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Abstract 
 
The current paradigm for the identification of candidate drugs within the 

pharmaceutical industry typically involves the use of high throughput screens (HTS).   

High content screening (HCS) is the term given to the process of using an imaging 

platform to screen large numbers of compounds for some desirable biological activity.  

Classification methods have important applications in high content screening 

experiments where they are used to predict which compounds have the potential to be 

developed into new drugs.  In this paper a new classification method is proposed for 

batches of compounds where the rule is updated sequentially using information from 

the classification of previous batches.  This methodology accounts for the possibility 

that the training data are not a representative sample of the test data and that the 

underlying group distributions may change as new compounds are analysed.  This 

technique is illustrated on an example data set using linear discriminant analysis, k-

nearest neighbour and random forest classifiers.  Random Forests are shown to be 

superior to the other classifiers and are further improved by the additional updating 

algorithm in terms of an increase in the number of true positives as well as decreasing 

the number of false positives. 

 
Keywords:  Classification, Updating Algorithm, High Content Screening 

Experiments, Batch Learning, Random Forests, Linear Discriminant 
Analysis, K-Nearest Neighbour 
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1. Introduction 
 
The work described in this paper is motivated by the need to use high content screens 

to identify candidate drugs.  The current paradigm for the identification of candidate 

drugs within the pharmaceutical industry typically involves the use of high throughput 

screens.   A high throughput screen with automated fluorescent imaging platform 

allows a large number of compounds to be tested in a biological assay in order to 

identify any activity inhibiting or activating a biological process.   

 

High throughput fluorescent imaging platforms have several advantages over 

conventional screening techniques that rely on in vitro techniques.  The most 

important of these advantages is that the images contain a wealth of information that 

can be used to define fully the effects of a compound on cells.  It is for this reason that 

fluorescent imaging assays have been termed high content screening [4].  The study 

analysed here involves the use of a highly automated robotic system that administer 

compounds to the cellular assays (each consisting of approximately 300 cells) and 

then takes measurements of various aspects of cell activity by taking a high content 

image. These images are then analysed and quantified using advanced imaging 

algorithms to produce a set of variables.  

 

Classification methods are used in the analysis of high content screening data to select 

those compounds that have the potential to be developed into future drugs.  These 

compounds are denoted as hits and are checked visually.  Compounds that have been 

misclassified as hits (false positives) are denoted false hits.  It is important to 

minimise the number of false hits because the future development of these compounds 

generates unnecessary additional costs.  Alternatively, missing a good hit (false 
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negative) may result in certain compounds with the potential to be developed further 

being ignored.  Our procedure reduces the number of false hits and thus the amount of 

‘wasted effort’ in manually checking false hit images and does not reduce the number 

of identified true hits (i.e. does not increase the number of false negatives). 

 

In order to sample as diverse a chemical space as possible, each high content screen 

may extend to a million or more individual assays [11].  This, and the fact that only a 

small number of compounds in a screen (<1%) have the desired biological effect 

means that a number of interesting statistical challenges arise when analysing data.   

 

Traditional multi-parametric methods of classification (e.g. linear discriminant 

analysis) make the assumption that the data used to train the classifier are randomly 

sampled from the same distribution as the points to be classified in the future [8].  

However, in the case of high content screening experiments the training data are from 

compounds used to validate the experiment.  These compounds are selected because 

of their known biological effects (i.e. both compounds that are known to activate and 

not to activate the biological process of interest). Hence these data points may not be a 

representative sample of the data to be classified in the future.  

 

In this paper, we propose a new method for updating classification rules for data 

grouped into batches (compounds are processed through the experiment in batches 

and the data is analysed after each batch is complete).  By sequentially updating the 

training data and classification rule we aim to increase the predictive capability of the 

model as the screen progresses.  The resulting final model can then be applied to all 

the previous data to select any hits previously misclassified.  This procedure will be 
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tested by applying it to a high content screening using linear discriminant analysis, k-

nearest neighbours and random forests.  The results of classifying this way will then 

be compared with that of the single parameter approach, classical versions of the 

multivariate classifiers. 

 

2. Example Data Set 

 

The data is derived from a high throughput screen to identify antagonists for a G-

Protein Coupled Receptor (GPCR). The GPCR class of proteins represent a major 

class of drug targets. The assay used here is derived from a generic assay for GPCR 

activation. A cell line was generated that expressed the receptor of interest and 

fluorescently tagged protein β-arrestin. Upon activation of the receptor, β-arrestin will 

associate with the receptor at the cell membrane and then drive the internalisation of 

the receptor into intracellular vesicles. The appearance of the fluorescent label thus 

appears as a punctate distribution. In the presence of an antagonist of the receptor, the 

receptor does not associate with β-arrestin. Under these conditions, β-arrestin is 

uniformly distributed throughout the cell’s cytoplasm. The assay uses an automated 

imaging platform to visualise the fluorescence distribution within the cells in response 

to the test compounds. Image analysis algorithms are then used to quantify the 

distribution of fluorescence as to the degree to which the fluorescence appears 

punctate to identify active compounds within those screened. 

 

The cells are also counterstained with a nuclear dye identify their location. Using 

additional image analysis algorithms, it is possible to quantify features of the cells not 

related to antagonism of the receptor. These include changes in nuclear morphology, 
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fluorescent label intensity and cell health. In combination, the features potentially 

report the ability of a test compound to specifically inhibit the receptor of interest, 

versus non-specific effects such as toxicity. 

 

The data collected from this experiment is contained in three batches.  The first 

12,285 compounds were selected because of their known properties. This pre-screen 

batch makes up the training data.  The remaining two batches of 33,941 and 33,408 

compounds (labelled A and B respectively) yield the test data. 15 variables were 

measured for each compound; each represents a different aspect of cellular activity. 

The variables are derived by averaging over the measurements of individual cells in 

the image.  

 

 

3. Analysis of High Content Screening Experiments 

 

3.1 Single Parameter Approach 

 

Early approaches for identifying hits from high content screening data involved the 

use of a single parameter.  Hits are identified as those compounds whose 

measurements deviate from the majority of measurements on the same plate.  The 

current practice is to select compounds that differ from the median by c standard 

deviations, where c is a preliminary chosen constant [6].  For the data set described in 

Section 2 hits are detected by filtering on the Fgrain (mean fractional fluorescence 

within granuli compared to total cell fluorescence) parameter. In this case, an 

observation is considered to be a statistical outlier if it is more than three standard 
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deviations away from the median of the corresponding plate.  However, a low Fgrain 

value can also occur when there are false positives so all wells selected as hits have to 

be manually checked by eye so that these wells can be excluded [5].  Figure 1 shows 

the process of selecting hits using this approach. 

 

3.2 Multi-Parameter Approach 

 

Recent developments in the analysis of high content screening data have focused on 

investigating the implementation of multivariate classifiers.  Huang and Murphy [9] 

and Zhou et al. [17] compare classification using K-nearest neighbours, neural 

networks, support vector machines, Gaussian mixture models and decision trees with 

HCS data from location proteomics and time-lapse fluorescence microscopy 

respectively.  Svetnik et al. [15] made a comparison of the random forest classifier, 

proposed by Breiman [3], with other classifiers for predicting the activities of a 

compound based on a quantitative description of its molecular structure.  The random 

forest was found to have the highest accuracy amongst all of the classifiers compared. 

For a general review of classifiers and statistical modelling of high content screening 

data, see [1, 18]. 

 

To show the potential of multi-parameter analysis of high content screening data a 

statistical pilot study [13] considered a refined selection of compounds from a data set 

previously analysed using the one-parameter approach.  This refined analysis enabled 

the removal of ‘false positives’, arising from compounds that were, for example, 

intrinsically fluorescent or toxic.  In this way, the number of selected compounds was 
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reduced and therefore enabled rapid progression of the most likely candidate drugs 

[5]. 

 

 

4.  Updating Classification Rules 

 

4.1 Changing Distributions 

 

A fundamental assumption of classical classification techniques is that the various 

distributions do not change over time [7]. However, in many applications (including 

high content screens) this assumption is unrealistic and may lead to a decline in 

performance of a classifier over time.  The evolution of class populations in high 

content screens is due to compounds being analysed in batches.  Each of these new 

batches brings with it new compounds that may have different properties to those in 

the training data and those in previous batches.  Therefore changes to the distributions 

of the classes and hence the posterior distributions of class membership may be 

required so that classifier performance does not deteriorate [10].  

 

One way to combat this decline is to continually update classification rules when new 

information is available. The new method for updating high content screen classifiers 

in Section 4.2 takes the problem of changing distributions into account by updating 

after each batch of the experiment has been analysed.   
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4.2 New Updating Method 

 

Here we outline the new method for updating the classification rules, which we use in 

the following section to classify data from a high content screening experiment.   

 

The methodology for the new updating algorithm is as follows.  The training data is 

initially classified using the single parameter plus visual checking approach described 

in Section 3.1 and a multivariate classifier is constructed using these data.  This 

classifier is then used to classify those compounds which were screened as part of the 

first batch (in our case batch A) into groups of true hits, non-hits and false hits. 

 

The compounds identified as true hits by the classifier are examined visually by the 

screening expert to verify the predictions.  At this stage all true hits that have been 

misclassified have their classification labels corrected.  A new training data set is now 

created by combining the data from the batch 1 (the original training data) with the 

visually checked compounds from batch A.  

 

This new updated training data is used to construct a new multivariate classifier for 

the classification of Batch B.  This part of the algorithm accommodates the possibility 

that the training data is not representative of the test data by correcting the 

assumptions on underlying distributions made from the training data.   

 

For each new batch of data the training data is updated using the previous batches 

until the final classifier that is constructed is the ‘best’ possible.  At this stage it is 
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recommended that each of the batches are manually classified again to see if any true 

hits were misclassified during previous classification.  

 

4.3 Algorithm 

 

Let the pre-screen training data  consist of data  where N is 

total number of observations, the x’s are observations of p variables and the y’s are 

the class labels (true hit, false hit, non-hit).  Given B batches of compounds to be 

classified, let ,  be a sequence of test sets each consisting of  

observations of p variables with unknown class labels.  Let ,  be a 

sequence of updated training sets that are created by the algorithm. 

 

Step 1: Given the training set , construct a classifier , where given input  

the class membership y is given by . 

 

Step 2: (k = 1) Classify the batch of test data  using the classifier  to give class 

labels . 

 

Step 3: Identify observations  from the batch of test data  such that 

 = True Hit. 

 

Step 4: Check the classifications of the observations  that were identified as true 

hits in step 3 and adjust any incorrect labels (this step is done by the screening expert). 
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Step 5: Construct a new training set  consisting of the data from  and those 

observations  that were visually checked in step 4. 

 

Step 6: Construct a classifier  using the new training set  

 

Set k = k+1 and repeat steps 2-6 until k = B, the number of batches. 

 

Step 7: Manually apply the classifier  to batches  to identify any True Hits 

that have previously been misclassified. 

 

 

5.  Application 

 

5.1 Classification 

 

Linear discriminant analysis (LDA), random forests [3] and k-nearest neighbour 

(KNN) classifiers were applied both with and without our proposed algorithm to 

classify the batches of test data described in section 2 (for details of the linear 

discriminant analysis and k-nearest neighbours methodology see [7]).  Due to the 

large number of compounds in the test batches it was only possible to check the 

classifications of those compounds that were classified as true hits.  This is considered 

sufficient because we can compare the number of hits and false positives for each of 

the classifiers.  The results of this analysis are compared with the single parameter 

approach in Table 1. Note that the results shown in Table 1 are produced by applying 

the final models to the two batches of data (i.e. the results of step 7 of the algorithm).  
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Also note that in Table 1 the true hits group has been broken down into hits and good 

hits.  Good hits are defined as those compounds which show the greatest level of 

inhibition and are identified by the screening expert.  The false hit group has been 

split into focus error, high background, over confluent, toxic, well dry, no visible 

image and low draq5.  This allows more detailed comparisons to be made. 

 

All of the analysis was conducted in the statistical package R [14].  The random forest 

classifier was implemented using the randomForest library [12] and the library class 

[16] was used for the k-nearest neighbour classifier.  When implementing the k-

nearest neighbour classifier a leave-one-out cross-validatory approach was used for 

selecting the value of the parameter k. 

 

Table 1 shows the results of classifying the two batches of test data.  When using the 

updating algorithm, the iterative stages of classification have been combined with 

classifications from the final models (this corresponds to step 7 of the algorithm).  

These results suggest that the new methodology performs better than both the single 

parameter approach and the traditional multiparameter approaches when using linear 

discriminant analysis and random forests.  Neither the results of the k-nearest 

neighbour nor the updated k-nearest neighbour are an improvement on the single 

parameter approach. The single parameter, linear discriminant analysis, updated linear 

discriminant analysis, k-nearest neighbour, updated k-nearest neighbour, random 

forest and updated random forest identified 204, 196, 145, 185, 117, 279 and 148 

compounds from the 2 batches respectively but 41.2%, 37.2%, 10.3%, 56.8%, 10.3%, 

48.0% and 0.7% of these were found to have been misclassified.  With the exception 

of the two k-nearest neighbour classifiers, all of the multivariate classifiers find more 
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true hits than the single parameter approach.  The most noticeable improvement in the 

number of hits selected is found when using the updated random forest, using this 

methodology identifies 27 more hits than the single parameter approach, and with the 

number of false positives, the updated random forest only misclassifies one of the hit 

selected compounds compared to 12, 15, 73, 84, 105 and 134 for the updated k-

nearest neighbour, updated linear discriminant analysis, linear discrimiant analysis, 

single parameter, k-nearest neighbour and random forest respectively.  However, the 

updated random forest failed to identify one good hit that was selected by the single 

parameter approach. 

 

A detailed comparison of the three non-updating methods used shows that linear 

discriminant analysis and random forests identify more hits than the single parameter 

approach but the k-nearest neighbour classifier does not.  Linear discriminant analysis 

also misclassifies fewer compounds as hits but the random forest misclassifies a 

greater number of compounds with those wells that are toxic and over confluent being 

the main problem.  Additional analysis compared the compounds that were identified 

as hits and good hits by the four different methods.  The aim of this was to see if there 

were any hits that had been falsely classified as non-hits by the updated random 

forest, in other words to find if there were any false negatives.  The results of this 

analysis show that there is a minimum of 8 good hits and 29 hits classified as non-

hits. 

 

Steps 4 and 7 of the algorithm require the input of a screening expert to visually check 

some of the images.  This slows down what would otherwise be an automated 

process.  The results in Table 1 do not take this process into account as they are the 
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final classifications at Step 7 of the algorithm.  Table 2 compares the number of true 

hits found by each classifier to the number of images that were required to be checked 

in order to achieve the classification for the two batches of test data.  The aim of this 

analysis was to look at the effort required by the expert to check images with respect 

to the number of true hits found.  The updated random forest identifies the most true 

hits but also requires the largest number of images to be checked (59% of images 

checked were found to be true hits).  Conversely, linear discriminant analysis has the 

largest percentage of images checked that turn out to be hits (63%) but it identifies 24 

less hits that the updated random forest.  

 

5.2 ROC Analysis 

 

ROC analysis of the classification results was carried out to compare the sensitivity 

and specificity of the different classifiers.  Figure 2(a) is a ROC plot for the 

classification results shown in Table 1.  As the true classifications are not known, 

sensitivity and specificity have been calculated using only compounds checked 

visually by the screening expert. 

 

Comparing the seven classifiers in Figure 2(a) shows that in each case the updated 

classifier has higher sensitivity and specificity than the corresponding non-updated 

classifier.  The updated random forest has the highest sensitivity and specificity of all 

the classifiers which suggest this is the best classifier of those compared. 

 



 16 

Figure 2(b) is a ROC plot for the results shown in Table 2.  Sensitivity has been 

calculated using the number of images that were required to be check to get the final 

classifications; i.e. 

 

 

 

Specificity was calculated using the usual method (and is the same as for Table 1).  

Comparing the seven classifiers in this plot shows that updated random forests and 

updated k-nearest neighbours have higher sensitivity and specificity than the 

corresponding non-updated classifier but linear discriminant analysis has higher 

sensitivity than updated linear discriminant analysis.  Overall, linear discriminant 

analysis has the highest sensitivity (63%) with the updated random forest and the 

single parameter both having the same value (59%).  However, the updated random 

forest identifies 24 more true hits than linear discriminant analysis and 27 more true 

hits than the single parameter approach. 

 

 

 

5.3 Sensitivity of Batch Orderings 

 

An important consideration with any model is that of sensitivity.  In our case we are 

interested in assessing how sensitive the classification algorithm is to the ordering of 

the batches.  In other words, does the algorithm produce the same classification results 

regardless of the order of the batches?  To empirically investigate the sensitivity of the 

batch orderings we compared the results of classifying the compounds using the 
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updated random forest as the batch order changed.  We divided each of the two 

batches of test data into two sub-batches (A1, A2, B1 and B2); we then randomly 

assigned an order to the sub-batches and used the updating methodology to predict the 

class of the compounds.  This process was repeated 8 times so that the predictions 

made by the model for each sub-batch order could be compared. 

 

Table 3 shows the results of investigating the sensitivity of the classification results 

when permuting batch orders.  It can be seen that there is some variation in the 

predicted classifications for the different batch orders.  The most noticeable difference 

appears to be between those orderings which start with batch A and those which start 

with batch B.  A detailed comparison of this difference shows that when a sub-batch 

from batch A is the first to be classified there are more hits from batch A identified 

than when a sub-batch from batch B is the first to be classified.  Although the results 

of classification vary as the batch order is permuted we suggest that the updating 

algorithm approximately converges to the same classifications.  

 

 

6.  Discussion 

 

Before closing with an overall review and conclusions of the work presented we 

discuss various aspects of the work which may benefit from some further study.  

Although the work that has been presented has focused on application with one 

particular dataset from high content screening experiments we can see that there are 

other situations where our suggested methodology could prove to be effective. 
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As discussed in section 4.1, population drift may lead to a decline in performance of a 

classifier over time.  We have attempted to combat this problem by continually 

updating the classifier each time new information is available; however, we suggest 

that a substantial drift in the populations may cause the model to change sufficiently 

so that misclassification occurs for the training data and the previously classified test 

batches.  In other words, the model may change so that compounds that were 

previously classified correctly are now misclassified.  It may be possible it identify 

when this occurs by checking each new model to see how well it predicts the 

classifications of the original data.  In such cases, an alternative approach based on the 

method of Biernacki et al. [2] may be appropriate. 

 

The results of investigating the sensitivity of batch ordering in Section 5.2 suggest 

that the model approximately converges to the same classification.  However, we 

suggest that it may be of interest to investigate this further by considering larger 

numbers of batches.  It is possible to optimise the ordering of the batches before they 

are classified by the algorithm, however, any increase in accuracy would have to be 

balanced against the time taken to implement it. 

 

The single parameter approach (Section 3.1) used to identify hits in the pre-screen 

data uses a filter based on c standard deviations from the median.  In this case the 

value of c was chosen to be three by the screening expert so that the number of images 

required to be checked was not too high.  By increasing this number more hits may be 

identified and this may have an effect on the overall classification results.  The 

sensitivity of this parameter is something that may be investigated further. 
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When we applied the multivariate classifiers in Section 5 we did not directly consider 

the incorporation of prior knowledge nor the unequal cost of misclassification.  In 

some cases these could be specified and incorporated into the classifiers at various 

points in the algorithm.  There would be the opportunity to vary the costs at each step 

in the algorithm but this has not been explored further in the current study. 

 

In conclusion, random forests were shown to be superior to the single parameter 

approach and the other classical multivariate classifiers.  They were further improved 

by the additional updating algorithm in terms of an increase in the number of true 

positives and a decrease in the number of false negatives. 
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Table 1: Observed classifications of hit selected compounds 
 

 Single 
Parameter 
Approach 

LDA Updated 
LDA 

KNN Updated 
KNN 

Random 
Forest 

Updated 
Random 
Forest 

True Hits        
Hit 69 73 77 45 60 96 97 
Good Hit 51 50 53 35 45 49 50 
Total 
 

120 123 130 80 105 145 147 

Non-Hits        
Total 0 52 9 20 7 50 1 
 
False Hits 

       

Focus Error 31 3 2 23 3 7 0 
High Background 21 2 1 6 0 6 0 
Over Confluent 5 14 1 30 1 45 0 
Toxic 10 2 2 25 1 25 0 
Well Dry 4 0 0 1 0 1 0 
No Visible Image 10 0 0 0 0 0 0 
Low Draq5 3 0 0 0 0 0 0 
Total 84 21 6 85 5 84 0 
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Table 2: Comparing the number of hits found to the number of images checked 
for different classifiers 

 
 

Classifier True Hits 
Found 

Images 
Checked 

% Images Checked That 
Were Found to be True 

Hits 
Single Parameter 120 202 59 

LDA 123 196 63 
LDA (Updated) 130 256 51 

KNN 80 185 43 
KNN (Updated) 95 196 48 
Random Forest 145 272 53 

Random Forest (Updated) 147 250 59 
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Table 3: Observed classifications of hit selected compounds using updated 
random forests with different batch orders 

 
Batch Order Hit Good 

Hit 
Non-
Hit 

Focus 
Error 

High 
Background 

Over 
Confluent 

Toxic 

A1, B1, A2, B2 95 52 1 2 0 3 1 
A1, B2, A2, B1 96 50 1 1 0 0 0 
A2, B1, B2, A1 94 49 3 1 0 2 0 
A2, B2, A1, B1 91 50 2 0 0 0 0 
B1, A2, B2, A1 83 48 2 0 0 0 0 
B1, B2, A1, A2 84 49 2 1 3 0 0 
B2, A1, A2, B1 87 49 3 0 0 0 0 
B2, A1, B1, A2 83 49 2 0 1 0 0 
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Figure 1: Hit selection using a single parameter  
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Figure 2(a): ROC Plot showing the classification results from Table 1 
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Figure 2(b): ROC Plot showing the classification results from Table 2 
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