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ABSTRACT

Extending the literature on competition in the presence of cordon tolls, this paper explores

the implications of competition between two cities. The city authorities are assumed to

maximise the welfare of their own residents whilst taking advantage of tax export

mechanisms by charging traffic from the competing authority. The problem is posed as an

Equilibrium Problem with Equilibrium Constraints (EPEC) which is a special form of a Nash

game with a hierarchical structure. Employing a grid search to explore the response surfaces

and to determine the Nash Equilibrium toll levels, we demonstrate the possibility that there

may exist multiple local Nash solutions and that competition may lead to a sub-optimal

outcome for one or both authorities depending on whether there exists a stronger player. We

then consider the impact of elasticity of demand and other parameter assumptions on the

potential number of Nash solutions. Finally incentives for collusion are studied.

Key words: Networks, pricing, competition, Nash Equilibrium, Tolls

1. INTRODUCTION

There has been a strong focus in recent years on road user charging, with economic theory

suggesting benefits will accrue to a city from a combination of congestion relief and

recycling of revenues within the city (Walters, 1961). Beyond the theoretical benchmark of

full marginal cost pricing the design of practical charging schemes, such as those adopted by

UK local authorities in recent Transport Innovation Funds (Department for Transport, 2005;

Transport Select Committee, 2006) bids, have generally focused on pricing cordons around

single, mono-centric cities (Shepherd et al, 2008). It is possible in such cases to design the

location and level of charges for a cordon so as to systematically maximise the potential

welfare gain to the city (Shepherd and Sumalee, 2004; Sumalee et al, 2005), yet there is an

implicit premise here that the city acts in isolation.

In this paper we consider the implications of competition between cities when each considers

the introduction of fiscal demand management measures by setting road tolls. In the context

of toll roads, several authors have studied the welfare implications of competition between a

public and private operator (e.g. Verhoef et al, 1996; De Palma and Lindsey, 2000; Yang

and Woo, 2004; Zhang and Levinson, 2005; Yang et al, 2009). The focus in these studies is

on the impacts of alternative ownership regimes, and of public versus private control in the

form of either monopoly pricing or competitive Nash equilibria. Xiao et al, (2007) extended

these works by bounding the inefficiency of private toll road competition for a network with

parallel links.
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In addition to the often discussed issue of competition among profit motivated organizations,

there also exist competitive issues between public sector organisations. Proost and Sen

(2006), used the TRENEN (Proost and Van Dender 2001) strategic model to investigate the

outcome of a Nash Game between a local authority in control of parking charges and

regional government in charge of a toll cordon. They found that the city was incentivised to

over-charge for parking. Tax exporting behaviour is a concept from the public economics

literature (e.g. Stiglitz, 2000). In the context of using tolls as fiscal instruments, the argument

is that local governments wish to score political points with their residents and do so by

laying the burden of paying the toll onto “foreign” (i.e. non-resident) users in the local area.

This tax exporting behaviour is a theme which has continued to recur in the literature e.g. De

Borger et al (2007), Ubbels and Verhoef (2008), Guhenmann et al (2011).

One limitation of the study by Proost and Sen (2006), which the authors recognized, was that

the TRENEN strategic model does not embody a network and is thus unable to take the route

choice considerations of users expliclity into account. The modelling framework in

Gühnemann et al (2011) was a tolling game between two authorities, one controlling a

cordon surrounding the city of Sheffield in the UK which was plagued by air quality

problems and another surrounding the Peak district which had the problem of serious through

traffic. One key conclusion of this study was that the Peak district tended to act as a net tax

exporter because traffic had no alternative but to travel through the Peak district as

alternative routes were even more costly in terms of travel time and distances. In addition, it

was found that the Nash game tended to result in the transfer of environmental problems

from one jurisdiction to affect other areas and this lent support to the argument that some

form of global regulation was necessary since left to their own devices, authorities might be

tempted to play “beggar thy neighbour” policies which would have a detrimental impact on

global welfare. De Borger et al (2007) and Ubbels and Verhoef (2008) examined the issues

of competition between countries/regions setting tolls and capacities, investigating the

implications of players adopting two-stage games but using networks where route choice was

also absent. In this paper we explicitly take into account route choice.

We build on our previous work on representing multi-actor systems through game-theoretic

representations where the problem of toll competition between operators in a network was

considered. Represented through a Nash network game, in Koh and Shepherd (2010)

conditions were established under which the equilibria of such non-cooperative decision-

making differed markedly from the solution that could arise from a more collusive game

between operators. It was also shown that this latter, collusive solution could be determined

based on the ‘particle swarm optimisation’ method (Koh, 2008). This work also

demonstrated the potential for multiple Nash Equilibria to occur in games where players face

an equilibrium constraint which parallels the results discussed in the context of bidding

strategies of generators in deregulated transmission constrained electricity markets (Hu and

Ralph, 2007;Son and Baldick, 2004).

The paper is structured as follows. Following this introduction, Section 2 sets up the problem

of competition between two cities and provides the mathematical background. Using a small

network, two scenarios for a single test network are studied in Section 3 utilising simple grid

search (an exhaustive search over the parameter space) to identify potential Nash Equilibria.

These two scenarios differ only with respect to the individual components of the trip matrix,

the first representing identical cities and then the second where one city is more attractive

than the other as a destination thus introducing the notion of strong and weak player. We also

investigate the impacts of changes in the elasticity of demand on the existence of multiple

Nash Equilibria in the network. Section 4 considers the situation when cities are able to share
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a proportion of the revenues collected from road pricing even though they continue to be in

competition with each other. Section 5 wraps up the paper with some conclusions and

directions for further research.

2. METHODOLOGY

A highway network is represented as a graph comprising links indexed by the set

 1,2,...,| |L L . We assume that there are two regulatory authorities (labelled A and B),

each authority having their own pre-defined subset of network links over which they may

charge a toll: authority i being able to set a toll on links in set i
L L (for {A,B}i ), with

A BL L o   . Although not necessary, for simplicity we make the restriction in this paper

that each authority i has a single
1
toll level 0i that they may determine and levy on all

links in their link sub-set iL . Together, then, the two tolls to be determined can be collected

in the vector  #A B
 Ĳ with # denoting the transpose. In practice, in addition to non-

negativity constraints, we may wish to impose additional simple bounds on the tolls (e.g.

upper bounds that are believed reasonable), and thus for each }B,A{i , we suppose that

there is a pre-defined set  2 & 0iT x x   that defines the permissible tolls, so that we

must have A BT T Ĳ . The travellers in the network are all supposed to perceive these tolls in

the same way, regardless of which authority levied the toll and regardless of their own socio-

economic status. Aside from the tolls, travellers perceive other attributes that motivate their

travel (e.g. travel time), and for each link these are collected together in a single generalized

cost of travel, excluding tolls. This toll-excluding generalized cost typically will depend,

through congestion, on the flow on the link, and so for each link 1,2,...,| |l L we represent

it as a monotonically increasing, continuous function ( )
l l
c v of the flow l

v on link l. Taking

the tolls together with the toll-excluding generalized cost gives us the complete generalized

cost function, given any link flow or toll levels as:

A A

B B

( ) if

( , ) ( ) if ( 1, 2,..., | |, 0, )

( ) otherwise

l l

l l l l l A B

l l

c v l L

g v c v l L l L v T T

c v




 
      



Ĳ Ĳ (1)

Clearly, should we wish to represent it that way, ( ) ( ,0)
l l
c g   for all l L . The functions

(1) may be collected together into a vector mapping ( , )g v Ĳ with l
th

element

( , ) ( 1,2,...,| |)
l l
g v l LĲ .

Our network also comprises Origin-Destination (OD) movements indexed by the set

{1,2,...,| |}K K , with ( )
k

d k K denoting the travel demand for OD movement k. We

1
The assumption of a single toll level is not restrictive. Firstly, cordon schemes currently in operation such as in

Bergen (Norway), Milan (Italy) and Stockholm (Sweden) have a uniform charge levels over a given modelled

period, at all points entering the cordon area. Secondly, we do not wish to allow the city to charge a different

amount to non-residents as this would be seen as less acceptable.
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suppose that in advance, we neither know the OD travel demand vector d nor the link flow

vector v, but that they are contained in the demand-feasible set D given by:

( ) ( ) ( ) ( )( , ) : where , 0, 0k k k k

k k

k K

D d d k K


        
 

v d v x Ax E x (2)

where ( )kx is the vector of link flows for OD movement k, where A is the node-link incidence

matrix for the network, and where kE is a vector that defines the origin and destination

nodes for OD movement k (for more details the reader is referred to Lawphongpanich and

Hearn, 2004).

We further suppose that for each origin-destination movement k, there exists a separable,

bounded, continuous, monotonically increasing demand function that expresses the origin-

destination demand level for that movement as a function of the generalized OD travel cost

for that movement. In fact, we shall refer not to the function itself but to its inverse (which

exists under the stated assumptions), namely the OD generalized cost ( )
k k

w d that would

need to exist in order to generate a given level of OD travel demand k
d , for each k K .

These functions are assumed to be continuous, bounded, and monotonically decreasing.

Given any particular toll vector Ĳ , it is supposed that the resulting perceptions of generalized

cost determine the OD travel demand and routing patterns through an elastic demand

Wardrop equilibrium. Now, if the toll vector Ĳwas to be decided by a single regulatory

authority, then we could define a Global Regulatory Problem in the form of a Mathematical

Program with Equilibrium Constraints (MPEC), which (following Lawphongpanich and

Hearn, 2004) is given by:

A B ,( , )
0

# #

Maximise ( ) ( )

s.t. ( , ) ( ) ( ) ( ) 0 ( , )

kd

k l l l
T T D

k K l L

w z dz v c v

D

  
 



     

 Ĳ v d

g v Ĳ u v w d d e u e

(3)

Note that the toll vector itself does not appear in the upper level (social welfare) objective

function of (3), its role instead is in shaping behaviour as represented in the lower level

constraint. In fact, since under the stated assumptions on the cost and demand functions,

there is a unique solution in (v,d) for any given toll vector, then the variational inequality

constraint determines a unique such demand/flow allocation given any toll vector. Then we

may simplify (3) so that only the toll vector appears as the maximization variable (since for

any given toll vector, a unique demand and flow vector is uniquely generated by the VI

constraint):

A B
0

# #

Maximise ( ) ( )

s.t. ( , ) ( ) ( ) ( ) 0 ( , )

kd

k l l l
T T

k K l L

w z dz v c v

D

 
 



     

 Ĳ

g v Ĳ u v w d d e u e

(4)

Problem (4) represents a situation in which a single regulator sets all the toll levels so as to

maximize the benefit to the whole network. However, we shall also be specifically interested

in the toll levels that arise if the two authorities compete. In this case, we assume that each

authority has jurisdiction over setting tolls on its own set of links, but that its responsibility is

only to trips that originate in its area. Thus, we partition the origin-destination movements

into two mutually exclusive and exhaustive sets, such that i
K is the index set of OD
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movements originating in authority i (for {A,B}i ), with A BK K K  and A BK K o   .
In parallel, we also partition the link flow variable, such that li

v denotes the flow on link l of

demand originating from Authority i, clearly with A B
( 1,2,...,| |)

l l l
v v v l L    . In vector

notation, if the authority link flows are collected in a | | 2L  matrix V , then they are related

to the aggregate link flow vector by v V1 , where  1 1
T1 .

Let us first consider Authority A. Authority A is assumed to maximise social welfare of its

own residents by adjusting the toll level of links over which it has control, anticipating the

impact of the toll on travellers’ route and demand decisions, but reacting to the toll level

levied by Authority B. That is to say, Authority A does not anticipate the effect that their

own choice of toll will have on Authority B’s response, but they simply react to the toll set

by Authority B. Let us assume for the moment that Authority B has already decided its toll

level B B BT   , and that this is known to Authority A. Authority A is then supposed to

determine its own toll level A by solving an MPEC that is a variant of (3):

A
A B A

A A

A A B B A A B
( , , )

0such that
,( , )

#

1 #

2

Maximise ( ) ( )

s.t. , ( ) ( ) ( ) 0 ( , )

kd

k l l l l l l

k K l L l L l L

T D

w z dz v c v v v v

D





   




   

 

   

  
       

  

   V d

V1 d

g V1 u V1 w d d e u e





    

 

(5)

The first term in the objective function of (5) is the Marshallian measure of the trips made

from origins located within Authority A’s jurisdiction. The second term represents the

generalized cost of travel (excluding tolls) for traffic with origins in Authority A. The third

term represents the toll revenue spent by residents from Authority A on links controlled by

Authority B, i.e. those with origins in Authority A and travelling on tolled links in Authority

B. This is a transfer payment and it increases the coffers of Authority B at the expense of

Authority A. The fourth term represents the toll revenue spent by residents from Authority B

within Authority A, this being a transfer payment that increases the coffers of Authority A at

the expense of Authority B. The parameter  is a scalar tax exporting parameter, for which

we shall assume a common value for both authorities (0 1)  . Our main numerical

examples in Section 3 focus on taking the value of 1 and we consider varying alpha values

in Section 4.

While problem (5) has a similar mathematical structure to problem (3) a key difference is

that our problem is now defined in terms of link flows disaggregated by authority (the

‘authority link flows’). In general networks, for any given toll vector, we cannot guarantee

uniqueness of the authority link flows, even though our assumptions guarantee uniqueness of

the total link flows. Therefore, if applied in a general network, (5) maximizes social welfare

in two ways: partly through the toll, but additionally by assuming that we can control the

authority link flows over-and-above the toll effect. Another way to view this is that while we

assume user equilibrium for the total link flows, we assume system optimization for the

authority link flow splits, wherever there is ambiguity in these splits to exploit (the so-called

‘weak’ formulation of MPEC; see Červinka, 2008). However, at present our proposal is to 
restrict attention to applying (5) in special network structures in which the uniqueness of the

total link flows automatically guarantees uniqueness of the authority link flows.
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We later consider such a network example. Assuming then, that our network structure

ensures uniqueness of the authority link flows, problem (5) may be simplified to:

A A

A

A

B

#

A #

B

Maximise , ,

s.t. , ( ) ( ) ( ) 0 ( , )

T
S

D











  
  
  

  
       

  

V d

g V1 u V1 w d d e u e



 
(6)

Where

A B A

A A A B B A A B

0

( , , ) ( ) ( )
kd

k l l l l l l

k K l L l L l L

S w z dz v c v v v v   
   

       Ĳ V d      (7)

As in our earlier problem (4), in problem (6) the flow variables ( , )V d are uniquely

determined by the variational inequality constraint at any given toll vector Ĳ , under the

restrictive assumptions we have made. In order to reflect this, introduce the following

implicit functions:

For given A BT T Ĳ ,
* *( ( ), ( ))V Ĳ d Ĳ denotes the unique solution in ( , )V d to

 # #, ( ) ( ) ( ) 0 ( , ) ( , ) .D D      g V1 Ĳ u V1 w d d e u e V1 d   (8)

Thus (6) may then be equivalently written in succinct form:

A A

A A A* *

A

B B B

Maximise , ,
T

S


  
  

      
      
      

V d (9)

Now, in an analogous way to the behaviour of Authority A, Authority B determines its toll

level B conditional on the toll level of Authority A by considering its own counterpart to

objective function (7) namely:

B A B

B B A B A B B A

0

( , , ) ( ) ( )
kd

k l l l l l l

k K l L l L l L

S w z dz v c v v v v   
   

       Ĳ V d      (10)

The inter-play of the two authorities in each aiming to maximize its own welfare by setting a

toll, conditional on the other authority’s toll, while anticipating the impact on the travellers,

leads us to an example of a so-called Equilibrium Problem with Equilibrium Constraints

(EPEC) (Mordukhovich, 2005). This overall problem we may write, based on the functions

defined in (7),(8) and (10), as follows:

Find  A B A B

T
T T    such that simultaneously:
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A A A A A A* * * *

A A A A

B B B B B B

A A A A A A* * * *

B B B B

B B B B B B

, , , ,

, , , ,

h h h
S S h T

S S h T
h h h

  
     

     
  

              
                

              
              

                
              

V d V d

V d V d

 

 
(11)

Problem (11) assumes that the authorities can only determine their own toll conditional on

the other authority, but places no further restriction on the admissible tolls. That is to say, the

conditions require that, as far as one authority is concerned, their toll gives (marginally, i.e.

based only optimizing their own toll) a global optimum solution to their individual MPEC,

conditional on the other authority’s toll setting.

Taking the conditions for both authorities together, equation (11) defines a problem that we

will henceforth simply refer to as a Nash Equilibrium (NE) (Nash,1950). However, we shall

also be interested in Nash games that are variants of (11), Specifically if, rather than each

authority determining a global optimum toll conditional on the other authority's toll choice,

we consider the possibility that each authority only determines a local optimum to their

individual MPEC. In this case we require conditions (11) only to hold within a local

neighbourhood of the given toll vector. Following Son and Baldick (2004), we shall refer to

an equilibrium of such a Nash game as a Local Nash Equilibrium (LNE). Thus for an LNE,

each authority only needs establish optimality within a neighbourhood of the given solution

(see Ye and Zhu, 2003, for such an example).

Since the LNE conditions are weaker, the solution set to the NE problem is contained within

the solution set to the LNE. It is our proposal that both kinds of solution are relevant for

investigation, since it is not clear which is a more realistic representation of the behaviour of

authorities in setting their tolls. This is an issue we return to in the case studies.

3. CASE STUDIES

All our case studies use the same topological network as shown in Figure 1. The travel cost

on all links in the network adopt the standard BPR functional form as given in (12). The free

flow travel time parameter (
0
t ) is 450 seconds for all links except 2,5,8 and 11 which is 1000

seconds. The capacity parameter (
l

 ) is 1500 pcus/hr for all links except for 2,5,8 and 11

which is 3000 pcus/hr. The links (2,5,8 and 11) therefore represent a high capacity bypass

that avoids travel through the town centre.

4

0
( ) (1 0.15( ))l

l l

l

v
c v t


  (12)
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Figure 1:Network for Numerical Examples
2

On the demand side there are 12 Origin-Destination pairs. All nodes excluding Node 3 are

origin or destination zones. There are two Central Business Districts (CBD) (zone 2 and zone

4) located within Authority A and B respectively.

The dotted line through Node 3 on Figure 1 demarcates the boundary of jurisdiction between

the two authorities. The base demand represents a typical morning peak with dominant flows

to the CBDs from the suburb of each local authority (zones 1 and 5). However we also

introduce demand to/from other zones which represent interaction between the authorities

with associated problems of through traffic. We assume elastic demand and the demand

function, which gives the trips as a function of the generalised costs of travel, adopts the

power law specification:

,0

,0

( ) ,pk

k k

k

b
d d k K

b
  (13)

In (13),
,0k

d ,
,0k

b ,
k
b refer to the base trips, base costs and costs for origin destination pair k

and p is the power parameter with the restriction that 0p  . We assume that p does not

vary by OD pair. Equation (13) implies an inverse demand function of the form (14)

1

,0

,0

( ) ( ) ,pk
k k k

k

d
w d b k K

d
  (14)

We assume that Authority A sets a uniform common toll on Links 1 and 6 to simulate a

cordon into its CBD zone 2 while Authority B sets a uniform common toll on Links 7 and 12

to simulate a cordon for travel into its CBD zone 4. In this way we represent a situation

which may arise in reality, namely that of cities who both wish to set up a cordon charge

around their CBD with the idea of maximizing the welfare of their residents (as set out in

(7)).

As noted in section 2, a key property required of our formulation (in moving from (5) to (6))

is uniqueness of link flows disaggregated by authority, at any given toll vector. This is

established for the particular network under consideration in Appendix A, requiring some

2
The numbers indicated are link numbers referred to in the text and direction of travel is indicated by the

arrows. The dotted line down node 3 demarcates the limits of jurisdiction of each authority.
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mild additional assumptions that are readily verifiable during our numerical analysis, and

indeed they have been verified to hold. Considering Authority A’s network (by symmetry,

analogous implications can be drawn for Authority B’s network), uniqueness is established

by a combination of (a) identifying routes that would never be efficient under Wardrop

conditions; (b) applying conservation-of-flow at the authority level; and (c) noting where

authority flows do and do not mix. In the case of Authority A’s network (analogous

properties hold for Authority B’s network, by symmetry), we end up with mixing of the

flows between authorities on links 1, 3 and 6 only, whereas links 2 and 4 only carry

Authority A flow and link 5 only carries Authority B flow.

In our numerical experiments, we consider two different cases. In both cases the network

remains as defined above and there is symmetry between the network within Authority A and

that within Authority B. The only difference between the two cases concerns the individual

trips within the trip matrix. In case study 1 (hereinafter ‘case 1’) the base demand in the no

toll case is also symmetric which represents a case where cities are equal in terms of

production and attraction and in terms of network supply. For case study 2 (hereinafter ‘case

2’) the same network is used but we adjusted the base demand so that the city in Authority A

is seen as stronger in terms of its ability to attract users. Details of the matrix used in each

case study are given in the relevant sections.

To solve the global regulator problem for each case study, we applied the Cutting Constraint

algorithm of Hearn and Lawphongpanich (2004). We set out details of the CCA in Appendix

B. In other cases, we carried out a grid search of the welfare obtained by each authority with

tolls between 0 and 1000 in units of 10. In some cases we refined the grid search between

units of 1 to “zoom in” on the potential solutions. For ease of exposition, we use the notation

{ , }
A B

  to indicate a particular combined toll strategy tuple denoting the tolls set by

Authority A and B respectively.

3.1 Case 1: Symmetric Demand

Table 1 shows the details of the matrix that is used for Case 1.

Table 1: Base Trips (
,0k

d ) and (Base Costs,
,0k

b ) for Case 1.

Authority in

Charge From To

1

(Residential

Zone in

Authority A)

2

(CBD of

Authority A)

4

(Residential

Zone in

Authority B)

5

(CBD of

Authority B)

A 1 0 1000

(488.08)

200

(1389.75)

100

(1839.86)

A 2 100

(450.11)

0 100

(901.67)

100

(1351.77)

B 4 100

(1351.77)

100

(901.67)

0 100

(450.11)

B 5 100

(1839.86)

200

(1389.75)

1000

(488.08)

0
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3.1.1 Case 1: Global Regulator Benchmark

As a benchmark, let us assume that a global regulator is in place to determine the uniform toll

on both Links 1 and 6 and another uniform toll on Links 7 and 12. As mentioned, this

problem is a standard Continuous Toll Pricing Problem and can be solved with the Cutting

Constraint Algorithm. In this case the objective function for the “Global Regulator” is given

by (4).

The welfare surface of the Global Regulator’s problem for Case 1 is shown in Figure 2 with a

contour plot on the right. Notice that for the global regulator we found in this problem that

there exists only one optimum around a toll combination of (80,80). Beyond toll levels of

around 90 seconds from either authority then there is a sudden drop off in benefits which

continues to be the case as toll levels are increased to 1000 seconds (not shown).

Figure 2: (Left Pane) Surface Plot of Global Welfare for Case 1 around region of the optimum;

(Right Pane) Contour Plot of Global Welfare for Case 1 around region of the optimum.

Table 2 shows the solution and as expected due to symmetry both authorities’ welfare

increases by the same amount and tolls are set to the same value in both authorities.

Table 2: Results of the Global Regulator Problem for Case 1

(all units in seconds)

Scenario Global

Regulator

Authority A

Toll on: Link 1 and Link 6
80

Authority B

Toll on: Link 7 and Link 12
80

Welfare Gain (vs Do Nothing) 20,292

Welfare of Authority A 10,146

Welfare of Authority B 10,146

3.1.2 Case 1: Nash Game

First to explore the potential solutions we evaluated the welfare for each authority for a given

toll pair with tolls ranging between 0-1000 seconds. Given that we have only two uniform
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tolls in our example then it is possible to visualize the welfare surfaces and to numerically

estimate the gradients with respect to the authority’s own toll at each point. Using a finite

difference approach (Morton and Mayers, 2005) we were able to estimate these gradients and

produce contour plots showing where the gradients are equal to zero. This is equivalent to

finding where the “response surfaces” of the Nash game intersect, such intersections show

where condition (11) could potentially be satisfied. Figure 3 shows the contour plots and

points of intersection of the zero contours. In the figure the vertical lines show where the

gradient of welfare for Authority B is zero and the horizontal lines show where the gradient

of welfare for Authority A is zero as tolls set by B and A are varied respectively.

Figure 3: Contour Plot for Case 1 (Į=1) 

Each intersection point is therefore a potential LNE. However we can immediately disregard

several solutions because for an LNE, the additional requirement is that they must intersect

where both authorities’ objectives are simultaneously maximized. We can identify 4 such

solutions (marked on Figure 3) where both welfare surfaces are passing through a maximum

by inspection of the welfare surfaces and by recognizing that there is a particular pattern to

the welfare surfaces as tolls are increased which is maintained across the full range of tolls

investigated. Figure 4 shows how welfare for Authority A varies with its own toll, for given

values of tolls set by Authority B (85 or 505). Notice that there is a local maximum around a

toll of 85 seconds followed by a minimum at a toll of 105 followed by a maximum around a

toll of 505. It is worth noting here that the optimal toll for player A of 505 seconds does not

appear to be affected by the toll played by player B. This suggests that there is little or no

interaction between the players in the high toll regime. We come back to explore this and the

number of potential LNE solutions later. This pattern is repeated for the other player due to

symmetry, and we can then infer that the intersections between the first and third contours for

each player in Figure 3 are where the simultaneous maxima resulting in an LNE may exist.
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Figure 4: (Left Pane) Welfare Plot for Authority A Showing Optimum at around 505 when

Authority B levies a toll of 85; (Right Pane) Welfare Plot for Authority A Showing Optimum at

around 505 when Authority B levies a toll of 505.

Using the welfare surfaces provided by the grid search we were able to confirm that four

LNE exists as shown in Table 3 which all satisfied the condition in (11).

Table 3: Local Nash Equilibria for Case 1 (all units are seconds and Į = 1)

Solution

Number

Toll Set by

Authority A

Toll Set by

Authority B

Welfare of

Authority A

Welfare of

Authority B

Total

Welfare
1 85 85 9,096 (2) 9,096 (2) 18,192

2 505 85 24,076 (1) -101,839 (4) -77,763

3 505 505 -86,872 (3) -86,872 (3) -173,744

4 85 505 -101,839 (4) 24,076 (1) -77,763
Figures in parentheses show the preference ranking for each authority pertaining to a particular outcome

To explore the solutions further we calculated the vector field plot of the reaction functions at

each point on the grid. The arrows in the vector force field plots in Figure 5 show the finite

differenced approximations to the gradients of the welfare surfaces for each player with

respect to their own toll and the direction a player should move when selecting their toll

levels given the current tolls. The left hand pane of the figure shows the vector force field

centred on the Nash Equilibrium labelled solution 1, while the right hand pane shows the

vector force field centred on the Nash Equilibrium labelled solution 3. From inspection of the

Vector Field Plots we can confirm that these are LNE. It is evident from the vector plots that

the basin of attraction is far smaller around the first of these solutions and as a toll set by the

other player moves beyond 100 seconds the players may well be attracted to solution 3.
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Figure 5: (Left Pane) Vector Field Plot of Reaction Functions around Toll Vector of 85,85 for

Case 1 (Į=1); (Right Pane) Vector Force Plot of Reaction Functions around Toll Vector of 
505,505 for Case  1  (Į=1) 

Similar plots show that the basin of attraction around solutions 2 and 4 are also relatively

small and that solution 3 is the only solution which satisfies (11) in the global sense.

Solutions 1, 2 and 4 are therefore only Nash solutions in a local neighbourhood i.e. LNE.

An alternative way to look at the outcome of the authorities’ decision making and whether or

not they act in a local neighbourhood or not when setting tolls is to use a simplified pay-off

table as was done in Son and Baldick (2004).

Table 4 shows the pay-off matrix in terms of welfare changes for authorities A and B given

the tolls can only be set at values of 0, 85 or 505 (taken from our knowledge of where the

possible LNE occur).

Table 4: Case 1: Pay-off matrix (thousand seconds) near each LNE solution (Welfare A,

Welfare B)

Toll A/B 0 85 505

0 (0,0) (-40.4, 50.7) (-150, 66.8)

85 (50.7, -40.4) (9.1, 9.1) ( -103.0, 24.1)

505 (66.8, -150) (24.1, -103.0) (-88,-88)

The arrows in the table show the direction in which each authority would move in terms of

toll set given the current tolls. Firstly we notice that both players have an incentive to move

away from the no toll situation assuming that the other player does not charge. That is both

have a first mover incentive. Then if we consider player A to move first, then player A has

an incentive to move through to toll=85 and then to a toll of 505. Player B would then

respond accordingly and with these limited decisions available to the players the outcome is

always the NE solution which satisfies condition (11) i.e. it confirms the fact that solution 3

is in fact the NE rather than simply an LNE.

Next we widen the grid to include some more local decisions around the solution at {85,85}

as shown in Table 5. Now we see that when the authority considers local moves only around

tolls of 85 seconds then it is possible to remain in solutions 1,2 and 4 i.e. the {85,85} solution

or one of the other {85,505} solutions. This can be seen for example by examining the local

decision around the {85,85} pay-off cell. From this cell there is no benefit for either player

to increase or decrease the toll and so this is an LNE. However we can also notice that as

soon as one authority charges above 90 seconds then they are incentivised to move towards

solution 3 the NE solution. The question of how authorities will set tolls in reality is
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obviously linked to the scale of the tolls and whether these are considered to be acceptable to

the public. Whilst we have not defined how strategies are set in this paper (as we have

simply explored the response surfaces to find solutions to the problem), our future research

will investigate the dynamics of the toll setting strategies and how this may result in an LNE

solution.

Table 5: Case 1: Pay-off matrix (thousand seconds) with local toll moves around (85, 85)

Toll A/B 0 80 85 90 505

0 (0,0) (-38.0, 49.4) (-40.4, 50.7) (-42.7, 49.5) (-150, 66.8)

80 (49.4, -38.0) (10.1, 10.1) (7.7, 11.5) (5.4, 10.2) (-104.4, 26.5)

85 (50.7, -40.4) (11.5, 7.7) (9.1, 9.1) (6.7, 7.8) ( -103.0, 24.1)

90 (49.5, -42.7) (10.2, 5.4) (7.8, 6.7) (5.4, 5.4) (-104.4 , 21.7)

505 (66.8, -150) (26.5, -104.4) (24.1, -103.0) (21.7, -104.4) (-88,-88)

3.1.3 Case 1: Policy implications

Firstly we note from the welfare surfaces (not shown) that both players would have an

incentive to begin charging given that the other player does not charge. Once both players

begin to toll then, as shown in Table 3, Authority A would clearly prefer Solution 2 while

Authority B would prefer the diametrically opposed solution in terms of tolls, solution 4. If

we assume that the authorities then have full information about the expected change in

welfare over the full range of tolls then for a given toll played by their opponent, they would

move towards a toll of around 505 seconds. In response the second mover would also set a

toll of around 505 seconds (as can be inferred by Figure 4 above) and the authorities would

end up at solution 3 which is a classic Prisoner’s dilemma whereby both authorities are worse

off than in the no toll case.

It is also interesting from a policy point of view that solution 1 with tolls set at {85,85} is in

the vicinity of the global regulator solution with both authorities receiving an increase in

welfare. It could be argued that such a solution may be found if the upper bounds of the toll

sets considered were somehow restricted to within the range 0-90 seconds. As this is only a

toy network example we cannot say anything about the scale issue here but we can recognise

that in reality there may well exist an upper bound on the toll set by some public

acceptability limits. Otherwise as solutions 1, 2 and 4 are only NE in a local neighbourhood

then these are unlikely to be obtained in a game with full information. Later we discuss the

case where the authorities are assumed to collude by reducing the value of Į, but next we 
examine the potential for multiple LNE.

3.1.4 Case 1: Exploring the potential for multiple LNE

As noted earlier when discussing Figures 3 and 4 the optimal toll for authority A does not

appear to be affected by the toll set by authority B in the high toll regime. This section first

of all explains how this comes about by focussing on flow regimes and then explores which

other factors can influence whether or not multiple LNE may exist.
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Figure 6: Flow regimes under alternative toll assumptions

Figure 6 shows where the flows on the network can be decomposed into 4 “regimes”

depending on the toll tuple and that these flow regimes correspond to the contours from

figure 3. We can draw the following insights regarding traffic flows in these 4 regimes.

1. When there are no tolls, the bypass links are not used at all. Hence all traffic

regardless of destination utilise links through the town centre. This is due to the

difference in free-flow costs for using the bypass compared with the town centre

route. Within regime 1, as the tolls are increased then eventually some users begin to

use the bypass links 2 and 11 and we hence obtain a “mixed traffic regime” i.e. flows

on both the town centre route and flows on the bypass. Regime 1 is characterized by

the set of tolls below 100 seconds.

2. In flow regime 2, once the tolls set by Authority B (on links 7 and 12) increase

beyond 100 seconds, all through traffic in authority B’s area uses the bypass links.

That is a toll greater than 100 seconds invokes the use of links 8 and 11 (the bypass

routes in Authority B) but not links 2 or 5 which is still a function of tolls set by

Authority A. The only traffic using the tolled links 7+12 are effectively captive (as in

equilibrium they have no competitive alternative route across the range of feasible toll

levels) to those links and we have a separated regime in B’s part of the network. By

this we mean that sub-networks such as link 8 versus links 7+10 do not have the same

cost at equilibrium and this is obtained by segregation of OD demands. Note that by

symmetry, flow regime 3 is similar to flow regime 2 but responds to tolls on links 1

and 6.

3. In Regime 4 all bypass links are used and the traffic using the tolled routes is only

“effectively captive traffic” (traffic that have destinations within the tolled area i.e.

zone 2 or zone 4 which do not have any competitive alternative route across the range

of feasible toll levels). All other traffic uses the bypass links. Each sub-network is in

equilibrium but with higher costs for through traffic.
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These regimes all come about because of the extremely low delays experienced on the bypass

links relative to those on the through links. With our base demands it seems that the delays

which result on the bypass links are negligible compared to the free flow cost of 1000

seconds and that the assignment becomes an all-or-nothing assignment in regimes 2-4.

Understanding these regimes helps us explain why the optimal toll set by A does not appear

to be affected by the toll set by B in the high toll regime. Solution 4 lies in the separated

flow regime so that the toll is in effect only affecting captive users and no more re-routing in

response to a toll is possible. This separated regime implies that the optimal toll for player A

is dependent only on the demand towards the central zone (node 2) and that the welfare

function can only be increased by affecting the consumer surplus of own residents heading

towards node 2 and the congestion experienced on link 1 plus the amount of revenue

collected on link 6 from those non-residents travelling to node 2. All other flows and link

costs are fixed once the tolls exceed 100 seconds. This sub-problem faced by player A is not

influenced by the toll set by player B as all those who enter A’s network from authority B

have not been charged a toll in B’s network by definition. They have either come from zone

4 via link 9 without charge or have come from zone 5 via the bypass link 11 again with no

charge. This explains why there is no interaction effect between players once we are in this

separated regime. Next we investigate whether the number of LNE solutions varies with

increased elasticity.

Figure 7a (Left Pane) Contours of Case 1 (Į=1) with Elasticity = -0.75  (Right Pane) Contours of 
Case 1 (Į=1) with Elasticity = -1 

Figure 7b: (Left Pane) Contours of Case 1 (Į=1) with Elasticity = -1.25  (Right Pane) Contours 
of Case 1 (Į=1) with Elasticity = -1.5 
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Figure 7c: (Left Pane) Contours of Case 1 (Į=1) with Elasticity = -1.75  (Right Pane) Contours 
of Case 1 (Į=1) with Elasticity = -2 

3.1.5 Case 1: Number of Potential LNE with changes in Elasticity of Demand

The power law demand function implies a constant elasticity demand assumption and this is

reflected in the parameter p in (13). Specifically p represents the (absolute) percentage

change in demand as a result of a percentage increase in generalized costs (inclusive of tolls).

Thus with everything else (base demands and network link parameters) held constant, we can

vary the parameter p to assess the impact of an (absolute) increase in elasticity on the

number of potential LNE in the network.

Table 6: Case 1:Number of possible LNE as Elasticity Increases

p

(Elasticity

Parameter)

Number of

Intersections

Number of LNE Toll Level at Nash Equilibrium

(seconds)

0.58

(Base

Case)

9 4 {505,505}

0.75 9 4 {320,320}

1 9 4 {85,85}

1.25 9 4 {85,85}

1.5 9 4 {85,85}

1.75 4 4 {85,85}

2.0 1 1 {85,85}

Figures 7a to 7c show the contour plots and hence number of intersections as elasticity is

increased from 0.58 to 2.0. As mentioned earlier, some intersections of the contours are

eliminated from potential consideration as LNE because although the numerically estimated

gradients are equal to 0, at least one of the Authority’s objective functions attains a minimum

at that point. This contradicts the requirements that for an LNE both objectives must be

simultaneously maximized. Hence by process of inspection, we can eliminate some

intersections from consideration. However as shown in Figures 7a-7c and in Table 6, it is still

clear that with elasticities up to -1.75, there are 4 LNE. Somewhere between a value of -1.75

and -2.0 the number of LNE is reduced to one, as with an elasticity of -2, multiple NE are

eliminated from this network. The one remaining solution is in the mixed flow regime. This

demonstrates that there can exist networks which exhibit only one NE solution and that in

this case there would not be a prisoner’s dilemma.
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Table 6 also shows that as elasticity increases, the NE solution tends towards the low toll

regime rather than the high toll regime. The left pane of Figure 8 shows the graph of welfare

for Authority A as the toll it sets varies (Authority B’s toll held fixed) in the case when the

parameter p is kept at the base value of 0.58. We note that the global optimum of welfare in

this case occurs to the right of the local optimum and this is in the high toll regime. In

contrast, the right pane of Figure 8 shows the same graph with absolute elasticity increased to

1.25p  . In this case, we note that the global optimum occurs to the left of the local

optimum in the low toll regime. This demonstrates why, as elasticity is increased we see the

NE solution move from a high toll regime to a low toll one. This has important policy

implications in that if elasticity is higher then the authorities are less likely to end up in a

Prisoner’s dilemma, the users will face lower tolls and all residents will see an increase in

total welfare.

Figure 8: (Left Pane) Global optimum of own authority welfare is in the high toll regime and to

the right of the local optimum at elasticity of -0.58 as own authority toll varies ; (Right Pane)

Global optimum of own authority welfare is in the low toll regime and to the left of the local

optimum at elasticity of -1.25 as own authority toll varies.

It is also noticeable that the low toll Nash solution does not change as elasticity

increases. This is again down to the specific parameters in our network and in particular it is

related to the very small impact on delay on the bypass links as a small proportion of the flow

is diverted from link 1 to link 2 for example. With low levels of through traffic, the

congestion impact on the bypass links is only a fraction of a second so that the optimal toll is

always in the same integer range. This is network specific and is not expected to be

generalised.

We did also investigate other changes to the network parameters and found that if we

increase both the through demand and adapt the congestion function on the links – to

increase the delays on the bypass links then this can also result in there being only one NE

solution. Whilst we have therefore demonstrated that multiple NE may exist under certain

conditions and that under other conditions only one NE solution may exist, we are not in a

position to say whether for any general network there will be one or multiple NE solutions.

This is something that should be investigated in further research.

3.2 Case 2: Asymmetric Demand

In Case 2, we modified the Demand Matrix used in Case 1 from that shown in Table 1 to that

as shown in Table 7. However the network remains exactly the same in both cases.
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In constructing the asymmetric case we have maintained the number of trips originating from

each zone, but have re-distributed them so that the CBD in Authority A is now more

attractive relative to the CBD in authority B. Note that the total number of trips from A to B

is reduced from 500 to 200 while the number from B to A increases from 500 to 800.

Table 7: Base Trips (
,0k

d ) and (Base Costs,
,0k

b ) for Case 2.

Authority in

Charge From To

1

(Residential

Zone in

Authority A)

2

(CBD of

Authority A)

4

(Residential

Zone in

Authority B)

5

(CBD of

Authority B)

A 1 0 1300

(488.08)

0 0

A 2 100

(450.34)

0 100

(900.04)

100

(1350.06)

B 4 100

(1361.26)

100

(910.92)

0 100

(450.02)

B 5 200

(1849.35)

400

(1399.00)

700

(488.08)

0

3.2.1 Case 2: Global Regulator Benchmark

The welfare surface of the Global Regulator’s problem for Case 2 is shown in Figure 9 with a

contour plot on the right. In addition, our search over the entire surface confirms that similar

to Case 1, there exists only one optimum around a toll set of {90,80}. The results are

summarised in Table 8.

Figure 9: (Left Pane) Surface Plot of Global Welfare for Case 2 around region of the optimum;

(Right Pane) Contour Plot of Global Welfare for Case 2 around region of the optimum.
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Table 8: Results of the Global Regulator Problem for Case 2

(all units in seconds)

Scenario Global

Regulator

Authority A

Toll on: Link 1 and Link 6
90

Authority B

Toll on: Link 7 and Link 12
80

Welfare Gain (vs Do Nothing) 21418

Welfare of Authority A 62012

Welfare of Authority B -40593

It is interesting that Authority B suffers from negative welfare even in the global regulator

problem.

3.2.2 Case 2: Nash Game

For the case when Į = 1, i.e., full tax exporting between the authorities, we again used a finite 
grid search and contours of the gradients to explore the response surfaces for each authority

to identify where potential local NE that may exist. Figure 10 shows the contour plots and

points of intersection of the zero contours.

Figure 10: Contour Plot for Case 2 (Į=1) 

Once again we can identify 4 potential solutions where both welfare surfaces are passing

through a maximum by inspection of the welfare surfaces and by recognizing that there is a

particular pattern to the welfare surfaces as tolls are increased which is maintained across the

full range of tolls investigated.
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Using the welfare surfaces provided by the grid search we were able to confirm that once

again there are four LNE solutions as shown in Table 9 which all satisfied the condition in

(11).

Table 9: Local Nash Equilibria for Case 2 (all units are seconds and Į = 1)
Solution

Number

Toll Set by

Authority A

Toll Set by

Authority B

Welfare of

Authority A

Welfare of

Authority B

Total

Welfare

1 85 81 58025 (3) -36666 (1) 21359

2 955 81 150671 (1) -392798 (3) -242127

3 955 150 142737 (2) -422454 (4) -279717

4 85 150 49777 (4) -65860 (2) -16083
Figures in parentheses show the preference ranking for each authority pertaining to a particular outcome.

It is the case that in all 4 LNE, the impact on B’s welfare is adverse, recall that B suffers

from negative welfare even under the global regulator benchmark. Compared to case 1, it

seems that the outcome will favour the stronger player. Solution 2 and Solution 3 are both

highly favoured outcomes for Player A with the same toll level of 955 set by player A which

demonstrates the power of Authority A. Comparing the preference ranking in Case 2 with

that from Case 1 and with reference to Table 9, now Authority A gives Solution 1 {85,81}

nearer to the global regulator outcome {90,80} (cf. Table 8) a lower ranking while Authority

B actually prefers this. Note that similar to Case 1, we found that as the absolute elasticity

increased, we move towards a low toll solution and only one NE.

Incentives to Compete

Figure 11: (Left Pane) Welfare Plot for Authority A Showing Optimum at around 980 when

Authority B does not levy any toll ; (Right Pane) Welfare Plot for Authority B Showing

Optimum at around 80 when Authority A does not levy any toll.

If B is always worse off why do they toll? The left pane of Figure 11 illustrates the welfare of

Authority A as it varies its toll when Authority B does not levy any toll. The right pane does

the same for Authority B on the assumption that Authority A does not levy any toll. These

show that both authorities have an incentive to enter the game since their individual welfares

are higher compared to doing nothing. It is also evident that Authority A has a much larger

incentive than Authority B.

When the game begins, and we have shown that there is indeed such an incentive for one

authority to begin the game, Authority B always ends up in the equivalent of a prisoners’

dilemma situation because it is always worse off under all the 4 LNE of Figure 10 than if it
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had not done anything. Similarly A is always better off (cf. Table 9). This is in stark contrast

to case 1 where both authorities ended up being worse off.

It is however possible to show that solution 2 is the NE as if A moves first then they set a toll

of 955 and B responds with full information with a toll of 81 and vice versa.

3.2.3 Policy Implications

Our analysis offers a potential explanation for why large cities such as London can start the

game and gain a first mover advantage while smaller authorities (when including set up and

operating costs) decide that in fact the benefits of going alone are not even there – so this

explains why there is a no-move case for the smaller towns – especially if they think that the

other larger town will retaliate and they may end up being even worse off.

In addition, our findings also lend support to the findings of an econometric study by

Levinson (2001). Levinson found that that the more non-resident workers a state (in the

United States) has, the greater the likelihood of tolling. By way of analogy to this case study,

Authority A has a larger number of non-resident workers (compared to Authority B since

more commute to work in its jurisdiction compared to Case 1) and therefore has a stronger

incentive to apply tolls.

4. CONSIDERING COLLUSION

Thus far we have assumed that Į=1, i.e. there is full tax exporting behaviour. In the 
Edinburgh congestion charging proposals, authorities surrounding the city of Edinburgh were

invited to share the revenues from the scheme so that they would lend support to the

proposals (Saunders, 2005). This form of revenue sharing can be modelled with the

parameter Į. When Į=0 then we have full recycling of revenues back to those who paid the 
tolls. For values in between there is some sharing of revenues collected i.e. some proportion

of revenues are returned to the relevant authority.

To find toll levels for each Authority that satisfy (11), we carried out a grid search of

welfares for each authority varying the toll levels between 0 and 1000 second and carried out

the contour plots of based on finite difference to approximate the gradients. As we have

found from results in Section 3, there may be more than 1 NE that will satisfy (11) even

within the range of tolls considered. Hence we also carried out a Gauss Jacobi

diagonalization type algorithm (see Appendix C for details) for the purposes of locating the

Nash Equilibrium toll solution within the locality of the grid search solution.

4.1 Collusion – Case 1

For Case 1, Table 10 shows the results of the Gauss Jacobi Algorithm for values of Į 
between 0 and 1 inclusive. We also carried out a grid search of the welfare surfaces similar

to the previous case studies mentioned above.
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Table 10: Results of Gauss Jacobi Algorithm for Case 1 for different Į (all units are seconds) 
Į Toll on Links 

1 and 6 Set by

Authority A

Toll on Links 7

and 12 Set by

Authority B

Welfare of

Authority A

Welfare of

Authority B

Global

Welfare

0 80.00 80.00 10146 10146 20292

0.2 81.30 81.40 10057 10067 20125

0.4 159.27 159.32 -19791 -19785 -39575

0.6 240.24 242.72 -32099 -31680 -63779

0.8 356.08 356.08 -54030 -54030 -108059

1 504.70 504.70 -88006 -88005 -176011

Table 10 shows that as Į is reduced i.e. increasing the revenue recycling back to those who 
paid, then there is a tendency for the solution to move towards the lower toll regime. In fact

in the extreme case when =0 we obtain the exact same solution as under the global

regulator problem for Case 1. In this case there is an incentive for both authorities to collude

which also brings greater benefits to society. However, this is no longer true when the

demand is asymmetric as will be shown later.

4.2.2 Collusion – Case 2

For Case 2, Table 11 shows the results of the Gauss Jacobi Algorithm with different starting

points for selected values of Į between 0 and 1.   

Table 11: Results of Gauss Jacobi Algorithm for Case 2 for different Į (all units are seconds)
Į Toll on Links 

1 and 6 Set by

Authority A

Toll on Links 7

and 12 Set by

Authority B

Welfare of

Authority A

Welfare of

Authority B

Global

Welfare

0 102.73 80.00 9064 -13286 -4222

0.2 171.61 80.60 18584 -27629 -9045

0.4 263.59 81.20 34843 -58788 -23945

0.6 395.04 81.78 59781 -115609 -55828

0.8 609.77 82.03 96634 -218552 -121918

1 953.17 83.05 150585 -392325 -241740

The result for the Global Regulator Problem for Case 2 was presented in Table 8. A single

regulator would set a toll 90 and 80 on links (1 and 6) and links (7 and 12) respectively to

maximise welfare. However the result with =0 is not in fact the same as the global regulator

problem. It seems that in this case the stronger authority is still able to charge more (102

compared to 90 in the GRP). So in this case while Authority B would prefer to collude,

Authority A would obviously gain more by not colluding and with tax exporting behaviour

society would be worse off as a whole. The implication when comparing the asymmetric

case to the symmetric case is that there may be a greater need for regulation when there

exists a stronger player (as is the case in other sectors). For society to be better off as a

whole in case 2 there needs to be a regulator in place which could also offset any disbenefits

to those residents from Authority B by re-distribution of the revenues collected.
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5. SUMMARY AND CONCLUSIONS

In this paper we have explored the implications of competition between cities when setting

toll charges. First we have set up the problem as an Equilibrium Problem with Equilibrium

Constraints (EPEC) which is a special form of a Nash game with a hierarchical structure.

Using a simple network we then applied simple grid search methods to determine the Nash

Equilibrium toll levels, finding both local (LNE) and global NE solutions. We then

investigated the policy implications for a symmetric and asymmetric case with and without

collusion.

In our first case study using a symmetric trip matrix, it is interesting that either authority

should in principle wish to move first, but that once a move is made then the Nash game

takes them both to a sub-optimal position due to the larger basin of attraction. They both end

up worse off in a prisoner’s dilemma. For the asymmetric case, we find that the outcome of

the game tended to be in favour of the stronger player with the weaker player being worse off

than in the no toll case despite there being an initial incentive for the weaker player to set a

toll.

In our example we can see that if cities were to set tolls using a simple game or pay-off

approach with limited step size (to represent a cautious decision maker), then it would be

feasible for them to arrive at welfare improving LNE Solutions in the symmetric case.

Whilst we have not defined how strategies are set in this paper (as we have simply explored

the response surfaces to find solutions to the problem), our future research will investigate

the dynamics of the toll setting strategies and how this may result in an LNE solution. We

will investigate how cities compete, which indicators can be used for decision-making and

which kind of update strategies are likely.

We also investigated which factors affected whether there exists only one or multiple NE

solutions. We found that for the network studied here, increasing elasticity not only results

in a shift from multiple NE to one NE solution but that the global NE solution also moved

towards the low toll regime where both cities’ residents are better off.

We also reported that changing the amount of through demand and the congestion function

used also results in only one NE solution. Whilst we demonstrated that multiple NE may

exist under certain conditions and that under other conditions only one NE solution may

exist, we are not in a position to say whether for any general network there will be one or

multiple NE solutions. Further research should consider more general networks, where

mixed flow regimes are more likely, and the number of Nash Equilibria that may arise in

such general networks.

Finally, we also demonstrated that some signalling or collusion as may be expected in reality

could in this case work to benefit all residents should cities act to maximise welfare under the

symmetric case, which is in contrast to our previous work on toll competition between

private operators where profit maximising behaviour coupled with collusion led to a decrease

in welfare for residents (though increased profits for the operators). However we also

showed that with the asymmetric case the opposite is true and where there exists a player

with market power then there could in fact be a stronger case for regulation. In modelling the

collusion between authorities, we introduced a collusion parameter, Į and assume that the 
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parameter was common to both authorities. Further research could possibly investigate the

impact of different values of this collusion parameter and how it would ultimately impact the

conclusions presented in this paper.
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APPENDIX A: Uniqueness of Equilibrium Link Flows Disaggregated by Authority

We establish uniqueness of the equilibrium link flows disaggregated by authority, at any

given toll vector, for the network shown in Figure 1 and assumptions specified in section 4.

In order to do so, we shall make some mild additional assumptions. Let
*

lg denote the

equilibrium generalized cost on link l corresponding to a given solution to (11). Formally, for

any given toll vector solution Ĳ to (11) these are given uniquely by the elements of vector
*
g :

 * *( ) ,g g V Ĳ 1 Ĳ (15)

Specifically we make the assumptions:

* * *

3 2 4g g g  (16)

* * *

4 5 3g g g  (17)

* * *

10 11 9g g g  (18)

* * *

10 11 9g g g  (19)

* * *

9 8 10g g g  (20)

With these assumptions, then we are able to establish uniqueness of authority flows through

the following steps:

i. Our assumptions on the cost functions and demand functions (stated in section 2) are

well-known to be sufficient to guarantee uniqueness of the equilibrium total link flows

and OD demands, so our question can be equivalently posed: in the given network

structure, is this uniqueness sufficient to also guarantee uniqueness of the link flows

disaggregated by authority?

ii. At equilibrium, intra-authority OD movements will never use the links of the other

authority. For example, one possible route form node 1 to node 2 is to follow the route

given by the link sequence {2,7,10,11,6}, but since link costs are strictly positive it

follows that such a route will always have higher cost than the route following links

{2,6}, and so this earlier route can never appear in an equilibrium solution at any toll

vector. An analogous argument may be made for all intra-authority OD movements, so
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for such movements we need only consider the routes that use links strictly within that

authority’s jurisdiction.

iii. The network structure is entirely equivalent to one in which an additional bi-directional,

dummy link is added by dividing node 3 in two and inserting the link between the two

nodes resulting from the divided node 3. The only flow on the left-pointing direction of

this link will be (all of) that demand travelling from Authority B (node 4 or 5) to

Authority A (node 1 or 2), there will be no intra-authority demand using it given the

remarks in point ii. above. Returning now to the original network definition, we may

thus (if we are thinking just from the viewpoint of Authority A’s network) represent the

demand from Authority B as if it were from an origin at node 3 with OD flow to nodes

1 and 2 equal to the relevant OD flows from the sum of nodes 4 and 5 (noting that such

sums are unique since the individual demands are unique by remark i.). By symmetry,

the same argument may be made regarding demand from Authority A to B, if we are

thinking from the perspective of Authority B’s network.

iv. Considering Authority A’s network, links 2 and 4 take traffic into node 3. In view of the

comments in remark ii., such links could never be part of an equilibrium route for traffic

from Authority B. Therefore links 2 and 4 only carry Authority A’s demand, and these

flows are unique since the total link flows are unique by remark i.

v. Assumption (17) above means that for demand travelling from node 2 to nodes 4 or 5,

it is more costly (at equilibrium) to travel on the indirect route to node 3 (via links 3

and 2) than via the direct route via link 4, and so such demand will never use the

indirect route. This implies that the only Authority A flow on link 2 is that demand from

node 1 (destined for nodes 2, 4 or 5). All the remaining demand from node 1 to these

other nodes must use link 1. Since at equilibrium we uniquely determine the total

demand from node 1 (as the sum of demands to nodes 2, 4 and 5), and since in step iv.

we have uniquely determined the Authority A flow on link 2, and since by the argument

just made this flow on link 2 can only be from node 1, then by subtracting the (unique)

link 2 flow from the (unique) total demand from node 1, then we have uniquely

determined the flow on link 1 that is due to demand from node 1. Now we can note that

no demand from node 2 would ever use link 1, so that the only Authority A demand on

link 1 is that from node 1, and this is something we have just uniquely determined. Thus

the Authority A flow on link 1 is unique, and by subtraction from the total link 1 flow

(which is unique by remark i.) then the Authority B flow on link 1 is also unique.

vi. Assumption (17)implies that it is never efficient for demand from node 2 to travel to

node 1 via the indirect route of links 4 and 5, in preference to the direct route via link 3.

In particular, it means that link 5 is not used by demand from node 2; neither is this link

on a route from node 1. Therefore no Authority A flow uses link 5, only Authority B

flow and so this must equal the total flow on link 5, which is unique by remark i.

vii. Since by remark iii., the total Authority B demand arriving at node 3 (and destined for

nodes 1 and 2) is uniquely determined, and since links 5 and 6 are the only exit nodes

from node 3, and since by remark vi. the Authority B flow on link 5 is unique, then it

follows that the Authority B flow on link 6 can be uniquely determined by conservation

of Authority B flow at node 3. By subtraction from the total link 6 flow, the Authority

A flow on link 6 is then also unique.

viii. Consider node 2. By remarks iv., v. and vii., the Authority B flow on links 1, 4 and 6 is
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uniquely determined. By remark i., the total Authority B OD flow that is destined for

node 2 is uniquely determined, and by definition there is no Authority B OD flow

originating at node 2. Therefore, applying conservation-of-flow at node 2 to the

Authority B flow, then the Authority B flow on link 3 may be uniquely determined, as it

is then the only unknown in the conservation equation. By subtraction from the total

link 3 flow, the Authority A flow on link 3 is then also unique.

ix. Remarks iv.–viii. establish uniqueness of the authority flows on links 1–6, i.e. those

under Authority A’s jurisdiction. By symmetry, equivalent arguments can be made

about links 7–12 (under Authority B’s jurisdiction), exploiting assumptions (18)and

(19) in place of (16) and (17) .

APPENDIX B: Cutting Constraint Algorithm

As mentioned in the main text, the global regulator sets the tolls to optimize the welfare for

the entire network (irregardless of authority jurisdiction). This is effectively a Mathematical

Program with Equilirium Constraints (MPEC). The economic paradigm for a generic MPEC
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is based on the setting of a Stackleberg game where the leader sets his strategic decision

variables and the road users on the network take the leader’s decision variables as given and

optimize their route choice according to Wardrop’s Equilibrium Condition. A large amount

of development has occurred in this branch of mathematical optimisation (Luo et al 1996)

which has applications in e.g. mechanics, robotics and transportation analysis. The primary

difficulty with the MPEC is that they fail to satisfy certain technical conditions (known as

constraint qualifications) at any feasible point (Chen and Florian, 1995; Scheel and Scholtes,

1995). In recent research, Koh et al (2009) investigated the use of the cutting constraint

algorithm (CCA) (Lawphongpanich and Hearn, 2004) to solve an MPEC in the context of

second best congestion pricing and capacity optimisation.

Reinterpretation of Variational Inequality Condition

Let us define the additional variable

 : a pre-specified upper bound on tolls, [ ]i 

As we have defined in the main paper (see equation (2)), the feasible region of flow vectors

or “demand-feasible set”D , is a linear equation system of flow conservation constraints.

From convex set theory, e.g. (Bazaraa et al 2008, Theorem 2.1.6 p.43),  , Dv d can be

defined as a convex combination of a set of extreme points. Hence we can write Wardrop’s

equilibrium condition of route choice as follows:

# #( , ) ( ) ( ) ( ) 0 ( , )e e
D     g v Ĳ u v w d q e u e

Where ( , )e eu q is the vector of extreme link flow and demand flow indexed by the

superscript e, and E is the set of all extreme points of the demand-feasible set D

A Cutting Constraint Algorithm for the MPEC

The Cutting Constraint Algorithm redefines the variational inequality using the extreme

points. Together with the initial extreme point, generated by an initial shortest path problem,

and the constraints defining feasible flows, the master problem is solved to find the optimal

tolls and capacities at each iteration. Subsequently new extreme points (“cuts”) are found by

solving a sub problem using the results for the current iteration.

The CCA Algorithm is as follows:

Step 0: Initialise the problem by finding the shortest paths for each O-D pair;

set l (iteration counter) = 0; define the aggregated link flow and demand

flow ( , )l lu q ; and include ( , )l lu q into E .

Step 1: Set 1l l  Solve the Master Problem with all extreme points in E and

obtain the solution vector  , ,v d ;then set  , ,l l lv d .

Step 2: Solve the Sub Problem with  , ,l l lv d and obtain the new extreme point

(u
l
,q

l
);

Step 3: Convergence Check:

If # #( , ) ( ) ( ) ( ) 0l l l l l l l    g v u v w d q d , terminate and  , ,l l lv d is the

solution, otherwise include ( , )l lu q into E and return to Step 1.

The Master Problem in Step 1 is defined as follows:
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 
 

 

1
, , ,

# #

min , , ,

. .

0

,

( , ) ( ) ( ) ( ) 0

i i

e e

s t

D

e E

 
  

  



     

v d
v d

v d

g v Ĳ u v w d q e

The sub problem of Step 2 is a shortest path problem which is formulated as follows:

 
    

 

1

,
min , ,

. .

,

TT

s t

D

   



u q
c v u D d q

u q

Further details of our implementation of the algorithm can be found in Koh et al (2009).

APPENDIX C: Gauss Jacobi Diagonalization Algorithm

The Gauss Jacobi/Diagonalization Algorithm (Harker, 1984) which was used find the toll

tuple when the collusion parameter Į was varied, as discussed in Section 4, operates as 
follows:

Gauss Jacobi/Diagonalisation Algorithm:

Step 0: Set iteration counter 0k  . Select a convergence tolerance parameter,

(>0). Choose a toll level for each authority. Let the initial toll set be

 #k k k

A B Ĳ . Set 1k k  and go to Step 1,

Step 1: Utilise the Cutting Constraint Algorithm (see Appendix B) of Hearn and

Lawphongpanich (1984) to solve each authority’s individual welfare

optimization problem i.e. the equivalent of (5) , assuming that the

opponent’s toll is held fixed.

Step 2: If 1k k

A A   and 1k k

B B   are both less than terminate, else set 1k k 

and return to Step 1 where  refers to the Euclidean Norm.
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