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Sperimagnetism in Fe78Er5B17 and Fe64Er 19B17 metallic glasses. 

II – Collinear components and ferrimagnetic compensation. 
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aDepartment of Physics and Astronomy, University of Sheffield, SHEFFIELD, S3 7RH, U.K, 

 
bInstitut Laue-Langevin, BP 156, 6 rue jules Horowitz, 38042 GRENOBLE Cedex 9, France, 

 

 

Abstract. 

Magnetisation measurements on a Fe64Er19B17 glass and polarised beam neutron scattering 

measurements on Fe78Er5B17 and Fe64Er19B17 were described in Part I . The finite spin-flip 

neutron scattering cross-sections were calculated using a sperimagnetic structure based on 

random cone arrangements of the magnetic moments. The temperature variation of the cross-

sections of Fe64Er19B17 suggested that a compensated sperimagnetic phase existed at Tcomp. 

The analysis of the non spin-flip neutron scattering cross-sections is described here in Part 

II . Two spin-dependent total structure factors ( )QS ±±  were defined from these cross-sections 

and despite the limited range of the data 0.5Å-1 < Q < 6.5Å-1, their Fourier transform gave 

reliable spin-dependent Radial Distribution Functions ( )rRDF ±± . These were interpreted in 

terms of the atomic pair correlation functions ( )rAB
±±ρ  and their weighting factors ±±

ABω . The 

data on Fe64Er19B17 at 1.5K showed for example, how the directions of the magnetic 

sublattices can be defined uniquely. The analysis of the ( )rRDF ±±  for Fe64Er19B17 at 112K 

confirmed that the mean collinear components of the magnetic moments  ||
Erµ , ||

Feµ  are 

zero on both sublattices in the compensated sperimagnetic structure at Tcomp. The pre-peak in 

the spin-dependent total structure factors at 112K showed that it originated in the atomic 

structure and it may involve Fe-Er-Fe “collineations” at a radial distance of ≈ 6.0Å. Finally, 

the ( )rRDF ±±  of Fe64Er19B17 at 180K and of Fe78Er5B17 at 2K, show that both glasses have 

the (ȝFe UP : ȝEr DOWN) structure like the (Fe,Tb)83B17 collinear ferrimagnets.  
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1) Introduction 

 

Our studies of the collinear and non-collinear magnetic structures in metallic glasses [1] were 

described in Part I  [2], where it was explained that the non spin-flip neutron scattering cross-

sections of (Fe,Tb)83B17 glasses had been simulated using a combination of known and 

derived partial structure factors [3]. The related (Fe,Er)83B17 glass have been shown to be a 

non-collinear ferrimagnets by a variety of different measurements [4, 5, 6, 7, 8], but our 

preliminary neutron scattering measurements on a Fe64Er19B17 glass at 1.5K, 60K and 180K 

proved to be difficult to interpret [9]. The finite spin-flip cross-sections confirmed the 

presence of a non-collinear state and could be analysed using a sperimagnetic structure in 

which the magnetic moments on the iron atoms point in a random cone that is 

ferrimagnetically coupled to a random cone of erbium moments. However, the non spin-flip 

cross-sections were quite different from those of the parental TM83met17 glasses and strongly 

influenced by the 19% substitution of the large erbium ion with its large magnetic moment 

[9]. They could not be simulated by the method applied to the collinear (Fe,Tb)83B17 glasses 

[3]. 

The average components of the magnetic moments  ||µ , ⊥µ , parallel and perpendicular to the 

magnetic field are needed to describe the non spin-flip and spin-flip cross-sections 

respectively [1], so the variation of the magnetic moments must be known as a function of 

composition and temperature. In addition, there will be many different combinations of the 

values of the total moments Feµ , Erµ  and the semi-vertex angles șFe, șEr of their random 

cones in a non-collinear structure, which will lead to similar values of the ||µ  and ⊥µ  

components. It is difficult therefore, to find the unique choice of the components of the 

moments, even from a combination of different bulk measurements [4, 5, 6, 7, 8]. The aims 

of Part I  of the present work were first to obtain magnetic moment values from 

magnetisation data on our own Fe64Er19B17 glass, which we could use more confidently in the 

analysis of the neutron scattering. The neutron studies were also extended to include a second 

series of measurements on a Fe78Er5B17 glass at 2K and on the Fe64Er19B17 glass at 100K, 

112K, 125K and again at 180K, as a consistency check. Part II  will give an account of the 

ferrimagnetism in Fe78Er5B17 glass at low temperature and of the magnetic structural changes 

that occur in Fe64Er19B17 glass as a function of temperature. Sections 2 and 3 will cover the 

analysis of the non spin-flip cross-sections using a Fourier transform. This provides a 
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successful description of the atomic-scale structures in the two glasses, which works even 

when the magnetic contributions to the neutron scattering are small, such as when 

concentration of erbium is small (in Fe78Er5B17 at 2K) or at higher temperatures (in 

Fe64Er19B17 at 180K). The analysis of the scattering cross-sections by a Fourier transform 

involves no adjustable parameters, since the cross-sections were measured in absolute units 

and it relies solely on the values of the magnetic moments obtained in Part I . 

 

2.0) The non spin-flip cross-sections of the (Fe,Er)83B17 glasses. 

 

The two non spin-flip cross-sections are given in the usual notation in Equation 1 where bi is 

the average coherent scattering length of atom i and 
Ω∂

∂ IIσ
 is the isotope incoherent cross-

section. Equation 1 may be compared with the spin-flip cross-sections given in Equation 6 in 

Part I .  

( )( ) ( )( ) ( )( )jijj
ij

ii
NSIII rriQQpbQpb −+
Ω∂

∂
+

Ω∂
∂

=
Ω∂

∂ ∑
±±

.exp
3
1 *||*|| 

σσσ
.            (1) 

The non spin-flip  cross-sections contain the collinear components ( )Qp||  of the magnetic 

scattering amplitude. They have a variation with scattering vector Q which is similar to the 

total structure factor S(Q) of the glass, since they depend on the Fourier transform of spatial 

variation of either the sum  ( )( ) 2|| QpbFT +∝
Ω∂

∂ −−σ
  or the difference  

( )( ) 2|| QpbFT −∝
Ω∂

∂ ++σ
  of the nuclear and magnetic scattering amplitudes.  

Figure 1 shows the non spin-flip cross-sections in absolute units of barns steradian-1 atom-1 

for the Fe78Er5B17 glass measured at 2K and for Fe64Er19B17 measured at 1.5K, 60K, [9] and 

100K, 112K, 125K, 180K. Only the present measurement at 180K has been plotted, as in 

. The red and the blue points define the  
Ω∂

∂ −−σ
 and  

Ω∂
∂ ++σ

 cross-sections respectively. 

Two spin-dependent total structure factors  ( )QS −−   and  ( )QS ++  will  be defined from these 

cross-sections in Section 2.1, so the peak in the cross-sections at Q ≈ 3Å-1 will be called the 

first or main peak and the one (in just one channel) at Q ≈ 1.3Å-1 will be the “pre-peak”. This 
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follows the usual practice for the structure factors of metallic glasses. The large differences 

between the 
Ω∂

∂ −−σ
 and  

Ω∂
∂ ++σ

 cross-sections in Figure 1 arise because the combined 

 
 
Figure 1  The non spin-flip cross-sections for the Fe78Er5B17 glass at 2K are shown in 1a and 
for the Fe64Er19B17 glass at 180K in 1b, 125K 1c, 112K 1d, 100K 1e, 60K 1f[9] and 1.5K 
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1g[9]. The red and blue points define the 
Ω∂

∂ −−σ
 and  

Ω∂
∂ ++σ

 cross-sections and the open and 

closed points are for incident wave vectors  ki = 2.662ǖ-1,  ki = 4.1ǖ-1. The incoherent cross-
section is shown by a dashed line. 
scattering amplitudes have a very large range of both positive and negative values, depending 

on how the scattering from the nucleus and from the magnetic electrons combine [10]. The 

nuclear scattering amplitudes are  

bFe = 9.45fm, bEr = 7.79fm and bB = 5.30 – 0.213i fm [11] 

and substituting the moment values at 1.5K  BFe µµ 52.1|| =  and BEr µµ 58.6|| =  into 

( ) ( )QfQp |||| 695.2 µ= fm, gives the magnetic scattering amplitudes of ( ) 10.40|| =Fep fm and 

( ) 73.170|| =Erp fm in the forward limit Q =0, so that,  

( )( ) fm55.130fm35.5 || << FeFe pb     and  ( )( ) fm52.250fm94.9 || <<− ErEr pb  . 

In Figure 1, the difference in position of the first peak in the 
Ω∂

∂ −−σ
 and  

Ω∂
∂ ++σ

 cross-

sections of Fe64Er19B17 at 1.5K, 60K and 100K is large ≈ 0.5Å-1 and the pre-peak occurs in 

Ω∂
∂ ++σ

. The shapes of these cross-sections and the positions and widths of their peaks remain 

fairly constant and there is a reduction in the first peak in 
Ω∂

∂ −−σ
 and the pre-peak with 

increasing temperature. In contrast, the 
Ω∂

∂ −−σ
 and 

Ω∂
∂ ++σ

  cross-sections have interchanged 

at 125K and 180K, when compared with those at low temperatures and this is shown clearly 

in the figure. The two first peaks in 
Ω∂

∂ −−σ
 and 

Ω∂
∂ ++σ

 have also moved closer together; their 

magnitudes have reduced and the first peak in 
Ω∂

∂ ++σ
 is the smallest. The pre-peak (in 

Ω∂
∂ −−σ

) is also smaller than the corresponding peak at T ≤ 100K. The interchange of cross-sections 

shows that there is a complete inversion of the magnetic structure between 100K and 125K. 

Comparison with the cross-sections of the (Fe,Tb)83B17 collinear ferrimagnets [3] suggests 

that at high temperatures the iron sublattice points along the field direction and the erbium 

sublattice is antiparallel to it (ȝFe  : ȝEr ) and the inverted case (ȝFe  : ȝEr ). 

occurs at low temperatures.  
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The constancy of shape of these cross-sections with temperature was monitored by 

superimposing the 
Ω∂

∂ ++σ
 at 125K on to the 

Ω∂
∂ −−σ

 at 100K and the 
Ω∂

∂ ++σ
 at 100K on to the 

Ω∂
∂ −−σ

 at 125K. The mean fractional differences in the data points in the superimposed cross-

sections was less than ≈ 10%, - which is commensurate with the differences in the total 

scattering levels and in the ++
ABω  and −−

ABω   weighting factors (see below) at the two 

temperatures.  

The 
Ω∂

∂ ++σ
 and 

Ω∂
∂ −−σ

 cross-sections measured at 112K are quite different from the others 

because they are virtually identical within the error bars, (except perhaps for four points near 

the pre-peak). Their first peak reaches ≈ 1.8 barns steradian-1 atom-1 and is slightly smaller 

than the first peak in the cross-sections measured at 100K and 125K. The pre-peak at  Qpp ≈ 

1.3Å-1  occurs in both 
Ω∂

∂ ++σ
, 

Ω∂
∂ −−σ

 cross-sections with a height ≈ 0.75 barns steradian-1 

atom-1 and the second peak has no shoulder. Equation 1 and Figure 5 of  show that the 

Ω∂
∂ ++σ

 and 
Ω∂

∂ −−σ
 cross-sections will be identical when the mean collinear components of 

the magnetic scattering amplitude tend to zero, 

( )Qp||  ĺ 0,   so that   ( )( ) 22|| bQpb → . 

They will then contain information about the atomic structure of the glass, because they 

depend on the nuclear neutron scattering alone.  

The 
Ω∂

∂ ++σ
and 

Ω∂
∂ −−σ

 cross-sections for the Fe78Er5B17 glass measured at 2K are shown in 

Figure 1a. They are similar to some of the first spin-dependent cross-sections which were 

measured for metallic glasses, such as Co81P19 [12], Co81.5B18.5 [13] and Fe83B17 [14] and also 

to the non spin-flip  cross-sections of some of the (Fe,Tb)83B17 glasses [3]. The first peak in 

Ω∂
∂ −−σ

 is much larger than that in 
Ω∂

∂ ++σ
 and there is a clear difference in their positions. The 

Ω∂
∂ −−σ

cross-section also includes a very small pre-peak. The form of these  
Ω∂

∂ −−σ
 and 
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Ω∂
∂ ++σ

 cross-sections suggests that the Fe78Er5B17 glass has the (ȝFe  : ȝEr ) magnetic 

structure at 2K.  

 

2.1) -  

Two spin-dependent total structure factors  ( )QS −−   and  ( )QS ++  can be defined from the non 

spin-flip cross-sections and their Fourier Transform will  in principle, provide information on 

the real space structures of the (Fe,Er)83B17 glasses. Initially, we did not believe it was 

realistic to try this because of the limited range  0.5Å-1 < Q < 6.5Å-1 of the IN20 data. It is 

smaller than the range 1Å-1 < Q < 12Å-1 used in the first polarised neutron scattering 

determination of the PSFs of the Co81P19 alloy [12] and its maximum value is much smaller 

than the  Qmax  ≈ 25Å-1 used in current studies of the structures of metallic glasses. An 

alternative is to make a simulation of the non spin-flip cross-sections by using known partial 

structure factors (PSF) and derived PSFs when the required ones are unavailable. This 

worked well for (Fe,Tb)83B17 glasses and correctly predicted the difference in the positions of 

the first peak in four pairs of non spin-flip cross-sections [3]. There are however, no PSFs 

which can generate the pre-peak in the non spin-flip cross-sections of the Fe64Er19B17 glass, 

even after scaling their Q axis [9]. It seemed worthwhile therefore, to try a Fourier transform 

beginning with the non spin-flip cross-sections of the Fe64Er19B17 glass at 1.5K which have 

the largest contribution from the magnetic scattering.  

The derivation of the spin-dependent total structure factors is illustrated in Figure 2. The 

calculated total scattering levels (per atom) ( )( )2|| Qpb  are superimposed on the measured 

cross-sections in Figure 2a. The Q-dependence of the these levels is from the magnetic form 

factors within the ( )Qp||  terms, described using the same seven parameter fits to the form 

factors of the Fe3+ and Er3+ ions [15] as in . Note that the two levels have similar values 

in the forward limit ( )( )2|| 0pb+  = 1.46 barns steradian-1 atom-1 : ( )( )2|| 0pb−  = 1.41 barns 

steradian-1 atom-1 and both decrease towards, =2b  0.722 barns steradian-1 atom-1 at high 

Q. The measured cross-sections are greater than the total scattering level at some values of Q 

and less than it at others as expected. This Figure illustrates the crucial first step in the 

derivation of the spin-dependent structure factors, because the superposition of the calculated 

lines on the data points confirms that the cross-sections have been derived correctly in 
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absolute units. There are no adjustable parameters in these calculations, because the values of 

the b’s are tabulated [11] and the ( )QpFe
|| , ( )QpEr

||  components have already been fixed in 

Table 1 of . 

The two spin-dependent structure factors can be defined by 

,

 

( )
( )( )2||

3
1

Qpb
QS

NSIII



Ω∂
∂

−
Ω∂

∂
−

Ω∂
∂

=

±±

±±

σσσ

,                                               (2) 

 

Figure 2    The non spin-flip cross-sections of the Fe64Er19B17 glass at 1.5K are replotted in 
Figure 2a. The two continuous lines mark the total scattering levels; the two dashed lines the 
Laue-type scattering and the horizontal dashed line is the incoherent cross-section. The two 
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spin-dependent total structure factors ( )QS −−   and ( )QS ++   derived from these cross-sections 
are shown in Figure 2b. 
 
but it is more convenient to normalise them on the coherent, rather than the total scattering, 

( )
( )( ) ( )( )

( )( ) 2||

2||2||

3
1

Qpb

QpbQpb
QS

NSIII



 



 −−

Ω∂
∂

−
Ω∂

∂
−

Ω∂
∂

=

±±

±±

σσσ

.            (3) 

The term in square brackets is the (Laue-type) disorder scattering which arises from the 

presence of two (or more) different atoms in the sample, - which here also have different 

values of magnetic moment. Subtracting the Laue-type scattering level, which is also shown 

in Figure 2a, and using Equation 3, allows the Faber-Ziman PSFs SAB(Q) [16] to be used to 

describe the atomic (AB) pair correlations in the glass,  

( )( ) ( ) ( ) ( )( )( ) ( )QSQpbQpbccQSQpb ABBBAA
AB

BA
||||2||  ∑=±± .                 (4) 

Here  cA cB  are the concentrations, so that, 

               ( ) ( ) ( ) ( ) +++= ±±±±±±±± QSQSQSQS BBBBFeBFeBFeFeFeFe ωωω  

( ) ( ) ( )QSQSQS ErErErErErBErBFeErFeEr
±±±±±± ++ ωωω .                      (5) 

The ±±
ABω   weighting factors are of the form, 

( )( )
( ) 2||

2||2

Qpb

Qpbc AAA
AA




=±±ω    and, 

( )( ) ( )( )
( ) 2||

||||2

Qpb

QpbQpbcc BBAABA
AB




=±±ω .                                         (6) 

Figure 2b shows the two spin-dependent total structure factors  ( )QS −−   and  ( )QS ++   

obtained by calculating the total and Laue-type scattering at the same Q values as the data 

points in the non spin-flip cross-sections. They are shown with the same coding as the cross-

sections. The ( )QS −−  structure factor is of conventional form, with a broad first peak at  Q1  = 

2.8Å-1 and (possibly) a second peak at Q2  ≈ 4.6Å-1. It is similar to the SFeFe(Q) shown in 

Figure 3 of [9]. The ( )QS ++  structure factor has its pre-peak at  Qpp  = 1.3Å-1; a first peak at 

Q1  = 3.3Å-1 and possibly a second peak at  Q2  ≈ 5.3Å-1. It resembles the  SNiNi(Q)  shown in 

Figure 3 of [9] - except that the relative positions of the first peak and pre-peak are quite 
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different,  60.11 ≈ppQQ   for  SNiNi(Q  )  and  54.21 ≈ppQQ   for  ( )QS ++ . This difference 

confirms that it is not possible to simulate the non spin-flip cross-sections of the (Fe,Er)83B17 

glasses even when using those PSFs from the earlyTM-lateTM glasses which contain pre-

peaks.  

 

2.2) Spin-dependent Radial Distribution Functions 

The Fourier transform of the ( )QS ±±  total structure factors gives (spin-dependent) reduced 

radial distribution functions ( )rG ±±   

( ) ( )( ) ( )∫ −= ±±±±

max

0

sin1
2

Q

dQQMQrQSQrG
π

,                                  (7) 

where M(Q) is a modification function, often of the form exp(-B Q2), which reduces the 

effect of the finite value of Qmax in the Fourier transform. The corresponding Radial 

Distribution Functions ( )rRDF ±±  are,  

( ) ( ) ( ) 0
22 44 ρπρπ rrGrrrrRDF +== ±±±±±± ,                                      (8) 

where  ȡ0  is the mean atomic number density. The Fourier transform was made with an in-

house program with summations over the 75 data points for 0 < Q < 6.5Å-1  and 80 points in  

r  with intervals of  ǻr = 0.1Å for  0 < r < 4Å and ǻr = 0.3Å for  0 < r < 16Å, using M(Q) = 

exp(-0.05Q2). When a structure factor S(Q) has been defined 100% correctly, the resulting 

G(r) will be linear at small values of  r  where ( ) 0=±± rρ  and follow r04πρ− . This was 

found to be the case for the Fe64Er19B17 glass at 1.5K and 180K, with slightly less good 

behaviour for  Fe64Er19B17 at 112K and Fe83Er5B17 at 2K. The so-called “termination ripples” 

which appear in the G±±(r) at small  r  can be reduced by refining the levels S(Q) = 0 and 

S(Q) = 1 [17], but since no adjustable parameters had been introduced so far, this was not 

attempted. In fact, all the Fourier Transforms give a sufficiently clear picture of the structures 

of these glasses without the need for modification, as will be shown below. 

 

3.0  B  glass at 1.5K. 

 

Figure 3 shows the two functions  ( )rRDF ++   and  ( )rRDF −−  and are plotted over  0 < r < 

6Å to illustrate the first neighbour peak, whose positions are ++
1r  = 2.43Å in  ( )rRDF ++   and 
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−−
1r  = 3.11Å in  ( )rRDF −− . This difference is consistent with the positions of the first peaks 

in their respective structure factors.  

There is a large difference in the depth of the minimum after the first peak in the two RDFs, 

which is a real effect, since the two structure factors have the same value of  Qmax and their 

RDFs have the same resolution in real space. The minimum in ( )rRDF ++  actually goes 

slightly negative for just two points near  r ≈ 3.3Å and this will be discussed below. The first 

minimum in ( )rRDF −−  is so shallow that the half-width of the first peak cannot be measured 

easily, - although it is about twice the width of the first peak in ( )rRDF ++ , ++∆ 1r  ≈ 0.9Å. 

This also makes the coordination number −−
1n  more difficult to obtain, except by measuring 

the area to the maximum of the first peak and doubling it, or by gradually removing the 

modification function M(Q) from the Fourier transform to improve the resolution. These two 

methods converge towards the values  −−
1n  ≈ 12.0 and ++

1n  ≈ 10.5 and the first of these is 

consistent with dense packing in a metallic glass. 

The expected first neighbour correlations in the (Fe,Er)83B17 glasses can be depicted by 

superimposing the familiar “stick diagrams” on to the first peak in the RDFs. Six atomic pair 

correlation functions  ( )rAB
±±ρ   contribute to the RDF of the ternary (Fe,Er)83B17 glasses 

through a relation similar to Equation 5, 

                 ( ) ( ) ( ) ( ) +++= ±±±±±±±± rrrrrRDF BBBBFeBFeBFeFeFeFe ρωρωρωπ [4 2  

( ) ( ) ( )]rrr ErErErErErBErBFeErFeEr ρωρωρω ±±±±±± ++ .                    (9) 

The ±±
ABω   weighting factors are as defined in Equation 6. The radial positions  rAB  for these  
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Figure 3    The spin-dependent radial distribution functions ( )rRDF −−  , ( )rRDF ++  of the 
Fe64Er19B17 glass at 1.5K are plotted over the range 0 < r < 6Å to illustrate the first neighbour 
peak. The stick diagrams were drawn with the ±±

ABω   weighting factors from Table 1 
corresponding to the (ȝFe DOWN : ȝEr UP) structure. 
“sticks” were obtained from the Goldschmidt radii of iron and erbium and the tetrahedral 

covalent radius of boron and are given in Table 1. The probability of finding an atom at a 

given point is proportional to its concentration when the structure of a glass is random. The 

±±
ABω   weighting factors contain the concentrations of the species and their scattering 

amplitudes, so with a suitable multiplying factor, they can define the height of each stick in 

the case of a disordered structure. The values of the  ±±
ABω   are given in Table 1 for two 

different configurations of the magnetic structure, with the iron sublattice pointing along the 

magnetic field direction, (ȝFe  : ȝEr ) and the inverted case (ȝFe  : ȝEr ). The 

magnetic scattering amplitude of erbium  ( )QpEr
||   is so large that ( )( )Qpb ErEr

||−  and the ErBω   

and ErFeω   weighting factors are negative, as discussed in Section 2.0. These positive and 

negative values of the ±±
ABω   weighting factors are the key feature in interpreting the position 
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and the shape of the first peak in the  ( )rRDF ++   and ( )rRDF −− . Table 1 shows that when 

the magnetic structure inverts and the ( )QpFe
|| , ( )QpEr

||  both change sign, then the six ++ABω  and 

−−
ABω   factors just exchange their values. 

  
±±

ABω    weighting factors for Fe64Er19B17 at 1.5K 
 

 

Magnetic structure  
ȝFe DOWN  ȝEr UP 

 
 

 

Magnetic structure  
ȝFe UP  &  ȝEr DOWN 

 
 

Pair 
correlatio

n 

 

rAB 
in Å 

for ( )rRDF −−  
(b+p) type 

for ( )rRDF ++  
(b-p) type 

 for ( )rRDF −−  
(b+p) type 

for 
( )rRDF ++  (b-

p) type 

B-B 1.76 0.010 0.014  0.014 0.010 
Fe-B 2.15 0.074 0.260  0.260 0.074 
Fe-Fe 2.54 0.142 1.245  1.245 0.142 
Er-B 2.64 0.103 -0.054  -0.054 0.103 
Fe-Er 3.03 0.396 -0.519  -0.519 0.396 
Er-Er 3.52 0.275 0.054  0.054 0.275 

 
Table 1   The interatomic pair distances  rAB  are given in ascending order with the  ȦAB  
weighting factors calculated for the Fe64Er19B17 at 1.5K, which are required to draw the “stick 
diagrams” on the first neighbour peak in the ( )rRDF −−   and  ( )rRDF ++   radial distribution 

functions. The two columns of the ++
ABω   and −−

ABω   weighting factors interchange when the 

magnetic structure is inverted and ( )QpFe
|| , ( )QpEr

||   both change sign. 

 

The stick diagrams calculated with the “correct” magnetic structure at 1.5K,  (ȝFe DOWN : ȝEr 

UP) superimposed on the appropriate  ( )rRDF −− , ( )rRDF ++  curves in Figure 3. The first 

peak of the ( )rRDF −−  provides a good envelope of the six first neighbour sticks and since 

they are all positive the coordination number ( −−
1n ≈ 12.0) derived from this peak should be 

correct. The dominant Fe-Er correlations at  rFeEr = 3.03Å  determine the first neighbour 

distance −−
1r  = 3.11Å, while the strong Er-Er correlations at rErEr = 3.52Å lift the ( )rRDF −−  

curve in the region of its first minimum as observed. The dominant correlations in the  

( )rRDF ++  curve are rFeFe at 2.54Å, which determine the first neighbour distance ++
1r  = 

2.43Å. More significantly the negative ++
ErBω   and ++

ErFeω  create the deep first minimum in the  

( )rRDF ++   at r ≈ 3.3Å which was described above. The Er-Er first neighbour correlations are 

also too weak ( ++
ErErω  = 0.054) to make any significant contribution to  ( )rRDF ++   in this 
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region. These negative contributions from ++
ErBω   and ++

ErFeω  reduce the position of the first 

neighbour peak ++
1r ; its half-width and its coordination number ++

1n  as observed. Intuitively, 

it seems unphysical that the ( )rRDF ++  could be negative near the deep first minimum. 

However, Equation 9 shows that the two ( )rRDF ±±  curves are a weighted sum of the six 

atomic pair correlation functions ( )rAB
±±ρ . If one of the ±±

ABω   weighting factors is very large 

and negative, the ( )rRDF ±±  can also be negative in the region of the associated rAB.  

It is necessary to imagine that the two sets of stick diagrams have been interchanged in Figure 

3 (as the ++
ABω  are in Table 1) to show that the alternative magnetic structure (ȝFe UP : ȝEr 

DOWN) is inappropriate for the Fe64Er19B17 glass at 1.5K. Interchanging the sticks means that 

the maximum of the first peak in the ( )rRDF −−  curve would occur at the same radial distance 

as the strong negative  Fe-Er correlations at rFeEr = 3.03Å. The overall peak shape would also 

be incompatible with the positive Fe-Fe correlations at  rFeFe = 2.54Å and the shallow first 

minimum would be inconsistent with the weak  Er-Er correlations at rErEr = 3.52Å. Equally, 

for the ( )rRDF ++  curve, the strong positive Er-Er and Er-Er correlations would coincide with 

the deep first minimum and the weaker Fe-Fe and Er-B correlations would fail to describe the 

maximum of the first peak at the shorter distance of ++
1r  = 2.43Å. 

Superimposing the stick diagrams of the “correct” magnetic structure on to the ( )rRDF −−  , 

( )rRDF ++  functions gives an excellent description of the first neighbour peaks which 

suggests that the structure of the glass must be (to a first approximation) fairly random. These 

calculations were extended to three more cases which will be presented in the Sections 

below. Attempts were also made to improve the description of the first peak profile by 

replacing the “sticks” with Gaussian functions. It proved difficult to select the half-widths of 

the Gaussians to give a smooth first peak, without having to introduce a convolution to 

imitate the instrumental resolution. It was also unclear whether the six (AB) atomic pair 

correlation functions should have the same values of half-width or different ones. The 

Gaussian functions appeared to offer no significant improvement over the stick diagrams and 

involved substantially more work. 

 

3.2  ||
Feµ  ||

Erµ  = 0  at T . 
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Initially, the two spin-dependent total structure factors ( )QS ±±  were derived from the non 

spin-flip cross-sections 
Ω∂

∂ ±±σ
 at 112K using the moment values BFe µµ 13.1|| =  and 

BEr µµ 79.3|| −=  which came from the calculations of the spin-flip cross-sections in Part I . 

The two ( )QS ±±  were similar in form, except that the heights of the features were greater in 

the ( )QS −− . The Fourier Transform of the two structure factors was made using the steps 

described in Section 2.2. The resulting ( )rRDF −− , ( )rRDF ++  were obviously similar and 

both had a well-defined first peak at r1 ≈ 2.7Å. The ±±
ABω   weighting factors calculated with 

the BFe µµ 13.1|| =  and BEr µµ 79.3|| −=  moment values are given in Table 2. These created the 

problem of having two different sets of stick-diagrams to describe the virtually identical first 

peaks in the two ( )rRDF ±± . The mean values ±±
ABω  of the weighting factors for the (ȝFe UP 

: ȝEr DOWN)  and  (ȝFe DOWN : ȝEr UP)  configurations were therefore used to imitate a 

magnetic structure which might consist of equal volumes of these two configurations at Tcomp. 

They are also given in Table 2 and their “sticks” provided a much better representation of the 

first peak in the two ( )rRDF ±± .  

It was explained in Section 3.2 of  that the magnetic moment values which were used 

to calculate the spin-flip cross-sections at 112K, were already different from those obtained 

from the general variation of the magnetisation with temperature. Figure 5 of  also 

showed that the temperature variation of the ( )( ) 2|| Qpb+ , ( )( ) 2|| Qpb−  combined scattering 

amplitudes could be interpreted by the conditions,  0and |||| →FeFe pµ       0and |||| →ErEr pµ   at  

 

 
±±

ABω    possible weighting factors for Fe64Er19B17 at 112K 
 

 

The magnetic structure is 
||
Feµ  1.13ȝB UP 

||
Erµ  - 3.79 ȝB DOWN 

 

Mean 
values 

±±
ABω  for  

||
Feµ  1.13ȝB 
||
Erµ  -3.79ȝB  

No moment
||
Feµ  = 0.0ȝB 
||
Erµ  = 0.0ȝB 

±±
ABω

identical  
 

 

Pair 
correlation 

 

rAB 
in Å 

( )rRDF −−  
(b+p) type 

( )rRDF ++  
(b-p) type 

B-B 1.76 0.011 0.011 0.011 0.011 
Fe-B 2.15 0.202 0.104 0.153 0.153 
Fe-Fe 2.54 0.896 0.235 0.566 0.515 
Er-B 2.64 -0.011 0.087 0.038 0.038 
Fe-Er 3.03 -0.101 0.395 0.147 0.252 
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Er-Er 3.52 0.003 0.164 0.084 0.031 
 
Table 2   Three sets of the  ȦAB  weighting factors which were used to draw the “stick 
diagrams” on the first peak of the ( )rRDF −−  , ( )rRDF ++  functions of Fe64Er19B17 at 112K 

are given. The first two sets are calculated with the moment values ||
Feµ  = 1.13ȝB, ||

Erµ  = - 

3.79 ȝB from Part I ; the third set is their mean value and the fourth set with ||
Feµ  = ||

Erµ  = 

0.0ȝB is calculated from the b values alone. 
 

112K which describe a compensated sperimagnetic phase at Tcomp. A second derivation of the 

( )QS ±±  structure factors was therefore made using the conditions from Section 3.2 of Part I ,  

BFe µµ 65.1= ,  2șFe = 360º with BEr µµ 2.7= ,  2șEr = 360º. 

This was different from the example shown in Figure 2a, because there is no Q dependence 

of the total scattering and Laue-type scattering levels which are horizontal lines at 0.722 

barns steradian-1 atom-1 and 0.024 barns steradian-1 atom-1 respectively. The ( )QS ±±  structure 

factors from this derivation are shown in Figure 4 and have a pre-peak, an asymmetrical first 

peak and a second peak without a shoulder. Even though they contain information about the 

atomic structure alone, they are not expected look like the S(Q) of the parental TM83met17 

glasses at such high erbium concentration. Rather unexpectedly they resemble the structure 

factor of the high boron glass 60Ni64B36 [18] 

The pre-peak which occurs in both ( )QS ±±  structure factors must originate from the atomic 

structure alone when the conditions 0and |||| =ErFe pp  apply. Using the relation  
pp

pp Q
r

π2
4
5

=  

[19] gives a large radial distance  rpp ≈ 6.0Å, which would be consistent with second  
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Figure 4    The two spin-dependent total structure factors ( )QS ±±  derived from the 
Ω∂

∂ ±±σ
 

cross-sections of the Fe64Er19B17 glass at 112K, under the conditions ( ) ( ) 0and |||| =QpQp ErFe  

are shown.  
 

neighbour erbium atoms  ≈  1.7 × 3.54Å in a glassy structure. However, erbium -erbium 

correlations will not be very visible because the ȦErEr weighting terms are small (see Table 

2). “Collineations” of Fe-Er-Fe neighbours which will occur at a distance of 6.06Å are better 

candidates. These “collineations” were first identified by Bernal in his DRPHS models [20] 

and also discussed by Cargill [21]. Below Tcomp the pre-peak is large in ( )QS ++  and is absent 

from ( )QS −− , so it must be associated with atomic AB pair correlations for which ++
ABω  is 

large and −−
ABω   is small. Table 1 shows that Fe-Fe correlations are good candidates which 

could involve  Fe-Er-Fe  “collineations”. 

The average ( )rRDF ±±  derived from the two ( )QS ±±  is shown Figure 5. The stick-

diagrams calculated under the conditions 0and |||| =ErFe pp  are superimposed onto the first 

peak and the ±±
ABω   weighting factors are given in Table 2. They are similar to the ±±

ABω  

values except for FeErω  and ErErω . The six first neighbour sticks calculated with this 

configuration are all positive and the first peak in the ( )rRDF ±±  provides a satisfactory 

envelope of the sticks.  
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Figure 5  The mean radial distribution function ( )rRDF ±±  for the Fe64Er19B17 glass at 

112K is shown. The stick diagrams for the conditions 0and |||| =FeFe pµ  ; 0and |||| =ErEr pµ  

which describe a compensated sperimagnetic state at Tcomp are superimposed on the first peak.  
 

The position of this first peak  r1 = 2.75Å in the ( )rRDF ±±  is determined by the dominant 

Fe-Fe and Fe-Er correlations at 2.54Å and 3.03Å respectively. It is 5% greater than the 

weighted mean first neighbour distance in Fe64Er19B17 at this temperature and similar to the 

average (<r1>  = 2.77Å) of the two values ++1r  = 2.43Å, −−
1r  = 3.11Å measured at 1.5K. The 

coordination number was obtained from the area up to the maximum of the first peak, since 

the first minimum in the ( )rRDF ±±  remains at about the half peak height. The value of n1 = 

12.3 is also consistent with −−
1n  = 12.0 at 1.5K. Unfortunately, this ( )rRDF ±±  does not 

provide any positive evidence of any “collineations” at r ≈ 6.0Å. When plotted on an 

extended scale, the positions of its maxima are at 2.75Å, 4.9Å, 7.0Å and 9.4Å, so that r ≈ 

6.0Å lies between the second and third of these. This minimum is actually quite shallow and 

this may be consistent with the fact that the pre-peak is sufficiently weak ( ( ) 0.1≤ppQS ) at 

112K that it cannot produce a positive feature in the ( )rRDF ±±  at r ≈ 6.0Å. 
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3.2  B  above T  5B   

The two spin-dependent total structure factors  ( )QS ++  , ( )QS −−  and their associated  

( )rRDF ++  , ( )rRDF −−  were also obtained from the 
Ω∂

∂ ++σ
 , 

Ω∂
∂ −−σ

cross-sections of the 

Fe64Er19B17 glass at 180K and of Fe78Er5B17 at 2K. The contributions from the magnetic 

neutron scattering are smaller in these cross-sections, because of the higher temperature and 

the reduced concentration of erbium respectively. It was of interest to see whether the 

expected magnetic structure (ȝFe UP : ȝEr DOWN), could be identified effectively in these two 

cases. Figure 6 shows the ( )rRDF −−  and ( )rRDF ++  for the Fe64Er19B17 glass at 180K, 

together with the stick diagrams calculated for the (ȝFe UP : ȝEr DOWN) magnetic structure 

whose ±±
ABω   weighting factors are given in Table 3.  

 

 

Figure 6    The ( )rRDF −−  and ( )rRDF ++  functions of the Fe64Er19B17 glass at 180K are 
shown. The stick diagrams were calculated with the (ȝFe UP : ȝEr DOWN) structure and the

±±
ABω   weighting factors from Table 3.  
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Comparing Figures 3 and 6, shows that the derived ( )rRDF ±±  and the stick diagrams have 

interchanged, because the magnetic structure has inverted. The first peak of  ( )rRDF ++   in 

Figure 6 again provides a good envelope of the six first neighbour sticks, which are all 

positive. It has moved to a slightly smaller distance  ++
1r  = 2.92Å compared with −−

1r  = 

3.11Å in ( )rRDF −−  at 1.5K because of substantial changes in the FeFeω  and ErErω  

weighting factors between 1.5K and 180K. The first minimum in ( )rRDF ++  at 180K has the 

same depth as in ( )rRDF −−  at 1.5K. The first peak in the  ( )rRDF −−  is at −−
1r  = 2.62Å and 

the first minimum less deep because the negative ErBω  and FeErω  weighting factors are only 

≈ 19% of their values at 1.5K. The positions of the first peak in the two RDFs, ++
1r  = 2.92Å ;

−−
1r  = 2.62Å are much closer than they were at 1.5K, but their average <r1>  = 2.77Å is the 

same and close to the (single) value r1 = 2.75Å at 112K. The two coordination numbers, ++
1n  

= 11.9 ; −−
1n  = 11.4 are also closer because the reduction in ErBω  and FeErω  produces less 

distortion in the shape of the first peak. The mean coordination number for the Fe64Er19B17 

glass obtained from those RDFs at 1.5K, 112K and 180K which have a positive set of the six 

ȦAB was  n1 = 12.1 ± 0.2. 

 

 ±±
ABω    weighting factors for 
Fe64Er19B17 at 180K 

 
±±

ABω    weighting factors for 
Fe78Er5B17 at 2K 

 

Magnetic structure  
ȝFe UP  ȝEr DOWN 

 
 

 

Magnetic structure  
ȝFe UP  &  ȝEr DOWN 

 
 

Pair 
correlatio

n 

 

rAB 
in Å 

or ( )rRDF ++  
(b-p) type 

for ( )rRDF −−  
(b+p) type 

 for ( )rRDF ++  
(b-p) type 

for ( )rRDF −−  
(b+p) type 

B-B 1.76 0.013 0.010  0.024 0.006 
Fe-B 2.15 0.102 0.192  0.184 0.154 
Fe-Fe 2.54 0.202 0.905  0.358 0.961 
Er-B 2.64 0.099 -0.010  0.079 -0.009 
Fe-Er 3.03 0.393 -0.099  0.296 -0.116 
Er-Er 3.52 0.191 0.003  0.061 0.003 

 
Table 3   The interatomic pair distances  rAB  are given in ascending order with the  ȦAB  
weighting factors calculated for the Fe64Er19B17 at 180K and Fe78Er5B17 at 2K  
 

It was explained in Section 2.0, that the non spin-flip cross-sections of the Fe78Er5B17 glass at 

2K were somewhat similar to the spin-dependent cross-sections of Co81P19 [13]; Co81.5B18.5 
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[14]; Fe83B17 [15] and (Fe,Tb)83B0.17 [3] type glasses. They are quite different from those of 

the Fe64Er19B17 glass at 1.5K described in Section 2.1, whose two total scattering levels had 

similar values in the forward limit Q = 0 and both decreased with increasing Q. The total 

scattering level ( )( )2|| Qpb+  for Fe78Er5B17 at 2K has a forward limit ( )( )2|| 0pb+  = 1.78 

barns steradian-1 atom-1 and falls rapidly with Q, while ( )( )2|| Qpb−  has a much smaller 

forward limit ( )( )2|| 0pb−  = 0.631 barns steradian-1 atom-1 and actually increases with Q as 

observed for the other glasses [12,13,14]. Because of these differences, the features in the 

( )QS ++  , ( )QS −−  structure factors of the Fe78Er5B17 glass turn out to be much less well 

developed than those of the Fe64Er19B17 sample. 

 

 

Figure 7    The ( )rRDF −−  and ( )rRDF ++  functions of the Fe78Er5B17 glass at 2K are shown. 
The stick diagrams were again calculated with the (ȝFe UP : ȝEr DOWN) structure with the

±±
ABω   weighting factors from Table 3. Despite the lower concentration of erbium, they 

continue to provide a good description of the profiles of the first neighbour peaks.  



22 
 

Figure 7 shows the derived ( )rRDF −−  and ( )rRDF ++  for Fe78Er5B17 at 1.5K and the stick 

diagrams show again that the (ȝFe UP : ȝEr DOWN) configuration is the correct magnetic 

structure. Table 3 gives the corresponding ±±ABω   weighting factors which are by coincidence, 

rather similar to those of the Fe64Er19B17 glass at 180K. Even with this similarity, quite subtle 

differences between the derived parameters such as ++
1r  = 2.86Å, −−

1r  = 2.62Å in Fe78Er5B17  

at 2K compared with ++
1r  = 2.92Å, −−

1r  = 2.63Å  in Fe64Er19B17 at 180K, can be explained 

by the small differences in their ±±
ABω   weighting factors . The coordination number  n1 = 12.6  

for Fe78Er5B17 obtained from the ( )rRDF ++  which has all the ++
ABω   positive, is slightly larger 

than that of Fe64Er19B17, but the atomic packing in these ternary glasses is probably easier 

when the concentration of the erbium is small. The chief difference between the RDFs of 

these two glasses is that the features in those of Fe78Er5B17 are less well developed than in 

Fe64Er19B17, - as illustrated by the depth of the first minimum in both ( )rRDF ++  , ( )rRDF −− . 

This is partly because the features in ( )QS ±±  of the Fe78Er5B17 glass are less well developed, 

as already explained, but also because the atomic number density of Fe78Er5B17 is ≈ 23% 

greater than that of Fe64Er19B17. The parabolic background 2
04 rπρ  of its RDFs is ≈ 2.5 atoms 

Å-1 greater by r ≈ 3.5Å, which is similar to the difference in depth of the first minimum in the 

RDFs. 

 

4) Conclusions 

 

The two sets of polarised beam neutron scattering measurements we have made on the on 

Fe78Er5B17 and Fe64Er19B17 glasses proved for a while, to be difficult to interpret. Part of this 

was due to the complexity of their non-collinear ferrimagnetic structures. The inability to 

simulate the non spin-flip neutron scattering cross-sections (especially those of the 

Fe64Er19B17 glass), led to their analysis using a Fourier transform. Two spin-dependent total 

structure factors ( )QS ±±  were first defined from the non spin-flip scattering cross-sections 

Ω∂
∂ ±±σ

. Their Fourier transform gave two spin-dependent Radial Distribution Functions 

( )rRDF ±±  which could be interpreted in terms of the (six) atomic pair correlation functions 

( )rAB
±±ρ  and their respective weighting factors ±±ABω . This has produced a coherent description 
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of the atomic-scale magnetic structures in the (Fe,Er)83B17 glasses, despite the limited range 

of the scattering data in the Fourier transform. 

The very large magnetic scattering amplitude of erbium, (e.g. ( ) 73.170|| =Erp fm at 1.5%K) 

has been the most significant parameter in determining the form of the neutron scattering 

cross-sections. It has generated a wide range in the values of the combined scattering 

amplitudes ( )( )Qpb ||  and both positive and negative values of the ±±ABω   weighting factors, 

which were the key to interpreting the position and shape of the first peak in the ( )rRDF ±± . 

An important feature of the Fourier transforms is that they have not involved any adjustable 

parameters, since the nuclear scattering amplitudes are tabulated and the ||
Feµ , ||

Erµ  

components of the magnetic moments (which define the magnetic scattering amplitudes) 

came directly from the magnetisation data in Part I . In addition, the scattering cross-sections 

had been derived in absolute units from the raw data using our own programs. 

The main conclusions from Parts I and II  of this work are as follows. First, the (bulk) 

magnetisation measurements have confirmed that the ferromagnetic compensation in 

Fe64Er19B17 glass is characterised by an equality of the magnetic sublattices. Second, the 

interchange of the non spin-flip neutron scattering cross-sections  
Ω∂

∂ ++σ
,

Ω∂
∂ −−σ

  between 

100K and 125K which preserves their overall shape, confirms that there is a complete 

reversal of the atomic-scale magnetic structure at Tcomp. Third, the convergence of the two 

non spin-flip cross-sections 
Ω∂

∂ ++σ
,

Ω∂
∂ −−σ

 at 112K illustrates that the collinear components 

of the magnetic moments  ||
Erµ , ||

Feµ go to zero in a special, compensated sperimagnetic 

phase which appears to exist at exactly Tcomp. Finally, the presence of the pre-peak at Qpp ≈ 

1.3Å-1 in the spin-dependent total structure factors ( )QS ±±  at 112K, shows that it must 

originate in the atomic structure and may probably involve Fe-Er-Fe “collineations” at a 

radial distance of about 6.0Å. 
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