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Abstract

Micromagnetic and analytical models are used to investigate how in-plane uniaxial
anisotropy affects transverse and vortex domain walls in nanowires where shape anisotropy
dominates. The effect of the uniaxial anisotropy can be interpreted as a modification of the
effective wire dimensions. When the anisotropy axis is aligned with the wire axis (8; = 0),
the wall width is narrower than when no anisotropy is present. Conversely, the wall width
increases when the anisotropy axis is perpendicular to the wire axis (6, =m/2). The
anisotropy also affects the nanowire dimensions at which transverse walls become
unstable. This phase boundary shifts to larger widths or thicknesses when 8, = 0, but

smaller widths or thicknesses when 6, = 1t/2.



1. Introduction

For many years, Permalloy (Nig;Fei) has been the material of choice for investigations of
patterned magnetic elements, as it possesses negligible magneto-crystalline anisotropy and
magnetostriction. This means that the shape of the element can be used to control many
magnetic properties, from the local magnetisation direction [1,2] to domain wall nucleation
[3-5] pinning [6-10] and propagation characteristics [11-13]. In addition, the shape can also
govern the type of domain wall that can form, as head-to-head (or tail-to-tail) domain walls
tend to form in nanowires. Depending on the wire width and thickness, the head-to-head
wall may have a ‘transverse’ structure, characterised by a purely in-plane magnetization
rotation, or form a vortex configuration, characterised by a circulation of magnetisation
around a central core oriented out-of-plane [14,15]. The different magnetisation
configurations within transverse and vortex walls lead to differences in propagation and

pinning behaviour [16] which could affect the reliability of nanowire devices.

Recent investigations have explored using materials that exhibit magneto-crystalline
anisotropy [17-19] or stress-induced anisotropy [20-22], in addition to the shape anisotropy.
Much of this work is driven by interest in multiferroic systems, which exhibit changes in
anisotropy in response to an electric field. Provided they do not dominate the energy
landscape [23], such “additional” in-plane anisotropies could be used to reinforce the effect
of the shape anisotropy in a nanowire, which could stabilize magnetization as dimensions
approach the superparamagnetic limit. In-plane anisotropy can also allow control over the
velocity and Walker breakdown fields of domain walls [21]. Recent modelling has shown
how localized changes in the anisotropy of an artificial multiferroic device, formed from a

magnetostrictive nanowire coupled to a piezoelectric material, could allow low power



positioning of domain walls [22], providing a switchable functionality not possible with

shape anisotropy alone.

Here, we describe how micromagnetic and analytical models are used to examine the effect
of an additional in-plane uniaxial anisotropy on domain wall width and the phase boundary
between transverse and vortex walls. We discuss the effect in general terms, so the in-plane

anisotropy could be magnetocrystalline or magnetostrictive in origin.

2. Finite element modelling

A finite element micromagnetic model [24,25] was used to solve the Landau-Lifshitz-Gilbert
equation for smooth-sided wires containing either a vortex or a transverse domain wall.
The wires studied were 50-300 nm wide and 5-20 nm thick, with a constant aspect ratio
(length-to-width ratio) of 15 to minimise interactions between the wall and the wire ends.
Wedge-shaped wire ends, inclined at 45° to the wire long axis (the x-axis, Fig. 1), were used
to ensure all simulations had a similar end domain structure. To examine the effect of an in-
plane anisotropy on the domain wall structure, the wire was modelled with magnetic
properties similar to Permalloy (exchange stiffness constant, A = 10 plJ.m™; saturation
magnetisation, M, = 800 kA.m™), but with an additional in-plane anisotropy, K, with an easy
axis directed at an angle 6, to the wire long axis (Fig. 1). In order to ensure that the
dominant anisotropy was due to shape, the maximum value of K was restricted to 10 kJ.m"
[21]. As only the static wall structure was needed, the Gilbert damping constant was set to «

=1 to allow rapid convergence in calculations.

Figure 1 shows axial magnetisation profiles (M,/M;) calculated by finite element modelling,

taken along the centre of the wire, of transverse and vortex walls in a 150 nm wide, 10 nm



thick wire when K =0 J.m™ and K = 10 kJ.m™ for 8, = 0 rad and 6, = /2 rad. The profiles
show that while M, changes approximately linearly across the width of transverse walls
when K=01J.m> or 6, = 0 rad (Figs. 1a and 1b), deviations from this linearity occur when 0, =
7/2 rad (Fig. 1c). On the other hand, a highly non-linear variation of M, is seen across all the
vortex walls, particularly around the vortex core. The calculated wall structures show that
the magnetisation profile changes across the wire width, leading to a difficulty in defining a
unigue domain wall size. For the micromagnetic model, we define the wall boundaries as
the points along the centre of the wire where M,/M; = +0.9. This definition allows
transverse and vortex walls to be compared without assuming a particular form to the
magnetisation profile. Without an in-plane anisotropy, the vortex wall has a width of wyy =
258 nm, while the transverse wall has a width of wry = 124 nm. Under an in-plane
anisotropy with easy axis parallel to the wire long axis (Fig. 1b), the wall widths decrease to
Wyw = 218 nm and wny = 101 nm. The reduction is due to the in-plane anisotropy reinforcing
the shape anisotropy in the wire. Correspondingly, when the in-plane easy axis is
perpendicular to the wire long axis, the in-plane anisotropy acts against the shape
anisotropy, increasing the wall width (wyw = 324 nm and wrw = 163 nm) above the width
that occurs without an in-plane anisotropy. In each case, the vortex wall width is roughly

twice that of the transverse wall.

3. 1D analytical modelling

3.1 Wall width

The changes in the wall width with anisotropy direction are consistent with the concept that
the superposition of the in-plane and shape anisotropies acts to change the effective wire

dimensions [21]. To examine this in more detail, the in-plane anisotropy was included in a



one-dimensional (1D) analytical model. Analytically, the structure of a transverse wall can
be defined as , Where g is the distance from the wall centre and
Ay is the wall width parameter [26]. The micromagnetic model shows that the
magnetisation in the domain walls varies across two dimensions (Fig. 1). Nevertheless, the
1D analytical model agrees with the micromagnetic profile across the narrowest part of the
transverse wall (the bottom edge of the transverse walls shown in Fig. 1), so it can provide a
useful platform to analyse changes in the wall structure. The wall width parameter of a
transverse wall under an in-plane anisotropy K with easy axis 6, to the wire long axis (x-axis)

is given by

where ¢ describes the out-of-plane (azimuthal) rotation angle of the wall (¢ = /2 rad for a
stationary wall), o is the permeability of free space, and N, and N, are demagnetisation
factors in the transverse (y-) and out-of-plane (z-) directions, which can be calculated from
the ratio of the wire width and thickness [12]. Equation 1 predicts transverse domain wall
widths (A7) of 52 nm, 46 nm and 62 nm for the cases of K=0 J.m3and K = 10 kl.m? for 0,
= 0 rad and 6, = /2 rad in a wire identical to that shown in fig. 1. In each case, the
analytical wall width is approximately 40% of the corresponding micromagnetically
calculated wall width, due to the different definitions of wall width. The effect of the wall
width definition can largely be removed by normalizing the wall widths to the case without
anisotropy. The structure of vortex walls is clearly more complicated than transverse walls
(Fig. 1). However, noting that a vortex wall consists of two halves similar to two opposing

transverse walls, we approximate the vortex wall width to Ayw = 2Aw. This is similar to the



wall width ratio derived elsewhere [15] and is consistent with the values calculated

micromagnetically from Fig. 1.

Comparing Eq. 1 with the wall width parameter obtained when K = 0 kl.m?, the effect of the
in-plane anisotropy can be described in terms of “effective” demagnetisation factors,

and , thatinclude the uniaxial anisotropy, so that

For 180° walls, these terms replace the actual demagnetisation factors used in analytical
models that neglected uniaxial anisotropy. Thus the effect of the uniaxial anisotropy can be
intuitively understood in terms of altering the effective width, w’, and thickness, t’, of the
wire, assuming that the relationship between the effective wire dimensions and

demagnetisation factors is identical to the case without uniaxial anisotropy [12]:

- - — - - - @

(5)

To illustrate this, fig. 2a shows the effective dimensions determining Ay when the wall is
stationary (i.e. the w’/t’ that satisfy Eq. 4) for a wire with a physical width-to-thickness ratio
of w/t = 20 under various anisotropy conditions. When 6, = 0 rad, the effective w/t
experienced by Ary is actually smaller than the physical width-to-thickness ratio. As the
anisotropy angle increases, the effective width-to-thickness ratio of the stationary wall

width also increases, such that for 6, > /4 rad Ary is determined by an effective w/t larger



than the physical width-to-thickness ratio. These results are consistent with the
micromagnetic model (fig. 1), which show that when 6, = 0 rad, the wall width is smaller
than the case with no anisotropy, while when 6, = /2 rad, the wall width is enhanced. In
addition to the increase in A7y, the Walker breakdown field, - , also
increases with 6, (fig. 2b), in qualitatively similar behaviour to that observed in previous
micromagnetic models below m/3 rad (60°) [21]. That H,, is independent of K when 6,=0
rad may be indicative of the different dependence of the Walker breakdown field and wall

width on the wire dimensions [13].

Figure 3 shows a comparison between the analytical and micromagnetic wall widths (using
© = 1/2 rad) when K = 10 kJ.m™, normalised to the case where K = 0 kl.m™. The analytical
model predicts the general form of the 6, dependence for the vortex wall, except that the
micromagnetic data have an additional phase shift of around m/12 rad (15°) for clockwise
walls and -1t/12 rad for counter-clockwise walls. The chirality-dependence of the vortex wall
width is caused by rotational asymmetry within the vortex wall structure, which is
reinforced in clockwise walls when 6, > 0 rad an in counter-clockwise walls when 6, < 0 rad.
The polarity of the vortex cores, while not explicitly studied here, is not expected to
influence the effect of the anisotropy on the wall width. In contrast to the chiral effects seen
in vortex walls, transverse walls with magnetisation parallel to the positive or negative y-
directions behave identically. Transverse walls follow the same trend as clockwise vortex
walls when 6, > 0, but when 8, < 0 they follow the same trend as counter-clockwise vortex
walls. It is likely that asymmetry in the wall structure, such as that seen in Fig. 1c, may be
responsible for the observed dependence of the transverse wall width. Despite not

accounting for the wall asymmetry, the 1D analytical model does reproduce the underlying



form of the micromagnetic data, suggesting that it contains most of the terms needed to
understand the system. Significantly, all walls have similar normalised widths when the in-
plane anisotropy axis lies either parallel (8, = 0 rad) or perpendicular (6, = /2 rad) to the
wire. This is precisely what is expected from the 1D analytical model, suggesting that when
the in-plane anisotropy axis lies along a symmetry axis of the wire, the effect of the wall

asymmetry on the wall width is negligible.

3.2 Wall structure

In addition to changing the domain wall width, the in-plane anisotropy also alters the
domain wall energy. As vortex and transverse walls have different magnetisation structures,
they have different responses to the in-plane anisotropy. We used finite element modelling
to determine the wire dimensions at which transverse walls have lower energy than vortex
walls, defining a phase boundary of wall type stability. Points on this boundary are shown in
Fig. 4 forK=0 J.m’3, and K = 10 kJ.m™ with 8, = 0 rad and 6, = /2 rad. The K = 0 J.m™ case
follows previous phase boundary calculations [14,15]. We neglect the phase boundary
between symmetric and asymmetric transverse walls [15], although we note that this
boundary is also affected by the in-plane anisotropy, as indicated by the wall structures
shown in Figs. 1a and 1b. Figure 4 shows that when the easy axis of the in-plane anisotropy
is parallel to the wire long axis (8, = 0 rad), the vortex/transverse phase boundary shifts so
that for a given thickness, wider wires can support transverse walls. This is consistent with a
decrease in effective wire width, as the phase boundary behaves as if the wires are
narrower than they really are. On the other hand, when 6, =1/2 rad, the phase boundary is
shifted to narrower widths (the effective wire width increases), allowing wires with small

cross-sectional dimensions (width 165 nm, thickness 5 nm) to support stable vortex walls.



This means that the introduction of a uniaxial in-plane anisotropy, for example via a forming
field during deposition [27], could change the stable configuration of a domain wall in a
magnetic nanowire. A switchable uniaxial anisotropy, such as by the piezoelectric actuation
of a magnetostrictive wire [22], could lead to the selective destabilisation of one type of wall
structure in favour of the other. Transformation to a lower energy wall state may require
thermal activation to overcome the energy barrier between the wall types [28]. While
beyond the scope of this study, it is also possible that uniaxial anisotropy could directly
influence the energy barrier between transverse and vortex states, given that the direction
of anisotropy can determine whether a transverse wall undergoes Walker breakdown via a

transition to an anti-vortex state or a vortex state [21].

The shift in the phase boundary can be understood by considering the conditions under
which there is no energy difference between vortex and transverse walls. Analytical

descriptions of the exchange and demagnetisation energy differences,
—— and - , were deduced in previous work

neglecting in-plane anisotropy [14] (rmax and rere are the outer and core radii of the vortex).

The in-plane anisotropy energy, , for transverse wall is given by

for ¢ = /2 rad, where w and t are the wire width and thickness, respectively. The in-plane
anisotropy energy, , for vortex walls has a similar form, but with an additional term
describing the vortex core. As we approximate the wall width parameter of vortex walls to

2Aqw, the energy difference between vortex and transverse walls is given by



Minimizing the total energy (AEey + AEqms + AE,,i = 0), we can determine the relation between

the wire width, w,, and thickness, t;, at the vortex/transverse wall phase boundary:

The vortex core radius is on the scale of the exchange length, so we assume ree = 5 nm.
Here, we find that rie/reore = 8 gives a good fit to the micromagnetic model when K =0 kl.m’
3 (Fig. 4). The analytical solutions agree reasonably well with the micromagnetic model
when 8, = 1/2 rad with K = 10 kJ.m™ but tend to overestimate the effect of the in-plane
anisotropy when 8, = 0 rad (fig. 4). Further analysis of Eq. 8 reveals that the anisotropy
energy due to the vortex core contributes relatively little to the shift in the phase boundary.
More significant is the relative difference between the widths of the transverse and vortex
walls. When 8, = /2 rad, the anisotropy energy decreases with a greater degree of
magnetisation across the wire width, so the larger width of vortex walls is advantageous and
the phase boundary is shifted to lower wire widths. On the other hand, when 6, = 0 rad, the
anisotropy energy is minimised when the axial domain magnetisation is maximised,
favouring the smaller width of transverse walls and shifting the phase boundary to higher
wire widths. However, the 2D structure of the vortex wall means that some magnetisation
components in the wall will still be aligned with the in-plane anisotropy axis when 6, = 0 rad,
reducing the overall energy of the wall. This explains why the analytical model

overestimates the effect of the in-plane anisotropy on the phase boundary when 6, = 0 rad.

The structure of a head-to-head domain wall has a large effect on its dynamic behaviour.
Field-dependent and spin-polarised current-dependent domain wall mobilities differ for

10



transverse and vortex walls, with transverse walls generally travelling faster [15, 29-31]. The
type of domain wall also affects strongly interactions with deliberate defects in wire edges,
which are often used to control domain wall position, and very different de-pinning fields
can be observed with the two wall types [16]. Reliable device operation will usually require
domain wall structure to be preserved. A uniaxial anisotropy could also be useful in
preventing Walker breakdown and the accompanying oscillations in magnetisation

configuration [11, 21, 32].

4. Summary

The structure of transverse and vortex domain walls in nanowires with in-plane anisotropy
was investigated using micromagnetic and analytical models. The transverse and vortex
wall widths depend on the strength of the anisotropy and the angle of the in-plane easy axis
with respect to the wire easy axis, 8,. In addition, the vortex wall width was dependent on
the vortex chirality, except when 6, = 0 rad and 6, = /2 rad. At every 0,, the largest vortex
walls were approximately twice as wide as the transverse walls. Narrower walls occur when
the in-plane easy axis is aligned with the wire long axis (6, = O rad), whereas wider walls
occur when the in-plane easy axis is perpendicular to the wire axis (8, = m/2 rad).
Conceptually, this can be understood in terms of the in-plane anisotropy altering the
effective wire dimensions experienced by the wall width, so that for a given thickness, the
wire behaves as if it is narrower than it actually is when 8, = 0 rad, but wider 6, = /2 rad.
Analytical models accounting for the change in the effective wire dimensions reproduced a
similar response of the Walker breakdown field to the anisotropy as is seen in

micromagnetic models. This suggests that the effect of uniaxial anisotropy on other
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dynamic quantities, such as the wall velocity or the de-pinning field from a defect, may also

be understood in terms of modifying the effective wire dimensions.

The change in effective wire dimensions alters the phase boundary describing the stability
of transverse and vortex walls in the nanowire, such that the phase boundary is shifted to
larger widths or thicknesses when 8, = 0 rad, but smaller widths or thicknesses when 6, =
1/2 rad. The main contribution to the shift in the phase diagram is the difference between
the transverse and vortex wall widths. Given the recent interest in fabricating
nanostructures from materials with magnetocrystalline anisotropy and the emerging field of
piezoelectric-controlled magnetic anisotropy with artificial multiferroic structures,
knowledge of how the phase boundary shifts in the presence of in-plane anisotropy could

benefit both fundamental studies and future technologies.
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Figure Captions:

Figure 1: The axial magnetization (My/Ms) profile though the centre of a 150 nm wide, 10
nm thick nanowire containing a transverse wall (TW) or vortex wall (VW) for (a) K = 0 kl.m>,
(b) K=10 k).m>, 8, =0 rad and (c) k=10 kl.m3, 0, =1/2 rad. The magnetization at My/Ms =
10.9, used to estimate the wall width, is indicated by the horizontal dotted lines. The
vertical lines indicate the widths of the TW (wtw) and VW (wyw) walls when no anisotropy is
present. The magnetization structure of transverse (top) and vortex (bottom) walls are

shown for each anisotropy condition.

Figure 2: (a) The effective width-to-thickness ratio, w’/t’, determining the stationary wall
width parameter, Ary, and (b) the analytical Walker breakdown field, Hy, normalized to the
case without anisotropy, in a 100 nm wide, 5 nm thick magnetic wire with various uniaxial

anisotropy strengths, K, and in-plane directions, 6,.

Figure 3: The effect of the in-plane easy axis angle, 8,, on the stationary wall width for up
(positive y-magnetization) transverse (TW) and clockwise (CW) and counter-clockwise (CCW)
vortex walls (VW) when K = 10 kJ.m, normalised to the case when K = 0 kil.m>. The
analytical model, based on equation 1 with ¢ = 1/2 rad, predicts the same normalised wall

width for transverse and vortex walls.

Figure 4: Micromagnetic (umag) and analytical calculations of the critical widths, w,, and
thicknesses, tp, defining the vortex (VW) and transverse wall (TW) phase boundary with no
in-plane anisotropy (K = 0 kJ.m™), and with K = 10 ki.m?, directed along the wire long axis

(6,=0 rad) and perpendicular to the wire long axis (6, = /2 rad).
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Figure 1: The axial magnetization (My/Ms) profile though the centre of a 150 nm wide, 10
nm thick nanowire containing a transverse wall (TW) or vortex wall (VW) for (a) K = 0 kl.m>,
(b) K=10 k).m>, 8, =0 rad and (c) k=10 kl.m3, 0, =1/2 rad. The magnetization at My/Ms =
+0.9, used to estimate the wall width, is indicated by the horizontal dotted lines. The
vertical lines indicate the widths of the TW (wrw) and VW (wyw) walls when no anisotropy is
present. The magnetization structure of transverse (top) and vortex (bottom) walls are

shown for each anisotropy condition.
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Figure 2: (a) The effective width-to-thickness ratio, w’/t’, determining the stationary wall
width parameter, Ary, and (b) the analytical Walker breakdown field, Hy, normalized to the
case without anisotropy, in a 100 nm wide, 5 nm thick magnetic wire with various uniaxial

anisotropy strengths, K, and in-plane directions, 6,.

17



1.50

=
il
= 1.25 4
©
=
© 1.00 -
@
N
©
£ 0.75 -
Zo Analytical ® CwVw
o TW A CCWVW
050 L) v L T ¥ v 1 L v T T L 1
-T2 -Tt/4 0 /4 /2

Figure 3: The effect of the in-plane easy axis angle, 8,, on the stationary wall width for up
(positive y-magnetization) transverse (TW) and clockwise (CW) and counter-clockwise (CCW)
vortex walls (VW) when K = 10 kl.m?>, normalised to the case when K = 0 ki.m>. The
analytical model, based on equation 1 with ¢ = /2 rad, predicts the same normalised wall

width for transverse and vortex walls.
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Figure 4: Micromagnetic (umag) and analytical calculations of the critical widths, w,, and
thicknesses, tp, defining the vortex (VW) and transverse wall (TW) phase boundary with no
in-plane anisotropy (K = 0 kJ.m™), and with K = 10 ki.m?, directed along the wire long axis

(6,=0 rad) and perpendicular to the wire long axis (6, = /2 rad).
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