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Abstract

The potential of agent-based modeling (ABM) has been demonstrated in various research fields.
However, three major concerns limit the full exploitation of ABM; (i) agents are too simple and behave
unrealistically without any empirical basis, (ii) 'proof of concept' applications are too theoretical and
(iii) too much value placed on operational validity instead of conceptual validity. This paper presents
an operationalization approach to determine the key system agents, their interaction, decision-
making and behavior for context specific ABM, thus addressing the above-mentioned shortcomings.
The approach is embedded in the framework of Giddens' structuration theory and the structural
agent analysis (SAA). The agents' individual decision-making (i.e. reflected decisions) is
operationalized by adapting the analytical hierarchy process (AHP). The approach is supported by
empirical system knowledge, allowing us to test empirically the presumed decision-making and
behavioral assumptions. The output is an array of sample agents with realistic (i.e. empirically
quantified) decision-making and behavior. Results from a Swiss mineral construction material case
study illustrate the information which can be derived by applying the proposed approach and
demonstrate its practicability for context specific agent-based model development.

Agent Operationalization, Decision-Making, Analytical Hierarchy Process (AHP), Agent-Based
Modeling, Conceptual Validation

 Introduction

During the last decade, agent-based modeling (ABM) has been regarded as a promising
methodology for quantitative modeling in the social sciences (Axelrod 1997; Epstein and Axtell 1996;
Gilbert and Troitzsch 2005; Janssen 2002; Tesfatsion and Judd 2006), but not without contradictory
trends. Although ABM's potential for modeling a variety of phenomena in different research fields has
been repeatedly demonstrated (e.g. Bousquet and Le Page 2004; Macy and Willer 2002), its
effectiveness in solving problems more relevant to the real world is increasingly being questioned
(Louie and Carley 2008; Parker et al. 2003). The three central questions being raised are: (i) How to
go beyond a "proof of concept" (e.g. Janssen and Ostrom 2006) (ii) How realistic are agents with
simple behavioral rules? (e.g. Jager and Janssen 2002, Mosler and Tobias 2005) (iii) How could or
should agent-based models be validated? (e.g. Axelrod 1997, Windrum et al. 2007, Louie and Carley
2008).

Beyond "proof of concept": While the potential of ABM for addressing a wide range of research
question in social sciences is undoubted, there is a growing appreciation that there is a need for
addressing problems more relevant to the real world (Matthews et al. 2007). Janssen and Ostrom
(2006) claim that ABM has mostly been applied to the modeling of theoretical issues, whereas its
application to empirically measurable phenomena is quite rare, and models therefore often do not go
beyond a "proof of concept". These authors distinguish four ways (stylized facts, laboratory
experiments, role games and case studies) of how empirical data can be included into ABM
depending on the number of subjects and the degree of contextualization or generalization. In
addition, Boero and Squazzoni (2005) highlight the importance of ABM's empirical embeddedness.
They argue that empirical knowledge needs to be integrated into modeling practice and used for
micro specification as well as macro validation by integrating ABM with qualitative, quantitative,
experimental and participatory methods. Although these studies make a significant contribution to the
development and classification of empirically-based ABM, they conclude that new approaches are
still needed, in particular regarding the empirical validation of ABM and the formalization of empirical
knowledge integration into ABM.

Behaviorally realistic agents: Most of the recent applications in ABM implement rather simple
behavioral rules. The underlying decision-making process, however, is usually not included (Macy
and Willer 2002), despite the fact that one of the specific advantages of ABM is its ability to model
individual decision-making entities and their interactions (Matthews et al. 2007). This may have two
reasons. First, simple behavioral rules are easily implementable, whereas the underlying decision-
making is often regarded as a rather complex process (Mintzberg et al. 1976). Second, behavior
itself can be better observed than the underlying decision-making processes (Keeney 1982). To
overcome these issues, Mosler et al. (2001) highlight the need for a theoretical and empirical (Mosler
and Tobias 2005) basis for collective action simulation. Following this line, Jager and Janssen (2002)
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propose a general theoretical decision-making framework, based on the six decision rules applicable
to different situations, and propose basing the agent architecture on a solid empirical ground
(Janssen 2002). That is, in order to achieve more behaviorally realistic agents, the agents'
architecture needs to shift from simple behavioral rules to more complex decision making processes
with a solid basis in theory and empiricism.

Model validation: According to Gilbert and Troitzsch (2005) "a model which can be relied on to reflect
the behavior of the target is valid".[1] Operational validation as the most widely accepted way to
perform model validation (Sargent 2008) is difficult to perform in ABM (Louie and Carley 2008;
Schutte 2010; Windrum et al. 2007). Typically, operational validation is performed by comparing the
simulation output with the system (i.e. problem entity, target) data (Gilbert and Troitzsch 2005;
Sargent 2008). This is impossible to perform for the future development of a system, and it is rather
difficult, if emergent phenomena are modeled. First, per definition, emergent phenomena patterns as
aggregated outcomes cannot be predicted by examining the system's elements in isolation (Parker
et al. 2003). Second, the empirical detection of emergent phenomena in a real system is difficult,
because they are described as patterns rather than as numerical values (Grimm et al. 2005) and are
often not recognized. The difficulty with or even impossibility of operational validation for ABM
increases the importance of the other ways of model validation, in particular, conceptual model
validation. Conceptual model validation is defined as "determining that the theories and assumptions
underlying the conceptual model are correct and that the model representation of the problem entity
is 'reasonable' for the intended purpose of the model" (Sargent 2008). Consequently, to increase the
validity of ABM it is necessary to focus on conceptual model validation rather than on comparing
model performance with system data (i.e. operational validation).

Significant contributions in ABM have been made to overcome the three mentioned methodological
shortcomings. However, none of them explicitly addresses all three issues. Thus new approaches
are still needed to include more behaviorally realistic agents, in particular regarding agents' decision-
making and behavior, and empirical data, with more emphasis on conceptual validation.

Our paper therefore aims at contributing to filling this gap, by presenting an approach for empirically
operationalizing agents, their interaction, decision-making and behavior for ABM. The approach was
developed for highly context specific ABM applications where high-stakes and/or reflected decisions
are involved. As a participatory approach it requires direct contact with the actors. We exemplify the
approach by presenting operationalized agents for an ABM of the Swiss construction stakeholders'
material selections case study. In the following we use the term operationalization as "the
transformation of an abstract, theoretical concept into something concrete, observable, and
measurable" (Scott and Marshall 2005). Furthermore, we define agents as the model representatives
of real world social actors, such as construction stakeholders in this case study.

The paper is structured as follows: We start with a short introduction of our case study. Second, we
provide an approach for the operationalization of agents' identification, interactions and decision-
making for ABM, based on structural agent analysis (SAA) and the analytical hierarchy process
(AHP). We support each step of the approach by presenting results from the recycling construction
material case study and elaborate the potential and limits of the methods used. Third, we discuss the
contribution of the approach to the above mentioned shortcomings. Finally we draw conclusions from
our findings and propose further research.

Case study introduction: Demand for recycling mineral construction materials (RMCM) in
Switzerland

Increasing amounts of construction and demolition (C&D) waste have been observed worldwide
(Bergsdal et al. 2007; Brunner 2004; Hao et al. 2007; Hashimoto et al. 2007; Moser et al. 2004; Muller
2006; Wang et al. 2004). So far, C&D waste has been deposited or reused for low-grade applications
(Moser et al. 2004; Tam and Tam 2006). Limited landfill and low-grade application capacities led to
the development of high performance applications (e.g. Hoffmann and Leemann 2006). However, due
to a lack of construction stakeholders' recycled mineral construction materials (RMCM) acceptance,
information and training (Hoffmann 2004; Spoerri et al. 2009), RMCM are still deposited or down-
cycled and not reused at the same application level. This study aims at developing strategies for
aligning the demand for RMCM and the increasing C&D waste amounts by analyzing and modeling
stakeholders' decisions and interaction influencing the demand for RMCM.

 The agent operationalization approach for ABM

Conceptual framework for the operationalization approach

Our operationalization approach is based on the conceptual framework presented in Figure 1. The
theoretical foundations are Giddens' structuration theory (Giddens 1984) and the theory of planned
behavior (Ajzen 1991). Material and energy flows on the aggregate level are affected by micro level
agents' decisions and interactions, which in turn are influenced in their decision-making by the social
and physical environment (Axtell et al. 2001). This dualism between the micro and macro level
(Andrews 2001) relates to key system features modeled with ABM, namely emergence of social
structure based on micro behavior and feedback of the new structure on the behavior itself. The
structural agent analysis (SAA) uses Giddens' structuration theory (Giddens 1984) for a heuristic
aimed at analyzing this micro-macro relationship, more specifically, for coupling social science
approaches to material flow analysis (MFA) (Binder 2007b, 2007a). That is, it provides a conceptual
basis for the modeling socio-ecological as well as socio-technical systems with ABM.

This conceptual framework consists of the agents (decision-making and behavior), social structures
(rules and resources), and the agents' environment. It includes the consequences of the agents'
behavior on social structures, environment (e.g. material flows) and other agents' decisions (Figure
1). The outcome from the decision-making process (i.e. decision preference) can be seen as the
intention, according to the theory of planned behavior (Ajzen and Fishbein 1977; Ajzen 1991),
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determining to a large extent the agents' behavior (Ajzen and Madden 1986). The decision-making
itself can be directly affected by past individual behavior and the behavior of other agents, through
the perceived intended and unintended consequences (Feola and Binder 2009; Triandis 1980).
Furthermore, decision-making can be influenced by the rules and resources of the social structure
and the perceived environmental consequences. The behaviors of agents affect the environment
synchronically (e.g. the disposal of construction waste that is not reused) and/or the decision-making
of other agents (e.g. material recommendations from structural engineers) and with a certain time
delay the social structure (e.g. development of law and standards for emergent technologies).

Figure 1. Conceptual framework of the interaction between social structure, agents and the environment
(continuous arrows indicate synchronic, dotted arrows indicate diachronic impacts) (adapted from Binder

2007a, Giddens 1984 and Nikolic 2009)

In ABM, system behavior (e.g. social structure and environment) emerges from the agents'
behaviors and interactions (Axelrod 1997; Gilbert and Troitzsch 2005; Janssen 2002; Tesfatsion and
Judd 2006). Therefore, knowing the relevant agents affecting the problem addressed (step 1),
determining their interaction (step 2), analyzing their decision-making process including its
determinants (step 3), is sufficient for agent operationalization for ABM (Figure 1). In addition, one
must analyze how consistent decision preference (intention) and behavior are (step 4) to
conceptually validate the model. For each of the four steps a sound theoretical background and
empirical methods are required (Table 1).

In this paper, we use Giddens' structuration theory (Giddens 1984) as a guideline for the
assumptions-in-design of the ABM. Giddens' structuration theory is only one among several social
process theories (Cedermann 2005) and the issue of how different social process theories could
possibly be implemented in ABM and what theory is best suited for each particular model's purposes
is still being debated. Nevertheless, the suitability of Giddens' structuration theory for ABM
operationalization is highlighted by its focus on how social structure emerges from human action
(Binder 2007a). Further, Cedermann (2005) has concluded that the agent-based paradigm is
fundamentally compatible with process-theoretical foundations. Finally, because our approach
explicitly aims at the agent operationalization, the macro level analysis (i.e. social, technical and
natural environment) is not explicitly addressed in this paper.

Table 1: The four steps of the agent operationalization approach

Step Description Theoretical background
(exemplified)

Methods
(exemplified)

Prerequisite step: Problem definition (Precise definition of the problem
addressed and the purpose of the model)

Step Identification of Social network theory Agent-
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1 the relevant
agents

(Wasserman and Faust 1994) impact
analysis 

Step
2

Analysis of
agents'
interaction chain

Economic action and social
structure (Granovetter 1985) and
theory of embeddedness (Uzzi
1997)

Expert
interviews
Expert
workshops

Step
3

Quantification of
agents' decision-
making process

Multi criteria decision analysis
(MCDA) (Belton and Stewart
2002) / Analytical hierarchy
process (AHP) (Saaty 1980)

Expert
interviews
Expert
workshops
Survey
methods

Step
4

Behavioral
consistency
analysis and
conceptual
validation

Theory of planned behavior
(Ajzen 1991) and interpersonal
behavior (Triandis 1980)

Survey
methods

Prerequisite step: Problem definition

As a clear purpose and problem definition are considered indispensable for modeling (Costanza et al.
1993), they set the stage for all subsequent steps of the agent operationalization. This is particularly
important when one is using participatory approaches for gathering empirical knowledge as is
proposed here (Cornwall and Jewkes 1995). Shifting model purposes or problem misunderstandings
may otherwise increase the so called "error of the third kind" defined as "the probability of having
solved the wrong problem when one should have solved the right problem" (Mitroff and
Featheringham 1974).

Step 1: Identification of the relevant agents:

The goal of this step is to identify the key system actors to be included as agents in the ABM.
According to social network theory (e.g. Wasserman and Faust 1994) key system actors within a
network are active, able to connect to each other through efficient paths, have the potential to
mediate flows between other actors and are tied to other central actors (Faust 1997). In other words,
key system actors are actors which strongly affect the system and are themselves strongly affected
by the system. In order to identify the key system actors, we propose the actor impact analysis (AIA)
adapted from qualitative cross-impact analysis (Godet 1994; Gordon and Hayward 1968; Götze
1991; Scholz and Tietje 2002; Vester 2007; von Reibnitz 1992), which performs an analysis of the
actors' activity, revealing their connectedness and impact on other possible actors.

In doing so, first all relevant actors affecting the system are identified. This can be done either by
analyzing the actors' interaction with the system along the production-consumption chain (Maier
Bergé and Hirsch Hadorn 2002), their functional relationships (Hermans 2005) or by studying which
actors interact with each other through, for example, information, money or resource flows (Hirsch
Hadorn et al. 2002; Knoeri 2007). The indicator for defining the actor interaction shall be chosen
according to the predefined problem definition and model purpose. If multiple indicators are possible
several interaction matrixes might be constructed and compared. We propose doing all this by
considering literature, expert interviews (Mieg and Näf 2006) or consensus building expert
workshops (Susskind et al. 1999).

Second, all potential direct impacts between the actors are set up in a cross-impact matrix and their
strengths are assessed on predefined scales (e.g. from 0 to 2; 0 means no influence, and 2 strong
influence). This can be done through expert interviews (Knoeri et al. 2011) or workshops. The sums
of the row entries in the matrix reflect the influence values (activity sum) and the sums of the column
entries the dependence values (passivity sums) (Godet 1994,Lang et al. 2006). Thus, depending on
their activity or passivity the actors can be classified into disconnected, indicating, driving and key
connected actors referring to their roles in the system (Table 2).

Table 2: Actor types in AIA

actor type (role) influence value
(activity sum)

dependence value
(passivity sum)

driving / active high low
key connected /
ambivalent

high high

indicating / passive low high
disconnected /
buffering

low low

The results of the cross-impact matrix can be visualized in a system grid (Scholz and Tietje 2002;
Tietje 2005). Figure 2 illustrates a system grid for the case of RMCM showing the various actor types
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involved. The key connected actors were the awarding authorities, architects and engineers and
contractors (i.e. prime, masonry and concrete, roadwork contractors). They were key in the sense of
strongly influencing other actors and being strongly influenced by others. The construction material
production actors, deconstruction and disposal actors were passive system actors. They were
medium linked with other actors, whereas their strong relations were mainly unidirectional (i.e. they
were strongly influenced by other actors). Therefore, they served as indicators for system behavior.
In a manner similar to passive actors, active actors (i.e. regulation authorities) had mainly
unidirectional relations, although with reversed signs (i.e. they strongly influenced other actors) and
acted as drivers in the system. Media (i.e. daily press and journals) as well as academia (research
institutes) were considered disconnected or buffering system actors being loosely linked with the
system (i.e. fewer and less important relationships).

Finally, the key system actors to be included as agents in the model are selected. The ambivalent or
key connected actors are considered most important for agent operationalization for ABM, as any
change in their behavior has large impacts on the system (Asan and Asan 2007,Scholz and Tietje
2002). Consequently the awarding authorities, architects, engineers and contractors were selected
for inclusion in the case of RMCM.

Figure 2. System grid of the actor groups (dependence and influence values; means of the two system experts)

Selecting the key connected actors to be included in ABM ensures that those system actors that are
most affected and have the most impact will be included in the model (Faust 1997; Schlange and
Juttner 1997; Wasserman and Faust 1994). Nevertheless, other actor groups, especially active
actors due to their driving role, may be additionally considered for being operationalized as agents in
ABM. However, since these groups are only weakly influenced by the system, they can also be
included as external parameters affecting the system. This is the way regulation authorities were
included in the RMCM case study, which allows to simulate the effect of regionally-different regulation
practices on agents behavior and thus, on the RMCM demand. If the research focus lays on
changing regulation practices, regulation authorities might become key connected actors and might
be included as agents in the model.

Step 2: Analysis of agents' interaction chain

This step determines both parts of the agents' interaction: How agents interact with each other (i.e.
agents' interaction chain) and how they select each other (i.e. agents' embeddedness). This is
considered to be a key step for ABM, because of its focus on agent interaction (Macy and Willer
2002; Reynolds 1987). Furthermore the graph of the agents' interaction chain provides the first
conceptual model. Social structure (i.e. agents' interaction chain) and embeddedness in the network
(i.e. strength of the ties) are important for agent interaction. It is acknowledged that economic action
is embedded in social structure, in contrast to neoclassical atomized-agent approaches (Granovetter
1985). In particular in interfirm networks embeddedness in social structure has beneficial effects on
performance (Uzzi 1997). We therefore propose to analyze the agents' local interconnections and
embeddedness in two steps.

First, agents' local interconnections and feedbacks (i.e. agents' interaction chain) determining
system behavior are identified. In this way we analyze how agents are linked to other agents (e.g.
awarding authorities specify project to the architects). This determines which agents potentially
interact. Furthermore, possible interaction options (i.e. behavioral alternatives) are identified. We
propose doing this step as a combination of literature review and participatory approaches (e.g.
expert interviews or workshops) (Cornwall and Jewkes 1995; Mieg 2000).
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Second, agents' embeddedness in the network or the strength of their ties is analyzed. We propose
doing this by analyzing the importance of network factors among the criteria which agents consider
when selecting each other for the particular economic interaction (i.e. individual selection decision).
According to Ling (2002) this depends on the criteria task performance, contextual performance,
network and price factors. Therefore, for each selection decision, the particular decision criteria are
defined and their impact is quantified. We suggest defining the criteria with a literature/theory review
and weighting their importance on the individual selection decision with survey methods.

Agent interaction chain: Figure 3 shows the conceptual model we have developed for the case of
RMCM, illustrating chronologically the agents' interaction chain with multiple involvements of the
awarding authorities. In the project specification (1) awarding authorities specify the project
requirements, dictating the use of RMCM, claiming sustainable construction in general or making no
specification about sustainable construction. Receiving the project specifications via the architects,
structural engineers make material design specifications (2). They recommend conventional or
recycled materials or give the option to choose one of the two, by specifying material properties.
Architects project design (3) aims at recommending a project to the awarding authorities, meeting
awarding authorities' requirements, engineers' recommendations as well as the architects' personal
ambitions. In the project confirmation (4) the awarding authorities confirm or set the materials to be
specified in the tender documents. Contractors submit their tender (5) to the awarding authorities in
order to win the contract, submitting conventional and recycling materials. Again, awarding authorities
commission the project to one of the tendering contractors (i.e. tender selection (6)) which finally
determines the material demand.

The agents' interaction chain is highly context dependent and, therefore, not generalizable to nearby
or associated decisions. All the more, there should be a consensus about agents' behavioral options
when interacting, which can be achieved through expert interviews and workshops. Note that, for
highly formalized interaction models, like those in the case study presented here, concentrating on
the interaction decision affecting the problem studied might already be sufficient. For more informal
social interaction various additional aspects (e.g. interdependence and relationship aspects) may
gain importance (Rusbult and Van Lange 2003).

Agents' embeddedness / Individual agent selection: According to (Ling 2002), the key criteria for the
individual selection decision in the building sector were job experience (task performance factor),
reputation and personal contact (network factors) and economic considerations (price factor).
Personal contact was the decisive network factor for most agents when selecting construction
partners. The exception was public awarding authorities, who basically considered job performance
and price factors, and architects who selected contractors mainly based on price considerations.

In the agent operationalization approach, the individual selection decisions were defined on a
theoretical (e.g. Ling 2002) and an empirical basis (e.g. expert interviews), in contrast to many ABM
applications where interaction mechanisms are defined on theoretical assumptions only. However,
quantifying agents' embeddedness by analyzing how important agents' network criteria are when
they select each other for an economic interaction might be limited when criteria have threshold utility
functions (e.g. trust) (Uzzi 1997). In this case using hierarchical decision heuristics might be more
appropriate. What types of networks emerge from the operationalized selection decisions and how
they affect the system output will be addressed in the model evaluation.

The resulting conceptual model of the agents' interaction chain is the first step for ABM. Besides
enhancing the understanding of agents' interaction, this approach increases the acceptance of the
model through the participatory procedure. For the model implementation, it not only provides the
qualitative agent interaction chain but also empirically quantifies the agents' selection decisions
reducing the degrees of freedom of the model.
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Figure 3. Agent interaction chain (blue boxes indicate the agents, light green boxes their decisions and green
arrows their interaction).

Step 3: Quantification of the agents' decision-making process

The goal of this step is to quantify the agents' decision-making process. Thus, the decision criteria
and their relevance to the choice of one of the behavioral alternatives determined in step 2 are
specified.

Decision-making depends on the cognitive effort in the decision-making process (Jager and Janssen
2002; Jungermann et al. 1998; Svenson 1990,1996) and ranges from simple decision heuristics
(requiring little cognitive effort) to homo economicus (a lot of cognitive effort and rational actors).
Referring to Svenson (1990, 1996), Jungermann et al. (1998) distinguish routinized, stereotyped,
reflected and constructed decisions with increasing cognitive effort involved. Because of the large
investment sums involved in strategic economic decisions in general and construction decisions in
particular, we propose to quantify reflected decisions according to Svenson (1990, 1996). Thus,
decision makers know the options and actively strike a balance among the options regarding
different criteria.

Analyzing the relevance of weighted criteria to agents' decision-making is the field of multi criteria
decision analysis (MCDA) (Belton and Stewart 2002; Mendoza and Martins 2006). We based our
MCDA analysis on the analytical hierarchy process (AHP) proposed by Saaty (1980), because it
allowed us to structure complex decision-making processes (Saaty 1990) and to measure ratio
scales on all hierarchical levels (Forman and Gass 2001).

Figure 4 illustrates the procedure of the AHP. In the decomposition phase, decision goal and
alternatives are defined and the decision problem is decomposed into a hierarchy of decision criteria
and sub-criteria clusters. Subsequently, the alternatives are compared with respect to each criterion
and sub-criterion, and the relevance of the criteria and sub-criteria is assessed, in comparative
judgments on pairs. In the hierarchical composition or synthesis, local criteria and sub-criteria
priorities are multiplied to yield an overall alternative ranking. Finally, the consistency of the
comparisons of pairs is assessed. (Please see Saaty (1980, Saaty 1994) for details and
calculations.)

In the decomposition phase local system knowledge is important. We therefore propose
decomposing the decision problem with participatory approaches such as system expert interviews
(Mieg and Näf 2006). We propose using survey methods for quantifying the relevance of criteria and
alternatives with comparative judgments. This enables one to achieve a reasonable numerical
representation of the agents' decision making distribution in the population. (The AHP elicitation
protocol used in the RMCM case study survey is reported in Appendix 1 (Table A.1).) Finally, the
synthesis can be carried out through a matrix multiplication of the criteria weight vector with the
alternative weight matrix leading to a performance vector of the alternatives (Saaty 1980).

Figure 4. Phases of the analytical hierarchy process according to Saaty (1980, 1994) illustrated with the
Brunswikian lens model adapted from Scholz and Tietje (2002).
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In the RMCM case study each decision of the agent interaction chain (Figure 3) was quantified
according to the AHP procedure. Figure 5 shows as an example the decision-making process,
criteria and the resulting alternative weights for the design specification decisions of structural
engineers (i.e. decision (2) in Figure 3) for external concrete applications in our case study. From the
column Alternative weights per criterion it can be seen, that the ranking of the alternatives was
almost stable among the criteria with conventional concrete (CC) as the outperforming option,
although their mean differed significantly. Regarding the expected tender price the three options were
more balanced, while for the criterion project specification engineers experienced a performance of
CC that was almost three times better than the recycling (RC) or property specification (PS) option.
In Decision criteria weights, law and standards was the most important criterion followed by
experience, whereas expected tender price and awarding authorities' project specification were less
important. In addition, the comparably high standard deviations (i.e. up to more than half of the actual
value) highlighted the existence of individual agents with different ranking preferences.

Figure 5. Alternatives, decision criteria, mean alternative weights per criterion, mean criteria weights and mean
preferences in structural engineers' design specification for external concrete applications [Mean / StD, N = 70,

CC: conventional concrete, RC: recycling concrete: PS: property specification].

AHP as an MCDA approach presupposes that agents fully process their decision information
(Mendoza and Martins 2006), decide rationally and don't use simple decision heuristics (Johnson et
al. 1988). AHP allows one to do a consistency check of the judgments of pairs, thus providing
information on whether the methodical prerequisites are fulfilled. If the decision maker uses simple
decision heuristics (e.g. repetition, imitation or normative behavior) MCDA approaches may not be
adequate (Johnson et al. 1988; Jungermann et al. 1998; Svenson 1990, 1996). This may limit the
applicability of the AHP for decision-making quantification when ordinary and more repetitive
decisions are addressed (e.g. everyday consumer behavior). In such cases using other methods for
the quantification of agents' decision making or specifying simpler decision rules based on agents
behavior might by more adequate. Whenever decision makers decide consciously we consider AHP
to be a good starting point, even though the great effort required for making the comparison of pairs in
AHP may cause higher rates of survey drop out and lower response compared with behavior
reporting studies.

For ABM this quantification procedure has two main advantages. First, it provides not only decision-
making data reasonably representing the real population, but it also provides an array of sample
agents to set up the model population. This allows one to skip the resource intensive step of deriving
mathematical distribution functions from survey data and implementing agent populations based on
these distributions. Second, the quantification based on the AHP provides data about all levels of
each agent's decision-making process (e.g. criteria and alternative weight matrixes). The procedural
structure of AHP further simplifies the decision-making implementation.

Step 4: Behavioral consistency analysis and conceptual validation

The goal of the last step is to analyze agents' behavioral consistency by comparing their behavior
with the preferred alternative from the decision-making process, and to conceptually validate the
presumed decision-making concept.

Behavioral consistency: Knowing to what extent the implemented decision-making process or
behavioral rule explains actual behavior is fundamental in any behavioral modeling, and particularly in
ABM. This is the operational validation of the decision-making model. Although we determined
agents' decision-making process (step 3), the preferred alternative (i.e. intention (Ajzen 1991)) may
differ from the subsequent behavior, because of external (i.e. contextual factors) and internal drivers
(i.e. habit and psychological arousal) (Feola and Binder 2009; Triandis 1980). In addition, perceived
behavioral control may influence behavior directly and via intention (Ajzen 1991, Armitage and
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Conner 2001).

Assuming rational stakeholders, the best performing alternative, derived by the AHP synthesis
(Figure 4), is preferred. Comparing the best performing alternative for every individual agent with his
actual behavior allows one to assess whether the intended behavior (i.e. decision preference) differs
from the reported one. We propose determining the behavior of the key agent groups with survey
methods (e.g. according to Diekmann 2007) in combination with the survey conducted for analyzing
the decision-making process (Step 3).

In the case of RMCM, structural engineers' preferred option was highly consistent (77%) with
reported behavior. They decided for the conventional alternative (i.e. best performing) in 80% of the
structural concrete application cases (60% for lean concrete applications).

The high behavioral consistency confirmed that in reflected decisions the effect of perceived
behavioral control (Armitage and Conner 2001) as well as the effect of habit and psychological
arousal is minimized. Although the high behavioral consistency demonstrates the usefulness of the
decision-making model, potential differences between actual and reported behavior may limit the
usefulness of our approach. This is because of more frequently reported socially desirable answers
or biases in survey participation. This difference can be quantified and the limitations minimized by
analyzing how the sample represents the basic population studied regarding socio-demographic and
behavioral variables.

Conceptual validation: Conceptual validation requires assuring that theories and assumptions
underlying the decision-making model are correct. This goes beyond providing a decision-making
model simply mirroring behavior.

According to Svenson (1990, 1996), the assumption behind quantifying decision-making with AHP is
a reflected decision, where decision-makers consciously strike a balance between known
alternatives and decision criteria. In reflected decisions we expect to derive consistent judgments in
the AHP comparisons of pairs. In other words, comparing options of pairs reveals absolute options'
values, which mirror the relative judgments. The AHP consistency analysis gives insight into how
consistently the comparisons were made and therefore how high the cognitive effort in the decision
was. A certain inconsistency (10%) is hereby accepted in the standard AHP (Saaty 1980). In the
adapted procedure presented here, alternatives and criteria were predefined and therefore higher
inconsistencies were expected.

In the case of RMCM, structural engineers showed slightly higher inconsistencies (i.e. 44% for
weighting the criteria, 24% for weighting alternatives) in their comparative judgments compared with
the other agent groups. In other words, they may use simpler decision heuristics.

The steps of comparing decision-making preferences and behavior as well as empirically validating
underlying decision-making assumptions are key for ABM. Analyzing behavioral consistency allows
one to assess the operational validity of the decision-making model. The conceptual validity of the
decision-making process further increases the overall conceptual validity of the ABM.

 Discussion

This paper addressed three major shortcomings limiting a full exploitation of ABM's potential; (i)
applications "proof of concept" that is too theoretical, (ii) agents that are too simple and not
behaviorally realistic and lack a basis on empirical data and (iii) too much value placed on operational
validity instead of conceptual validity. Furthermore, the agent operationalization approach was
presented as a specific procedure that links theoretical concepts and empirical methods addressing
the above mentioned shortcomings. This approach provides guidance to identify the relevant agents,
analyze their interaction, quantify their decision-making and conceptually validate agents' decision-
making.

In the following we discuss how the agent operationalization approach contributes to each of the
shortcomings highlighted in the introduction.

Beyond proof of concept

Janssen and Ostrom (2006) argue that "although most models are inspired by observations of real
biological and social systems, many of them have not been rigorously tested using empirical data
and therefore do not go beyond a 'proof of concept'." Including empirical system knowledge regarding
ABM is referred to as participatory or collaborative modeling (Voinov and Bousquet 2010). According
to Moss (2008), the agent operationalization approach lies between the "economic modeling" and the
"companion modeling" approach. Like the economic modelers we presume the existence of a real
data generating process (e.g. decision-making process) (Windrum et al. 2007), but we aim at
observing and quantifying it directly by including local system knowledge as in the companion
modeling approach (Barreteau 2003; Bousquet and Le Page 2004). Integrating empirical system
knowledge has been found to be important for case studies in general (Scholz and Tietje 2002) and
resource management in particular (Pahl-Wostl 2007). Furthermore it generates trust in the model
through participant identification (Berger et al. 2007) and promotes ownership through stakeholder
involvement (Nikolic 2009).

The contribution of the here presented agent operationalization approach consists in providing a
specific strategy for embedding empirical knowledge into modeling practice as called for by Boero
and Squazzoni (2005). Therefore, empirical knowledge is gathered at each step of the approach.
However, the proposed approach to operationalizing agents for ABM was developed as a case-
based model. The price for higher model realism achieved by this context dependency is less
generality (Costanza et al. 1993). We acknowledge the broad range of ABM application from highly
context specific "case-based models" to generalizable "theoretical abstractions", influencing the type
of empirical data and validation methods required (Boero and Squazzoni 2005; Janssen and Ostrom
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2006). The adaptation of the proposed approach for operationalizing agents to "typifications" or
"theoretical abstractions" will therefore be the subject for further research.

Behaviorally realistic agents

Focusing on individual decision-making rather than on simple behavioral rules (Macy and Willer
2002) is the first step required towards more behaviorally realistic agents (Janssen 2002). The agent
operationalization approach contributes to that by obtaining an array of sample agents (including their
decision-making and behavior) as well as allowing one to operationally validate the individual
decision-making model by comparing decision-making preferences and behavior (i.e. behavioral
consistencies):

Array of sample agents: The array of sample agents is obtained by operationalizing the agents'
decision-making process through the AHP. AHP allows one to indirectly gather data about agents
decisions by weighting criteria and alternatives per criterion, while the final alternative decision is
derived by a simple matrix calculation (Saaty 1990). The ratio-scale weighting method we have
included (Jia et al. 1998) simplifies transfer of the derived information into ABM. In other words,
deriving an array of sample agents' decision-making based on AHP provides not only a set of directly
implementable decision-making data but also the procedure for its processing. This significantly
reduces the models' degree of freedom and decreases the parameters space to scan. However,
there will still be remaining assumptions-in-design which have to be specified (e.g. agents' time
horizon for their retrospective memory) and whose effects on the system output have to be
analyzed.

Behavioral consistencies: Decision preferences (i.e. intention) and their consistency with real
behavior are central parameters for operationalizing more behaviorally realistic agents for ABM.
Comparing a decision-making outcome with actual behavior allows one to assess how well a
particular decision-making model mirrors behavior. A further advantage of the combined
quantification of decision-making and behavior for ABM agent operationalization is that simple
decision heuristics (e.g. based on socio-demographic variables and behavior) can be implemented
instead of the complex AHP decision-making process, whenever operational validation fails.

Conceptual validation

We have argued that "ensuring that the theories and assumptions underlying the conceptual model
are correct" (i.e. conceptual validation) should be given more importance in the validation process of
ABM, instead of concentrating on operational validation. The need for a "micro-level validation" (i.e.
ensuring that micro-level behavior adequately represents actors' activity (Gilbert 2004)) in order to
reproduce human-like behavior and thinking, is highlighted by Takadama et al. (2008). The agent
operationalization approach contributes to that by providing a specific procedure with which to
assess the conceptual validity of the models.

Each step of the agent operationalization approach - from the selection of the agents to the inclusion
to their individual decision-making and behavior - draws upon local system knowledge, either
qualitatively through expert interviews or quantitatively through surveys. This allows us to test the
assumptions made in each step of the model development procedure leading to the conceptual
model and, therefore, to ensure the validity of the conceptual model (Sargent 2008).

However, the approach was developed for a contextual, case-based model purpose. Validation may
have different meanings for different model purposes (Küppers and Lenhard 2005) which is why
different validation techniques and procedures exist (Louie and Carley 2008; Moss 2008). Even
though in our approach the focus is on conceptual validation, we acknowledge the importance of
verification (e.g. computerized model validation) and operational validation for ABM development and
validation (Louie and Carley 2008; Sargent 2008; Takadama et al. 2008). Louie and Carley (2008)
have proposed a framework for how models ought to be validated based on their purpose. However,
how to exactly balance verification, conceptual and operational validation depending on the model
purpose is still an open question.

 Conclusion

This paper presented an agent operationalization approach, with the aim of providing a
comprehensive framework to operationalize key system agents, their interaction, decision-making
and behavior for ABM, exemplified by means of the Swiss mineral construction material case study.

The approach addresses three major concerns limiting ABMs' full potential:

i. Going beyond a "proof of concept": The approach gives a specific strategy for embedding
empirical knowledge into modeling practices. It provides a step-by-step procedure for
identifying the relevant agents to be included in the ABM and for analyzing their interaction
chain in participatory approaches (e.g. expert interviews and workshops), thus enhancing the
credibility of models implemented consequently.

ii. Behaviorally realistic agents: The approach provides an array of sample agents with realistic
(i.e. empirically quantified) decision-making and behavior, reducing the parameter space to
scan. Quantifying agents' decisions with AHP provides not only a set of directly implementable
decision-making data but also an opportunity to test decision-making assumptions empirically.
In addition, checking the consistency of the decision-making outcome with behavior allows one
to further validate/falsify the implemented decision-making theory.

iii. Conceptual validity: The approach enhances the importance of conceptual model validity by
providing a way to empirically test one's theoretical assumptions.

The comprehensive framework embedded in social process theory and decision making theory
leads to more behavioral realistic agents and increases the conceptual model validity. The credibility



of ABM is increased by the use of participatory processes. The example of the Swiss construction
material case has demonstrated the practicability of the approach. The approach thus provides a
transparent and well founded procedure applicable to a broad field of socio-ecological and socio-
technical system modeling problems with ABM to the degree possible within the limits of the
constituent theory and method. Further research should deal with, highlighting the added value of the
approach by modeling the agents' interaction and adapting the approach for more generalizable ABM
applications and cases with more informal social interaction and less cognizant decisions.

 Appendix 1: Questionnaire AHP elicitation protocol

Table 1: AHP elicitation protocol in the questionnaire exemplified by the structural engineers' design specification
decision
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 Notes

1 A detailed discussion of the ongoing controversy about verification and validation of simulation
models in general is outside the scope of this paper. For further information we refer to e.g. Küppers
and Lenhard (2005); Oreskes et al. (1994); Rykiel (1996); and Sargent (2008).
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