the best per-
forming ‘constrained’ detector, in addition to reducing the computational complexity inherent in the ‘bar’
detector. This detector tackled the detection problem by specifically modelling the noise class, thus by-
passing some of the generalisation limitations that are inherent when applying machine-learning techniques
to limited training data (although the principal components are still dependent upon the track structure
represented by the training set). Furthermore, a comparison between an ‘unconstrained’ and a ‘constrained’
model-based feature detector, which have equivalent data models, found that the dimension reduction tech-
nique used in the ‘constrained’ detector, whilst reducing computational complexity, vastly reduces detection
abilities.

Finally, this paper presented a harmonic transformation for spectrograms. This allowed for an empirical
comparison between low-level feature detection with and without integrating information from harmonic
locations. It was shown that the transformation does not increase the separation between the means of
the track and noise classes but instead reduces the standard deviations of the classes—reducing the overlap
between the distributions. This effect was shown to offer a vast performance improvement when detecting
low-level features.
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