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ABSTRACT: 
 

Background:  Different preference-based measures (PBMs) used to estimate Quality 

Adjusted Life Years (QALYs) provide different utility values for the same patient.  Dif- 

ferences are expected since values have been obtained using different samples, valuation 

techniques and descriptive systems.  Previous studies have estimated the relationship be- 

tween pairs of PBMs using patient self-reported data.  However, there is a need for an 

approach capable of generating values directly on a common scale for a range of PBMs 

using the same sample of general population respondents and valuation technique but 

keeping the advantages of the different descriptive systems. 

Methods:   General  public  survey  data  (n=501)  where  respondents  ranked  health 

states described using subsets of six PBMs were analysed.  We develop a new model based 

on the mixed logit to overcome two key limitations of the standard rank ordered logit 

model, namely, the unrealistic choice pattern (Independence of Irrelevant Alternatives) 

and the independence of repeated observations. 

Results:  There are substantial differences in the estimated parameters between the 

two models (mean difference 0.07) leading to different orderings across the measures. 

Estimated values for the best states described by different PBMs are substantially and 

significantly different using the standard model,  unlike our approach which yields more 

consistent results. 

Limitations: Data come from a exploratory study that is relatively small both in 

sample size and coverage of health states. 

Conclusions:  This study develops a new, flexible econometric model specifically 

designed  to  reflect  appropriately  the  features  of rank data.   Results  support  the  view 

that  the  standard  model  is  not  appropriate  in this  setting  and will  yield  very  different 

and apparently inconsistent results.  PBMs can be compared using a common scale by 

implementation of this new approach. 
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1    Introduction 
 

 

Health policy is increasingly being informed by economic evaluation that measures out- 

comes using the Quality Adjusted Life Year (QALY). The QALY combines quantity and 

quality of life into a single measure of health outcome using preference weights to adjust for 

the quality of life.  These preference weights are estimated using various preference-based 

measures (PBMs) of health-related quality of life, generating a single index score which 

can be compared across different health care interventions or programmes.  All PBMs are 

valued on an interval scale where full health is the upper anchor with an assigned value 

of 1 and 0 is usually assumed equivalent to dead with negative values indicating states 

worse than dead. 

A number of different PBMs are available for use in economic evaluation but there is 

no common agreement on the use of a single measure for all patient groups, disease areas 

and interventions.  The quality adjustment weights generated by different generic PBMs 

can differ substantially for the same patients [1],[2],[3],[4],[5]. Such differences are to be 

expected.  The weights are obtained by different valuation techniques, different descriptive 

systems and using different samples of respondents (often from different countries).  One 

solution to this problem has been to estimate a regression between two PBMs using patient 

self-reported data.  This regression is usually called in the literature a mapping function. 

While  this  might  be a useful  short  term  pragmatic  solution,  it relies  on a large  degree 

of overlap between the descriptive systems of the PBMs [6].  For this reason, this paper 

explores a different approach that does not require overlap at the descriptive level. 

Comparisons across studies using different PBMs would be inaccurate if they assume 

that a QALY calculation is unaffected by the PBM used to generate the quality adjustment 

weight.   What  is  lacking is  a way of relating  the  responses  on one PBM to  another  by 

using a common metric whilst preserving the advantages of the descriptive system of each 

PBM. 

In this paper we analyse primary data collected by interview in which members of the 

general public rather than patients are asked to rank hypothetical health states described 

using  a subset  of six  different  PBMs.   The  relationship  between  different  measures  is, 
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therefore, determined directly by people's preferences for different hypothetical states. 

Ranked  data  are  often  analysed  using  a rank ordered logit  model  [7].  However,  there 

are  two  limitations  of this  standard  model  that  make it unattractive  in our case:   the 

unrealistic choice pattern (Independence of Irrelevant Alternatives) and the inability to 

accommodate repeated choices unless they are assumed to be independent.  To overcome 

these limitations of the standard model, we develop a new model based on the mixed logit 

[8], [9] which we call a rank ordered mixed logit model. 

The  main aim of this  paper is  to  estimate  values  for all the  health  states  included 

in the study on a common scale so that direct comparisons across different descriptive 

systems are possible.  This common metric could also be used to convert weights on their 

original scales across PBMs. 

 

 
 

2    Methods 
 

 

2.1     Data 
 

 

We analyse primary data from a pilot study collected by interview in the North of England 

during June to October 2007. Full details of the data collection process, the study design 

and characteristics of the respondents can be found in [10] and additional analysis in [11]. 

Here we present a brief summary of the data. 

The study involves six PBMs of health and quality of life:  EQ-5D (generic, [12]), SF-6D 

(generic, [13]), HUI2 (generic for children and adults, [14]), AQL-5D (asthma specific, [15], 

[16]), OPUS (social care specific, [17]), ICECAP (capabilities, [18]). These PBMs reflect 

a range of different types of measures and are summarised in Table 1.  Each respondent 

was asked to  perform  three  ranking tasks.   In each task,  respondents  were  shown eight 

cards with descriptions of eight states and were asked to rank them.  The survey design 

contains twenty variations of the ranking tasks.  Ties in the ranking are possible if states 

are considered equal by a respondent.  Each interview involves hypothetical states from 

three of the six PBMs indicated above. The eight states in each task always include two 

generic states 'best state' and 'dead'.  The remaining six states comprise three from each 

of two different PBMs.  For each of the two PBMs,  the three states always consisted of 
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the  worst  state,  one mild and one moderate  state.   Table  2 shows an example  of a set 

of eight cards seen by a respondent in one ranking task.  This particular example set of 

cards includes OPUS and EQ-5D. 

Although the worst states for all the PBMs are included in the study, there are only 

two best states included:  EQ-5D (health) and OPUS (social care). Their value is 1 since 

they are used as the top anchors in their respective preference-based metrics.  One of the 

issues that we aim to determine in this study is how these two states compare according 

to people's preferences. 

The dataset contains data for 501 individuals.  Two respondents were dropped from the 

sample since they provided no ranking data.  In addition, not all respondents completed all 

three ranking tasks; four completed only one of the three tasks and one failed to complete 

one of the tasks.  One respondent only ranked one card ('best state') in a task and another 

respondent only ranked two cards ('best state' and 'dead') in a task and, therefore, these 

two tasks were dropped from the sample.  There were also seven instances of a state not 

being ranked in a task.  In these cases we excluded the state description from the choice 

set of the respondent and kept the remaining observations in the task. 

There are several features of the data which are as expected but will nevertheless 

become  important  in the  model  specification.   The  generic  'best  state'  is  ranked  first 

99.73% of the time:  it is ranked first on its own 98.38% of the time and the remaining 
 

1.35% of the time it is ranked first but tied with another state.  On only four occasions 
 

0.27% of the time) is another state ranked higher than 'best state', three of which are 

observations for the same individual in different ranking tasks.  Of the 20 times the generic 

'best state' is tied with other states, 12 times it is tied with EQ-5D 11111 and 4 times it 

is tied with OPUS 1111. 

The bottom of the ranking presents more variation than the top.  Table 3 shows the 

frequencies  with  which states  are  ranked  last.   This  table  only includes  the  cases  with 

no ties at the end of the ranking which amounts to 93.00% of the bottom rankings.  The 

highest percentage corresponds to 'dead' being ranked last.  Including ties, 'dead' is ranked 

last with a frequency of 80.55% in the full sample.  There are 11 states under the heading 

'Other' that are ranked last as well but each one only on one occasion.  The remaining 
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states that are ranked last are the worst states of the six PBMs. 
 
 
 

2.2     Model  specification 
 

 

2.2.1    Background and  limitations of the standard model 
 

 

Rank ordered data are usually analysed using a logit model [19], [20]. A brief explanation 

of the main features of this model is given below to describe its limitations and compare it 

with our new model developed for this task (see appendix for a more technical description). 

Individual i faces  J  different  alternative  states  in each  of the  T  choice  situations. 

The sets of states each individual  faces are different by study design and the number of 

choice situations also differs across individuals if a full set of rankings is not completed. 

Therefore, we should use Jit  and Ti  but for simplicity we just use J and T .  The utility 

that individual i gets from alternative j in choice situation t can be decomposed into two 
 

parts:  a deterministic part, v ijt, typically assumed to be a linear function of some fixed 

parameters f3  and an unknown stochastic part, pijt  assumed independent and identically 

distributed (IID) type I extreme value. 

 

 

Uijt  = v ijt + pijt i = 1  2         n  j = 1  2         J   t = 1  2         T  (1) 
 

 
 

In each choice  situation,  the  individual  chooses the  alternative  with  the  highest  utility. 

When using rank data, a ranking of J alternatives is expressed as J - 1 successive and 

independent  choices  by the  individual.   The  alternative  ranked  first  is  chosen from the 

full set of alternatives.  Then, the alternative ranked second is chosen from the remaining 

alternatives.   This  continues  until  all alternatives  are  exhausted.   For this  reason  this 

model is often called the exploded logit [21]. 

One complication is that sometimes two or more alternatives are given the same rank. 

Allison and Christakis [22] proposed a generalisation of the likelihood of the logit model 

for tied alternatives by assuming that each individual has a preferred order of the alter- 

natives but this is not observed.  Thus, it is assumed in the estimation that any possible 

permutation of the tied alternatives would be possible. 

This method is computationally demanding and approximations have been suggested 
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in the literature [23], [24]. However, these approximations have been shown to be inac- 

curate  [25] especially  in cases with  a large  number  of ties.   In our dataset  almost  31% 

(154) of the respondents were found to have at least one tie in one of the tasks.  Given 

the large proportion of respondents with ties approximations might not perform well and 

we explore the sensitivity of the results to approximations in the results section. 

Two limitations of this standard model are particularly relevant here.  The first is the 

property of Independence of Irrelevant Alternatives (IIA). This implies that the relative 

odds of choosing one alternative over another depend neither on the rest of the alternatives 

in the set, nor on the alternatives already chosen in the ranking. In some situations, this 

property might represent behaviour correctly but in cases where some alternatives are 

either very similar or have a natural order,  this property will  be too restrictive.  In our 

case,  respondents  are  ranking across  different  states  from different  PBMs  and some of 

the states across these PBMs could be viewed as very similar, for example EQ-5D 11111 

and OPUS  1111 or some of the worst states across the PBMs.  In addition, within each 

descriptive system, the alternatives have a logically determined order, for example EQ-5D 

11112 is better than EQ-5D 12233. 
 

A second limitation of the standard model relates to the way repeated choices are 

handled.  In the present case, each individual performs three different ranking tasks and 

in addition each ranking task is exploded into a number of successive choices.  If there are 

unobserved factors  affecting each decision and these  factors  are  correlated over choices, 

the logit model will be misspecified since the error terms for any set of choices for a given 

individual are assumed to be independent.  This second limitation could be handled using 

clustering by respondents but the first limitation would remain.  Misspecification of the 

model will lead to inconsistent estimates making inferences unreliable. 

 

 

2.2.2    A general rank ordered mixed logit model 
 

 

We relax these two limitations by developing a new model for rank ordered data based on 

the mixed logit model [8], [9].  To our knowledge, this is the first application of a mixed 

logit  model  to  rank data.   The  mixed  logit  model  is  very  flexible  and has been shown 

to  be able  to  approximate  any random utility model  [26].  Different  derivations  of the 
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ijt 

mixed logit model exist [27] but its main difference with the logit model is the inclusion 
 

of additional stochastic terms, ᪽s
 , in the utility in equation (1) to give 

 

 
 

Uijt =  v ijt + ᪽᪽
 s 

ijt ijt + + ᪽ ijt  + p 
 

=  v ijt +  ijt + pijt 
 
 

The new error component,  ijt, can be correlated between alternatives and choice situa- 

tions and can be heteroskedastic.  This is the key to the flexibility of the model but also 

responsible for its higher computational burden.  This additional random term is assumed 

to  have zero  mean and a distribution  f (  \W) where  W  is  a vector  of fixed  parameters 

defining the distribution which are estimated jointly with the other parameters in the 

model. 
 

The  mixed  logit  model,  like  the  logit  model,  cannot  handle  ties  in the  alternatives 

in  this  form but  it can be  generalised  using  Allison  and Christakis  [22] method  (see 

appendix).  This new model requires bespoke programming which we undertook in GAUSS 

9.0 [28]. 
 

 
 

2.2.3    Application of the model. 
 

 

In this particular application we do not have any explanatory variables which vary across 

alternatives; we only use alternative specific constants. Although each respondent only sees 

a maximum of 17 different  alternatives,  the  number  of total  alternatives  across  all 

respondents is 83. It is not possible to include a different error component for each al- 

ternative and estimate a full covariance matrix which would be required to completely 

eliminate the IIA property and allow full flexibility.  Instead, we try to allow for a flexible 

enough structure in the covariance matrix of the utilities that can approximate adequately 

respondents' behaviour so that we obtain consistent estimates while keeping a parsimo- 

nious specification. 

Given  the  discussion  in the  data  section,  the  rank ordered mixed  logit  specification 

here adds six independent standard normal error components to the utility in equation 

(1); five define a nested structure and the last one represents an individual latent factor 
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i 

s 

i 

as described below. 
 

The structure for the top states is very general to allow us to directly test hypotheses 

about their equality.  A common structure is also allowed for the alternatives 'dead' and 

the  worst  states.   When  individuals  are  given  the  eight  alternatives  to  rank, the  cards 

'dead' and 'best state' are very prominent (see Table 2).  In addition to this, similar 

wording clearly separates the alternatives into two groups of three alternatives since they 

come from two  different  PBMs.   Within  each group of three  states,  one clearly  stands 

out as being the worst and in fact always corresponds to the worst state for that PBM. 

Given that it is easy to identify 'dead' and the two worst states in each set of cards as 

the most undesirable ones, it might be appropriate to allow for the correlation structure 

of utilities  to  be similar  within  this  group1 .   Therefore,  the  initial  model  includes  five 
 

separate error components (᪽s
 s = 1  5) in this nested structure:  three different error 

 

components for the three alternatives at the top ('best state', EQ-5D 11111 and OPUS 
 

1111), a fourth error component for a nest encompassing the alternative 'dead' and the 

worst states of all six PBMs and a fifth error component for a final nest covering all the 

remaining alternatives.  The final nest might not be significant given the range of states 

included in it but it will be damaging for the consistency of the estimates to ignore it if it 

exists [29]. The five nests are allowed to have different variances, w2 . The nested structure 

induces two different types of correlations.  First, the utilities of alternatives in the same 

nest  are  now allowed  to  be correlated  and differ  by nest.   Second,  the  utilities  of the 

same alternative across different choice situations for the same individual are perfectly 

correlated.  Therefore, this nested structure goes some way in relaxing the restrictive 

properties of the logit model.  However, it is still rather limited.  The utilities of alternatives 

in  a specific  nest  are  assumed  to  have  exactly  the  same  correlation  and the  utilities 

of alternatives  in different  nests  are  still  uncorrelated.   Furthermore,  it only partially 

addresses  the  issue  of repeated choices.  To be able  to relax these  assumptions,  we add 

to this nested structure another standard normal error component, an individual  latent 

factor, ᪽6 . It represents a characteristic of the respondent that affects his/her choices but 

it is not observed.  This characteristic enters all utilities but with different factor loadings, 

1 A variation excluding 'dead' from this group was also attempted (see Results). 



10  

i j 

T j , so that its impact differs by alternative.  The utility in equation (1) augmented with 
 

the error components structure becomes 
 

 
6
 

   f3j  + w i᪽᪽᪽ i  + T j ᪽ i  + pijt if j = 'Best State'   
6
 

   f3j  + w2i 2᪽i  + T j ᪽ i  + pijt if j = 'EQ-5D 11111'   

Uijt  = 
) 

f3 
  
  

 

+ w  i  ᪽i 

 

+ T j 
 

᪽6 + p 
 

6
 

 
ijt 

 

if j = 'OPUS 1111' (2) 

   f3j  + w4i 4᪽i  + T j ᪽ i  + pijt if j = 'Dead' or any of the worst states   
6
 l 

f3j  + w5i 5᪽i  + T j ᪽ i  + pijt otherwise 
 

 

Since the individual latent factor enters the utilities of all alternatives but with different 

factor loadings, it allows for different correlations across the utilities of all the alternatives. 

These correlations will depend on both the factor loadings and the variance of the nests the 

utilities belong to, that is, both respondent specific and alternative specific characteristics. 

For instance, the utilities of the alternatives in the nest containing the alternative 'dead' 

and the worst states of all six PBMs will no longer share the same correlation structure 

unless all the T j of all the states in the nest are equal.  This model allows for a very rich 

pattern of respondent behaviour relaxing the restrictive properties of the logit model. 
 

A number of alternative specifications to the initial model in equation (2) were esti- 

mated and those are discussed in the results section. 

 

2.3  Relationships  between  current  weights  and  common scale 
weights. 

 

 

After estimation of the parameters of the model using a rank ordered mixed logit model, 

we estimate the relationship between the published sets of values for each of the PBMs 

used (EQ-5D [12], SF-6D [30], HUI2 [31], AQL-5D [15], OPUS [17], ICECAP [18]) and 

the health state values of the PBMs in our common metric.  Due to the relatively small 

number of states for each PBM included in this study, the estimated relationships can only 

support very simple linear functional forms and are probably not of sufficient accuracy. 

The following relationship is postulated: 

 

 
f3  = W a + 7  (3) 
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B  ᪽I 0 · · · 0 

0 B2 I · · · 

. . . 

0 

0 0 · · · B6 I 

 

    

where  f3  is  the  ((J - 1) x 1) vector  of true  values  measured  in a common scale  for the 

states included in the study, a is a k x 1 vector (k < J ) of parameters of interest to be 

estimated and W is a block diagonal data matrix.  Each block W  ᪽ to W6 relates to one of 

the six PBMs and includes as a variable the currently used values of the states included 

in this study.  The 7's are IID normally distributed, mean zero and heteroskedastic with 
 

block diagonal covariance matrix 
 

 
I \ 

 

 

    
 

    
 

0 = 
   

 
    

 

    
 

    
 

    
 

 
 
 

The  true  parameter  vector  f3  is  not  known; instead  we have  an estimate  f3A 
 

f3A  = f3 + ( . Substituting this expression in (3), we get the following regression 

so  that 

 

 
 

f3A =  W a + 7 + ( 
 
=  W a + w 

 

 
 

where  w is  a composite  error  term.   It is  assumed  that  7 and ( are  independent  and 
 

normally distributed.  We use maximum likelihood to estimate a together with the six B's 
 

f3
  

using 0 + C m; 
(

f3A
  

as an estimate of the covariance matrix of w, where C m; 
(

A 
 

inverse of the Hessian matrix of the rank ordered mixed logit model. 
 

 
 
 

3  Results 

is the 

 
 

First we checked the accuracy of an approximation (Efron's [24]) to handle ties in the 

standard rank order logit model.  The use of Efron's approximation generates differences 
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in the estimated values of the states of up to 0.08 and a difference of 0.12 in the estimated 

value of the 'best state'.  These differences are large relative to the range of estimated 

values and although the computational cost is great both in terms of the additional 

programming complexity and increased estimation time we do not use any approximations. 
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i 

᪽

A number of alternative specifications to the initial model in equation (2) were es- 

timated2 and a restricted version was selected according to the Bayesian Information 

Criterion (BIC). The restricted model had a common error component and equal alterna- 

tive specific constants for 'EQ-5D 11111' and 'OPUS 1111'.  Table 4 presents the estimated 

parameters of the rank order logit model and the preferred specification (selected by BIC) 

of the rank ordered mixed logit model rescaled so that the difference in expected utility 

between the most preferred state from a PBM (OPUS 1111) and 'dead' equals one.  The 

estimated parameters seem to broadly reflect the logical ordering of each state within each 

PBM. Based on the significance of the estimated factor loadings, T j , it is clear that IIA 

will  be rejected in support of the rank ordered mixed logit model and a likelihood ratio 
 

test between the two models emphatically rejects the rank order logit with a test statistic 

of 1129.37 and zero p-value.  Unfortunately, some of the parameters are on the boundary 

of the parameter space which distorts the distribution of the statistic.  In these cases the 

test has been found to be conservative [32] and therefore would not change the present 

conclusion. 

Although  the  standard  errors  seem  to  indicate  that  some  of the  error  components 

which define the nests are not significant at standard levels,  we need to interpret these 

standard errors with caution since, again, testing is on the boundary of the parameter 

space and therefore  the  statistics  do not  have the  usual  distributions.   For this  reason, 

we also estimated a rank ordered mixed logit model with only an individual latent factor 

(᪽6 ) and compared it with the full model.  The likelihood ratio test rejects the model with 

only the latent factor with a x2  test statistic of 38.12 and p-value of zero.  Thus, the rank 

ordered mixed  logit  model  is  a clear  improvement  on the  basic  model  and even  on  the 

rank ordered mixed logit with only the latent factor. 

There are substantial differences in the estimated values of health states between the 

standard model and our model.  Excluding the greatest difference in parameter estimates 

which corresponds to the generic 'best state', the largest difference is 0.17 and the mean 

2 These included amongst  others a model with  only a latent  factor ᪽6  and no nested structure  and 
a model with  a nest for 'EQ-5D  11111'  and 'OPUS  1111'.   We  also attempted  to estimate  alternative 
specifications where the alternative  'dead'  had a separate error component  but  it seems  that  the  data 
cannot empirically sustain these models. 
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and the median difference are 0.07 and 0.08 respectively.  Surprisingly, the point estimates 

for the top states described by EQ-5D and OPUS are substantially different when esti- 

mated using the  standard model  (0.83 and 1 respectively).  Thus,  the  absence of social 

care problems described by OPUS1111 is preferred to the absence of health problems 

described by EQ-5D1111. The restriction of equality is rejected with a x2  statistic of 8.85 

and a p-value of zero.  In contrast, when the more flexible rank ordered mixed logit model 

is estimated, the specification that fits best according to BIC is one where both parame- 

ters are equal.  That is, the unexpected large difference disappears once the more flexible 

rank order mixed logit model is used. Thus, the restrictive assumptions of the rank order 

logit appear to be affecting the estimates in such a way as to cause the expected utilities 

of the top two states described by EQ-5D and OPUS to appear significantly different. 

Unfortunately, due to the study design, there are few instances of logically determined 

orderings between the states included in each PBMs beyond the best states being ranked 

at the top and the worst states at the bottom, therefore we cannot compare the models 

performance in this matter. 

There are further features of our model results that are worth noting.  First, the factor 

loadings of the latent factor are all significant apart from the factor loading of the 'best 

state'.  This is an important issue which indicates that 'best state' and 'dead' are so 

different that IIA would be a reasonable assumption between these two alternatives but 

not for the rest of the states.  To get a better feel for the model we can look at the 

correlations between utility differences.  If IIA holds between alternatives, the correlation 

between utility differences should be 0.5 since a preference of alternative A over alternative 

B would not imply a pattern of preference between alternative C and B. In other words 

half of the respondents who prefer A to B would be expected to prefer C to B and the 

other half would be expected to prefer B to C. Therefore, any departures from 0.5 in the 

correlations between utility differences points towards rejection of IIA. Table 5 shows the 

implied correlations of the utility differences between the worst states described by each 

of the PBMs and 'dead'.  All  these correlations are very high and clearly different from 

0.5; a respondent who prefers the worst state on one measure to 'dead' is more likely to 

prefer all the rest of the worst states to 'dead'.  This pattern of correlations is not unique 
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to the worst  states;  the mean and median correlations  between all utility differences  in 

our model are 0.86 and 0.89 respectively, a clear departure from 0.5 for a large number of 

utility differences. 

In addition, in both models the estimated parameter value corresponding to the generic 
 

'best state' is significantly above that of the top two states defined by EQ-5D and OPUS. 

This difference is larger for the rank order mixed logit model.  The alternative 'best state' 

was clearly viewed as different and preferred to the top two states in the raw data and 

these coefficients reflect this fact.  Given that the 'best state' dominates so clearly, the 

assumption  of random utility for this  alternative  may not  be adequate  in this  case but 

nevertheless since 'best state' is in a nest of its own and not used to set the scale of the 

model it is unlikely to have a noticeable influence on the rest of the estimated parameters. 

Figure 1 plots the current published state values against the estimated values on a 

common metric  for all states  included  in the  study.   The  published  state  value  of the 

worst state of EQ-5D is -0.594 [12] and that of the worst state of HUI2 is -0.0552 [31]. 

This apparently large difference is not observed in the estimated values in the common 

metric.  In fact, on average, the worst HUI2 state seems to be regarded as worse than the 

worst EQ-5D state by the respondents of this study with coefficients of 0.29 (0.03) and 

0.23 (0.03) respectively (standard errors in brackets). 
 

Another important point to note is the large difference in the published state values 

between the top two EQ-5D states included in this study (see Figure 1), this will become 

an important issue in the following section. 

 

3.1  Relationship  between  current  weights  and   common  scale 
weights. 

 

 

Estimates of the health state values and their covariance matrix are used in this section to 

provide an illustrative example of the estimated relationship between the current published 

state values and those values estimated in a common scale using the rank ordered mixed 

logit model. 

Visual inspection of scatter plots suggests that linear relationships are probably ad- 

equate,  given  the  caveats  about  the  small  number  of observations  raised  earlier,  for all 
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PBMs apart from OPUS. For this PBM the scatter plot indicates that a cubic relationship 

might fit the data better.  This is confirmed by the smaller BIC of the cubic model (158.5) 

compared to the model with only linear terms (175.1). Table 6 shows the estimated coeffi- 

cients and standard errors for these regressions on the original scale.  Table 7 provides the 

implied scaled relationship between health state values on their original and the common 

scales. 

These regressions allow us to calculate how each PBM in our study might map onto 

any other.  Table 8 shows how the ranges of the PBMs relate to EQ-5D. These estimates 

need  to  be  treated  with  caution  given  the  large  gap evident  in Figure  1 between  the 

highest two or three EQ-5D states included in the study.  A few issues are of particular 

note.  The lowest published value of HUI2 (-0.0552) maps onto a value of EQ-5D which 

is substantially lower (-0.689). Indeed, this is even lower than the lowest published value 

for EQ-5D (-0.594). This suggests that the difference between the worst states described 

by EQ-5D and HUI2 is not as large as the current published values suggest.  Given that 

these two states were included in the study, this issue was also evident from the estimated 

parameters  of the  rank ordered mixed  logit  model  (see  Figure  1).  The  point  estimates 

of these two states are followed by the worst states of ICECAP and OPUS (with similar 

values), then followed by the worst state described by SF-6D and finally by the worst AQL- 

5D estate.  This ascending ordering of the worst states does indeed appear reasonable. 

However, obtaining values for SF-6D and HUI2 upper states that are significantly lower 

than one is surprising, although this might be a consequence of the study design and the 

large gap between the EQ-5D states included in the study which makes the specification 

of the function unreliable.  This is a useful point arising from this feasibility study which 

will need addressing in future work in this area. 

 

 
 

4    Discussion and  conclusions 
 

 

Many PBMs coexist since there is no agreement on the use of a single measure for all 

patient groups, disease areas and interventions.  Different PBMs generate different qual- 

ity adjustment weights even for the same patients.  Therefore, comparisons across studies 
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which assume that the QALY  calculation is unaffected by the PBM used would be inac- 

curate. 

This paper contributes to the literature in this area with two important developments. 

First, the paper opens a new avenue for research by proposing an alternative way of 

comparing across PBMs using a common scale.  Second, the paper develops a new, flexible 

econometric model, the rank ordered mixed logit, to be able to analyse the type of data 

(rankings) required to compare across PBMs in this alternative approach. Furthermore, 

this new econometric model can be effectively used to analyse rank data in many other 

situations where the assumptions required by the rank ordered logit model are rejected 

by the data. 

This method allows the relationship between PBMs to be determined directly by 

people's preferences for different hypothetical states.  This provides a method of comparing 

across PBMs using a common scale that could be used to provide a new means of mapping 

between them.  Rank data is commonly analysed using a rank ordered logit model.  This 

model is straightforward to estimate but assumes IIA and independent repeated choices 

which, very often, are too strong and rejected by the data.  In these cases, the rank ordered 

logit model will give inconsistent estimates of the parameter values and inferences based 

on this model could be misleading.  This paper develops a very flexible model, the rank 

ordered mixed logit model.  The general model has been tailored to our dataset reflecting 

the specific characteristics of the study but it can be easily adapted for estimation of other 

rank datasets with a different error components structure.  We have shown that there are 

considerable differences in the estimated parameter values corresponding to the states in 

the six PBMs between these two models.  The estimated parameters of the rank ordered 

mixed logit model seem to reflect the logical ordering of each state within each PBM and 

provide a direct comparison across the states included in the study. 

In addition to this direct comparison, we have also presented how this common metric 

might be used to convert different quality adjusted weights across PBMs.  Due to the small 

number  of states  for each PBM included  in this  study,  the  estimated  relationships  can 

only support very simple linear functional forms and are quite possibly not of sufficient 

accuracy. Therefore, these relationships should only be regarded as an illustrative example 
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of how the  issue  could  be tackled. The conversion takes  into account the  estimated nature 

of the  common metric and  allows for  clustering in the  error  term around the  PBMs.  A 

clear  future research development would  be to conduct a larger, definitive study allowing 

the  results of applying the  methods described here  to be considered sufficiently robust for 

reliably informing decision making. 
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Table 1: Measures of health and quality of life. 
 

 

Instrument Summary 

(Unique states) 

Dimensions Levels 

EQ-5D Generic 

(243) 

5 dimensions: Mobility, self-care, 
usual activity,pain/discomfort 
and anxiety/depression 

3 levels: 

no problems to 
extreme problems 

 

SF-6D 
 

Generic 

(18,000) 

 

6 dimensions: Physical functioning, 
role limitations,social functioning, 
pain, mental health, vitality 

 

Between 4 and 6 
levels in each 
dimension 

 

HUI2 
 

Generic for 
children 
(8,000) 

 

7 dimensions:  Sensation, mobility, 
emotion, cognition, self care, 

pain, fertility 

 

Between 4 and 5 
levels in each 
dimension 

 

AQL-5D 
 
 
 
 
 
 

ICECAP 
 

 
 
 
 

OPUS 

 

Condition 
specific for 
asthma 
(3,125) 

 
Capability 
measure for 

older people in IK 
(1,024) 

Social care 
outcome measure 
for older people 
(243) 

 

5 dimensions: Concern about 
asthma, shortness of breath, 
weather and pollution stimuli, 
sleep impact and activity 
limitations 

5 dimensions: Attachment, 
security, role, enjoyment, 
control 

 
5 dimensions: Food and nutrition, 
personal care, safety, social 
participation, control over daily 
living 

 

5 levels: 

no problems to 
extreme problems 

 

 
 

4 levels:  all, a lot, 
a little, none 

 

 
 

3 levels: 

no unmet needs, 
low unmet needs, 
high unmet needs 
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Table 2: Example set of eight cards seen by a respondent in one ranking task. 
 

 

I have an inadequate diet potentially resulting in a health risk 
I am often dirty with poor personal hygiene 

I am socially isolated with little or no contact from others 

I have no control over daily living 

I do not always get appropriate food but there is little health risk 
I am often dirty with poor personal hygiene 

I am socially isolated with little or no contact from others 

I have as much control over daily living as possible 

I have sufficient, varied timely meals 
I am always clean and appropriately dressed 

I see people as often as I would like 

I have as much control over daily living as possible 

I have no problems in walking about 
I am unable to wash or dress myself 

I have some problems with performing my usual activities 

I have no pain or discomfort 

I am not anxious or depressed 

I am confined to bed 
I am unable to wash or dress myself 

I am unable to perform my usual activities 

I have extreme pain or discomfort 

I am extremely anxious or depressed 

I have some problems in walking about 
I am unable to wash or dress myself 

I have no problems with performing my usual activities 

I have moderate pain or discomfort 

I am not anxious or depressed 

 

Dead 

 

Best state 

 

 

Table 3: Number of times a state is 
ranked last excluding ties. 

 

 

Health state Frequency Percentage 
 

Dead 1,120 81.16 
HUI2 455445 102 7.39 

EQ-5D 33333 88 6.38 

ICECAP 44444 22 1.59 

OPUS 3333 20 1.45 

SF-6D 645655 13 0.94 

AQL-5D 55555 4 0.29 

Other 11 0.80 

Total 1,380 100 
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Table 4: Scaled parameter estimates. 
 

 

RO logit 

Health State f3j 

 

 

s.e. 

RO mixed logit 

f3j s.e. 

 
T j 

 

 

s.e. 

w Best state   0.7640 0.3158*
   

w Top states   0.0854 0.0630*
   

w Middle states   0.0066 0.0171*
   

w Bottom states, dead   0.0384 0.0072*
   

EQ-5D 11111 0.8320 0.0512 1.0000 - -0.1240 0.0423 

 11322 0.7218 0.0441 0.7415 0.0488 -0.3042 0.0379 

 12311 0.6493 0.0377 0.7346 0.0483 -0.2116 0.0323 

 13211 0.6747 0.0356 0.7059 0.0449 -0.2900 0.0323 

 21113 0.6314 0.0359 0.6752 0.0436 -0.2538 0.0304 

 23121 0.6206 0.0335 0.6695 0.0431 -0.2836 0.0320 

 11223 0.5976 0.0346 0.6512 0.0425 -0.2688 0.0312 

 22212 0.5600 0.0310 0.6358 0.0405 -0.2381 0.0306 

 21331 0.5602 0.0378 0.6321 0.0433 -0.2720 0.0353 

 13132 0.4711 0.0305 0.5567 0.0392 -0.3097 0.0320 

 12133 0.4507 0.0331 0.5521 0.0402 -0.3116 0.0343 

 31112 0.4236 0.0332 0.5329 0.0392 -0.2781 0.0321 

 31231 0.3649 0.0301 0.4803 0.0369 -0.2841 0.0344 

 32121 0.3446 0.0305 0.4774 0.0382 -0.3159 0.0341 

 33313 0.2786 0.0247 0.4168 0.0348 -0.3514 0.0329 

 33333 0.1412 0.0121 0.2937 0.0293 -0.3705 0.0329 

SF-6D 211111 0.8060 0.0425 0.8491 0.0562 -0.1450 0.0411 

 112221 0.7495 0.0417 0.8202 0.0534 -0.1728 0.0345 

 211211 0.7645 0.0412 0.7892 0.0507 -0.1766 0.0394 

 111453 0.7005 0.0365 0.7364 0.0458 -0.2213 0.0357 

 214411 0.6429 0.0365 0.7081 0.0452 -0.1940 0.0360 

 424421 0.5926 0.0335 0.6499 0.0422 -0.3075 0.0323 

 623133 0.5416 0.0323 0.6299 0.0414 -0.2352 0.0351 

 545622 0.5337 0.0317 0.6204 0.0407 -0.2813 0.0306 

 311655 0.5458 0.0302 0.6180 0.0402 -0.2823 0.0310 

 624343 0.5153 0.0307 0.5991 0.0398 -0.2957 0.0312 

 422655 0.4800 0.0292 0.5696 0.0391 -0.3177 0.0343 

 535645 0.4744 0.0274 0.5661 0.0382 -0.3024 0.0319 

 645655 0.3759 0.0191 0.4980 0.0343 -0.3168 0.0292 

AQL-5D 21223 0.6915 0.0364 0.7393 0.0459 -0.2041 0.0299 

 13321 0.6551 0.0361 0.6995 0.0444 -0.2170 0.0314 

 12543 0.6428 0.0328 0.6965 0.0429 -0.2110 0.0299 

 53411 0.6274 0.0358 0.6839 0.0435 -0.2265 0.0301 

 32441 0.6145 0.0343 0.6687 0.0427 -0.2292 0.0300 

 45143 0.5864 0.0334 0.6530 0.0420 -0.2287 0.0312 

 23534 0.5761 0.0334 0.6471 0.0418 -0.2265 0.0309 

 52314 0.5580 0.0296 0.6325 0.0402 -0.2505 0.0299 

 34254 0.5315 0.0314 0.6095 0.0398 -0.2481 0.0291 

 55424 0.5211 0.0291 0.6066 0.0392 -0.2291 0.0287 

 15355 0.5143 0.0306 0.5963 0.0396 -0.2552 0.0298 

 34554 0.5068 0.0300 0.5880 0.0390 -0.2398 0.0292 

 55555 0.4174 0.0204 0.5274 0.0346 -0.2583 0.0263 
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Table 4 (cont):  Scaled parameter estimates. 
 

 
 

 

Health State 

RO logit 

f3j 

 

 

s.e. 

RO mixed logit 

f3j s.e. 

 
T j 

 

 

s.e. 
HUI2 112222 0.6958 0.0392 0.7282 0.0464 -0.2801 0.0322 

 121132 0.5986 0.0346 0.6715 0.0432 -0.2460 0.0334 

 112123 0.5745 0.0326 0.6628 0.0416 -0.2263 0.0306 

 323331 0.4887 0.0306 0.5805 0.0407 -0.3505 0.0378 

 314431 0.4486 0.0310 0.5445 0.0395 -0.3235 0.0339 

 234111 0.4290 0.0286 0.5414 0.0383 -0.2984 0.0312 

 331131 0.4563 0.0279 0.5385 0.0374 -0.3170 0.0310 

 344222 0.4208 0.0289 0.5349 0.0397 -0.3783 0.0392 

 125425 0.3598 0.0275 0.4831 0.0369 -0.3163 0.0330 

 133444 0.3569 0.0251 0.4693 0.0358 -0.3572 0.0335 

 144325 0.3478 0.0269 0.4679 0.0369 -0.3474 0.0340 

 445234 0.2266 0.0221 0.3670 0.0332 -0.3401 0.0326 

 455445 0.0974 0.0109 0.2311 0.0288 -0.3912 0.0332 

ICECAP 21131 0.8597 0.0551 0.9409 0.0793 -0.1595 0.0449 

 31212 0.9124 0.0514 0.8939 0.0571 -0.1946 0.0345 

 12321 0.8438 0.0474 0.8781 0.0509 -0.2312 0.0363 

 23324 0.7034 0.0372 0.7329 0.0457 -0.2779 0.0323 

 22242 0.6795 0.0380 0.7238 0.0473 -0.3334 0.0447 

 14344 0.6233 0.0336 0.6735 0.0435 -0.3276 0.0329 

 33333 0.6164 0.0339 0.6716 0.0433 -0.2778 0.0324 

 43111 0.6046 0.0339 0.6685 0.0434 -0.2629 0.0308 

 43443 0.5177 0.0312 0.5969 0.0399 -0.2688 0.0303 

 43334 0.4425 0.0288 0.5499 0.0383 -0.3015 0.0327 

 44143 0.4584 0.0297 0.5493 0.0383 -0.2892 0.0302 

 42444 0.4401 0.0268 0.5341 0.0370 -0.3253 0.0300 

 44444 0.3274 0.0175 0.4607 0.0330 -0.3239 0.0284 

OPUS 1111 1.0000 - 1.0000 - -0.2089 0.0372 

 2121 0.7277 0.0404 0.7606 0.0481 -0.1975 0.0322 

 3121 0.6368 0.0377 0.7172 0.0457 -0.2047 0.0314 

 2212 0.5933 0.0325 0.6721 0.0432 -0.2270 0.0301 

 2331 0.5613 0.0302 0.6378 0.0416 -0.2941 0.0298 

 3132 0.5319 0.0333 0.6287 0.0416 -0.2387 0.0326 

 1322 0.5407 0.0295 0.6176 0.0400 -0.2715 0.0312 

 2123 0.5340 0.0314 0.6135 0.0403 -0.2920 0.0290 

 3221 0.5340 0.0291 0.6122 0.0397 -0.2490 0.0291 

 3313 0.5050 0.0311 0.5922 0.0398 -0.2608 0.0304 

 1233 0.4937 0.0283 0.5895 0.0391 -0.2713 0.0301 

 1333 0.4515 0.0286 0.5653 0.0394 -0.3210 0.0314 

 3333 0.3419 0.0178 0.4766 0.0333 -0.3046 0.0274 

Best State 1.4901 0.0745 3.0672 0.9283 -0.0527 0.1400 

Dead  0.0000  -  0.0000  - 
* 

S t a n d a r d  e r r o r s  a r e  p r o v i d e d  f o r  i l l u s t r a t i o n  p u r p o s e s  o n l y. 
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Table 5: Correlations between utility differences between the worst states and 'dead'. 
 

 

 EQ-5D 

33333 

SF-6D 

645655 

AQL-5D 

55555 

HUI2 

455445 

ICECAP 

44444 

OPUS 

3333 
EQ-5D 33333 1.0000      

SF-6D 645655 0.9282 1.0000     

AQL-5D 55555 0.9080 0.9019 1.0000    

HUI2 455445 0.9412 0.9303 0.9094 1.0000   

ICECAP 44444 0.9299 0.9210 0.9020 0.9321 1.0000  

OPUS 3333 0.9249 0.9167 0.8998 0.9270 0.9170 1.0000 

 

 

Table 6: Estimated coefficients for the regressions of the relationship between health 
state values from PBMs on their original scales to a common scale based 

on the rank ordered mixed logit. 
 

 

Variable  Estimate s.e. 
EQ-5D Constant 7.0651 0.4429 

 Health State Value 4.6620 0.5417 

SF-6D Constant 5.1368 0.4757 

 Health State Value 5.8356 0.4070 

AQL-5D Constant 5.2427 0.4791 

 Health State Value 4.4695 0.3934 

HUI2 Constant 4.2007 0.5164 

 Health State Value 6.2987 0.6917 

ICECAP Constant 6.2803 0.5015 

 Health State Value 5.6808 0.6155 

OPUS Constant 6.3458 0.4006 

 Health State Value 12.3298 1.0734 
 (Health State Value)

2
 -28.9721 3.2768 

 (Health State Value) 22.1348 2.5449 

 B  ᪽ 0.7186 0.1419 

 B2 0.1865 0.0946 

 B 0.1562 0.0576 

 B4 0.5430 0.1213 

 B5 0.5442 0.1325 

 B6 0.0000 0.1696 

 

Table 7: Implied relationship between health state valuations on original and common 
scales (Dependent variable:  common scale 0: 'dead', 1: 'EQ-5D 11111' and 
'OPUS 1111'). 

 

 

 EQ-5D SF-6D AQL-5D HUI2 ICECAP OPUS 
Constant 0.5405 0.3930 0.4011 0.3214 0.4805 0.4855 
Health State Value 

(Health State Value)
2
 

0.3567 0.4464 0.3419 0.4819 0.4346 0.9433 

-2.2164 

(Health State Value)      1.6934 
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Table 8: Estimated EQ-5D mapping ranges. 
 

 

Published value range Common metric EQ-5D mapping range 
 

EQ-5D -0.594 to 1 0.329 to 0.897 -0.594 to 1 
SF-6D 0.271 to 1 0.514 to 0.839 -0.074 to 0.838 

AQL-5D 0.431 to 1 0.548 to 0.743 0.022 to 0.568 

HUI2 -0.0552 to 1 0.295 to 0.803 -0.689 to 0.737 

ICECAP 0 to 1 0.480 to 0.915 -0.168 to 1.050 

OPUS 0 to 1 0.485 to 0.906 -0.154 to1.024 
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Figure 1: Scatter plot of estimated f3j  versus current published state values. 



27  

it it r it 

it 

it 

it 

Technical appendix:  Model specification and identifi- 
cation. 

 

 
 

Specification of the standard rank ordered logit model 
 

It is assumed that individual i faces J different alternatives in each of the T choice sit- 

uations.  Both, the number of alternatives and choice situations might differ and therefore 

the notation Jit and Ti  is more appropriate but for simplicity of exposition and without 

loss of generality we use J  and T .  The utility that individual  i gets from alternative j 

in choice situation t can be decomposed into two parts:  a deterministic part, v ijt, which 

typically is assumed to be a linear function of some fixed parameters f3  and an unknown 

stochastic part, pijt  which is assumed independent and identically distributed (IID) type 

I extreme value. 

 

 

Uijt  = v ijt + pijt i = 1 2  n  j = 1 2  J  t = 1 2  T  (A1) 
 

 
 

In each choice  situation,  the  individual  chooses the  alternative  with  the  highest  utility. 
 

Let rl
 be the alternative ranked in lth position and Rit = 

(
r  ᪽ 2

 rJ 
} 

be the ranking 
 

of the J alternatives from best to worse.  The probability of this ranking can be written as 

the product of the logit probabilities of choosing one alternative at a time from successively 

smaller subsets of alternatives 
 
 

J -  ᪽

Pr (Rit) = 
n

 
 )(P 

(
v 

J᪽
 

 
ir  t 

( 

 
 

) (A2) 
 

l=  ᪽ s=l  )(P v irs t 
 

 

Effectively, each ranking is expressed as J - 1 independent choices by the individual. 
 

Allison and Christakis [22] proposed a generalisation of the likelihood of the logit 

model  for tied alternatives  based on the marginal likelihood principle taking advantage 

of the duality between the logistic model for rankings and the partial likelihood of Cox 

regression.  It is assumed that the individual has a preferred order of the alternatives but 

we do not observe it.  The contribution of the tied alternatives to the likelihood is obtained 

by adding the probabilities of all possible permutations of the ranked alternatives.  If there 

are ties in the ranking, individual  i will  assign only L different ranks to the J  different 
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alternatives  (L  < J ).  Use Kl  to  denote  the  number  of tied  alternatives  in rank l.  Let 
 

p = (p  ᪽ p   ) be an element of Ql , the set of permutations of the numbers 1  Kl 
 

so that out of all the alternatives with rank l, rl
 

 

[pk ] denotes the one that appears on the 
 

pk th position in a permutation p. The probability of a ranking Rit in equation (A2) can 
 

be generalised to 
 

 
( 

v ir 
 
[pk ]t

 

Pr (Rit) = 
n ) n    (A3) 

 
l=  ᪽pEQ  
k=  ᪽

s=k   )(P 

( 
v ir  [ps ]t + 

 ᪽
s>l m=  ᪽   )(P 

(
v irs [prn ]t

)
 

 

 

and the probability of observing a set of rankings by an individual can be written as 
 

 

T 

Pi  = 
n 

Pr (Rit)  (A4) 
t=  ᪽

 

 

The model is estimated by maximizing the likelihood function that uses the above prob- 
 

ability for each individual in the sample. 
 
 

 

Specification of a general rank ordered mixed logit model 
 

The utility that individual  i gets from alternative j in choice situation t for a mixed 

logit  model  is  analogous  to  the  utility in (A1)  but  with  an additional  error  component 

ijt: 
 

Uijt  = v ijt + ijt + pijt 
 

This additional error component can be correlated between alternatives and choice situ- 

ations  and can be heteroskedastic.  It is  assumed to  have zero  mean and a distribution 

f (  \W) where W is a vector of fixed parameters that determine this distribution and need 

to  be estimated  in addition  to  the  rest  of parameters  in the  model.  Conditioning  on 

the probability of a given choice is logit and the probability of observing a certain set of 

rankings is analogous to that in equation (A4) and can be expressed as 
 

 

T )(P 
(

v 
 

ir
it [pk ]t +

  
irit [pk ]t

 

Pi (  ) = 
n n ) n  

( 
 s  

( 

t=  ᪽ l=  ᪽pEQ  k=  ᪽
᪽

 v 
it 

[ps ]t +  ir [ps ]t + 
 ᪽
s>l m=  ᪽   )(P v irs [prn ]t + 

 

s [prn ]t 

 

 

Since is  not  known, Pi (  ) needs to  be integrated over the  density of  ᪽ to obtain the 
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unconditional probability of the sequence of choices for person i 
 

 
 

JIi  = Pi (  ) f (  \W) d  ᪽
 

 
 

The model is usually estimated by simulated maximum likelihood since the loglikelihood 
 

using JIi  as the probability of observing the sample data for each individual in the sample. 
 
 

 

Identification of the specific application of the rank ordered mixed logit model. 

Not all the parameters of the rank ordered logit or the rank ordered mixed logit are 

identified theoretically but identification of the simple rank ordered logit is well established 

and straightforward; the model needs to be normalised for level and scale.  This is usually 

accomplished by setting one of the alternative specific constants to zero and the variance 

of the  error  term  to  7r2 /3.   Alternatively,  the  same  normalisation  can be  achieved  by 

setting two of the alternative specific constants to two different values and allowing the 

variance of the error term to be estimated freely as (.A7r)
2 
/3.  In the present case there is 

a natural normalisation for the model since the utility preference weights are anchored at 

one for full health and usually zero for dead. To normalise the level of the ranked ordered 

logit, the constant for the alternative 'dead' is set to zero, so the other alternative specific 

constants are measured relative to 'dead'.  We can set the scale of the model by setting to 

one the constant of one or both of the top states (either OPUS  1111 or EQ-5D 11111)3 

and directly estimating the scale parameter .A, or by setting the scale parameter to one. 

We use the latter since it is straightforward to calculate the scaled parameters and their 

standard errors using the delta method. 
 

The  rank ordered mixed  logit  model  also  needs  the  same  identification  restrictions 

but  additional  restrictions  might  be needed to  identify  the  covariance  structure  of the 

error components.  When additional restrictions are needed [29], showed that an equality 

condition needs to be checked to ensure that the proposed normalisation does not change 

the structure of the model.  The rank ordered mixed logit model can be written using a 

3 In general, to set the scale, one constant  needs to be set to a known value. In the  present  case, it 
seems sensible to set the constant of OPUS1111 and/or EQ-5D 11111 to one given that their published 
health state value is one for both. 
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factor analytic form as follows 
 
 
 

MiUi  = Mif3 + MiF V  i + Mipi 

 
 

where  Ui   is  a (JitTi  x 1) vector  of utilities,  Mi   is  a respondent  specific  identity  matrix 

with  the  rows  corresponding  to  alternatives  not  seen  by the  ith  respondent  deleted,  f3 

is  a (JitTi  x 1) vector  of unknown time-invariant  alternative  specific  constants,  F  is  a 

(JitTi  x 5) matrix of fixed factor loadings, T j , V is a (6 x 6) diagonal matrix containing 

all ws  (s = 1        5) and 1 as the diagonal elements,   i is a (6 x 1) vector of IID standard 
 

normal random variables,  ᪽ s
 

 

(s = 1  6) and, finally,  pi   is  a (JitTi  x 1) vector of IID 
 

type I extreme value random error.  The unknown parameters to be estimated are found 

in the three matrices f3, F and V . 

Theoretical identification of all the parameters of the model requires that the rank of 

the Jacobian of the covariance matrix of utility differences equals the number of parame- 

ters  to  be estimated minus  one (rank condition).  In our case, the  covariance  matrix of 

utility differences can be written as: 
 

 
 

cm; ( U᪽i) = M᪽iF V V I F I M I ᪽I +  ᪽
(.A7r)

2
 

3 

 

IJit 

 

Ti ᪽
I 

 

 

Checking theoretical identification requires checking the rank condition for all 20 sets 

of different ranking tasks.  Intuitively,  it is straightforward to see that one of the factor 

loadings, T j , in equation (2) will need to be normalised to zero for identification purposes. 

The  factors  enter  the  utility function  in the  same way as any observable  characteristic 

and as a result an analogous identification restriction is needed. It can be shown that the 

rank of the Jacobian of the covariance matrix of utility differences for the rank ordered 

mixed  logit  model  presented  here  is  such that  only one of the  factor  loadings  needs to 

be  normalised  to  achieve  theoretical  identification  of the  model  and that  all ws's  are 

theoretically identified.  The normalisation needed in the factor loadings have been shown 
 

to be arbitrary   in [29] and since no additional identification restrictions are needed, the 

equality condition will hold. We set the factor loading of the alternative 'dead' to zero so 

that the factor loadings reflect relative preferences. 



31  

Although our model can be shown to be identified theoretically, empirical identifi- 

cation  cannot  be shown until  after  estimation  of the  model.   However,  this  issue  which 

is sometimes overlooked, is particularly important because estimation by simulation can 

conceal  identification  issues  if  the  number  of replications  is  not  large  enough [33].  In 

the empirical section we use a large number of replications to estimate the model and 

check empirical identification by re-estimating the model with an increased number of 

replications. 


