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Abstract

Postcopulatory sexual selection is an important force in the evolution of reproductive traits, including sperm morphology. In
birds, sperm morphology is known to be highly heritable and largely condition-independent. Theory predicts, and recent
comparative work corroborates, that strong selection in such traits reduces intraspecific phenotypic variation. Here we show
that some variation can be maintained despite extreme promiscuity, as a result of opposing, copulation-role-specific
selection forces. After controlling for known correlates of siring success in the superb fairy-wren (Malurus cyaneus), we found
that (a) lifetime extra-pair paternity success was associated with sperm with a shorter flagellum and relatively large head,
and (b) males whose sperm had a longer flagellum and a relatively smaller head achieved higher within-pair paternity. In
this species extrapair copulations occur in the same morning, but preceding, pair copulations during a female’s fertile
period, suggesting that shorter and relatively larger-headed sperm are most successful in securing storage (defense),
whereas the opposite phenotype might be better at outcompeting stored sperm (offense). Furthermore, since cuckolding
ability is a major contributor to differential male reproductive output, stronger selection on defense sperm competition
traits might explain the short sperm of malurids relative to other promiscuous passerines.
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Introduction

Female promiscuity is a feature of the breeding system of most

passerines, often leading to extrapair paternity (e.g. [1]).

Therefore, fitness in males that breed in social pairs but engage

in extrapair copulations is the combined success of both extrapair

and within-pair siring (e.g. [2]). Sperm competition theory

proposes that males are selected to both protect from and

overcome a rival male’s paternity assurance mechanisms, and that

traits involved in paternity defense and offense might be under

antagonistic forces [3–5]. Several studies have looked at inter-male

variation in a given trait and its concurrent and separate effect in

within-pair and extrapair reproductive success in birds, yet these

studies are largely limited to secondary sexual traits (i.e. plumage,

song) or age (reviewed in Table S1, n= 20 species). In many cases,

the trait has a directional effect on extrapair paternity but no effect

on own-nest paternity, with two notable exceptions: crown

ultraviolet hue in blue tits (Cyanistes caeruleus, [6]) and tail length

in cape sugarbirds (Promerops cafer, [7]) have opposite effects. Focus

on primary sexual traits and male copulation roles has largely been

restricted to empirical studies of controlled matings in inverte-

brates (e.g. [8–10]), social status manipulation in domestic fowl

(e.g. [11]), hormonal manipulation in a wild passerine [12] and

alternative mating tactics in centrarchid fish (e.g. [13,14]).

Most long-term studies of birds have difficulty measuring

lifetime measures of fitness, due to low assignment of extra-pair

sires and/or tracking fitness of dispersers (e.g. [1,15]). Yet,

accurate measurement of selection in the wild is best achieved

when not restricted to a spatio-temporal snapshot of an otherwise

well studied system [16,17]. Lifetime paternity success provides a

direct assessment of differential pre- and postcopulatory success

[18]. However, using data from natural, unobserved matings has

inherent unknown confounding effects, such as inter-male

variation in sperm competition risk (likelihood of being cuckolded),

relative timing and number of copulations for a given clutch [19].

The detailed knowledge of the unusual breeding biology of superb

fairy-wrens (Malurus cyaneus) make this a good species to investigate

the evolutionary consequences of sperm morphology variation on

extrapair and within-pair siring success in a wild bird. Superb

fairy-wrens are territorial, facultative cooperative breeders, with a

permanent social pair bond [20,21]. Males are philopatric and

both sexes acquire their social mates passively rather than through

selection on phenotype [21]. Males queue for dominance on their

natal or adjacent territories [22], while females compete for rare

vacancies through dispersal [21]. By contrast, females show strong

precopulatory mate choice of extragroup sires, preferring males

that acquire the nuptial plumage early, an honest signal of male

quality [23–26]. Regardless of the quality of their own social

partner (e.g. when it molted), all females make pre-dawn

extragroup forays to mate with these preferred males, usually

two or three days before egg-laying [27], leading to extragroup

paternity in almost all broods [28]. Helpers (and/or neighbors) of

attractive males gain some of these extragroup fertilizations [29],

suggesting a hidden lek effect of dawn chorus displays [30] and/or
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‘error-prone’ female choice [29]. Remarkably, unless socially

paired to a son, females always copulate with their social partner

within thirty minutes of returning from the extragroup foray, and/

or with unrelated helpers (Cockburn & Double, unpublished data).

Thus sperm competition is pervasive, a view supported by the

relatively large size of the testes, proportion of sperm producing

tissue and cloacal protuberance [31–33].

Passerine sperm is morphologically complex, with helical

shaped heads, a large, single fused mitochondrion wrapped

around the flagellum ([34,35], but see [36] for an exception),

and move by rotation along the main axis [37]. Both passerine

sperm form and function exhibit considerable additive genetic

variance and generally show low condition-dependence ([38–40],

but see [41] for an exception). Comparative work in birds has

shown that, as sperm competition increases, mean sperm length

increases, although not linearly [42,43], and both inter-male and

intra-male variation in sperm size is reduced [44–46]. Recent

studies suggest that while there are significant associations between

sperm morphology (absolute flagellum length and relative to head

length) and sperm motility across species ([47], but see [48]), these

can become uncoupled at the intraspecific level in taxa, especially

in species under high sperm competition ([40,49–51] but see [52]).

It is therefore reasonable to assume that in taxa under strong

sperm competition, one might find certain morphometric traits to

be associated with cuckolding success and/or defense. We studied

cuckolding success and defense in the superb fairy-wren.

Methods

This study was conducted on an intensively studied color-

banded population at the Australian National Botanical Gardens,

Canberra [21,22], in which the breeding history, age and

parentage are known for most birds [21,23,27]. Ethical approval

for this research was given by the Australian National University

Animal Experimentation Ethics Committee (permits: F.BTZ.63.04

and F.BTZ.06.07).

Cuckolding success was measured as the lifetime number of

illegitimate offspring that survived to four weeks after fledgling

(when census provides the most reliable fitness measure; A.

Cockburn, pers. comm.). Cuckolding success was computed as a

categorical variable using the total number of extrapair offspring

a male sired (see Fig. S1). Since the frequency distribution can be

interpreted as bimodal, with modes at zero and 3–4 young (which

correspond functionally to siring no young or a single brood of

extrapair chicks), and a lowest point at 2 young (Fig. S1). Failing

to acquire an extrapair copulation (EPC) or to convert an EPC

into an extrapair fertilization, which are impossible to differen-

tiate in our data, reflect low competitiveness. Also, since EPC

forays are so time-restricted [27], one can assume that there is

little between individual variation in the number or EPCs per

bout. Therefore, males producing a single extrapair young can be

considered to have low success as a sperm competitor. We

therefore managed our data distribution by analyzing cuckolding

success as a binomial response, where the two classes were 0–1

and 2+ young. Using this cut-off rather than 0–2 versus 3+ young

is further supported, as (i) one of the two males producing two

EPO gained 100% success in the brood in which it obtained

extrapair paternity and (ii) the other was a subordinate individual

that successfully cuckolded within its social group. Therefore,

both males can be considered successful sperm competitors.

Because male age is a strong predictor of extrapair fertilization

success, through its positive effect on the nuptial plumage molt

date [23,26], male breeding experience (i.e. number of breeding

seasons it was alive) was included as a covariate in the

Generalized Linear Model (glm function with logit link and

(quasi)binomial error distribution; n = 59 males). In order to

assess the robustness of this analysis, it was repeated using GLM

with negative binomial errors (glm.nb function), an alternative

interpretation of Fig. S1 distribution (see Supplementary Material

for more details). We present the results of the latter in the

Supplementary Material). Cuckolding defense success refers to

the proportion of sired fledglings in all broods sampled while a

given male was dominant. Broods assigned to males while in an

incestuous pair with their own mothers were excluded (n = 4

broods), since inbreeding avoidance by females may bias within-

nest paternity success [21]. We used Generalized Linear Mixed

Models, GLMMs (lmer function with logit link and binomial

error distribution), to estimate the fixed effects of sperm

morphometric traits, with male identity incorporated as a

random factor. Helper number was included as a covariate,

since dominant males without helpers are cuckolded less, possibly

since paternity assurance increases care [21,23,28]. One measure

of sperm defense per male (average number of sired young across

broods) was not appropriate since the total number of fledglings,

female identity and helper number differed across broods. A total

of n = 255 broods belonging to 47 males was used.

Sperm samples were collected non-invasively by collecting the

liquid part of the faeces (see [53]) from n= 59 adult males in

December 2005. This method [53] has been shown to provide

reliable sperm morphometry data. Sperm morphometry was

measured using digital imaging software (Leica IM50) and

photographs taken using light microscopy. Three independent

sperm traits were directly measured (flagellum, head and straight

midpiece lengths) and three composite traits were calculated (total

length, flagellum:head and midpiece:flagellum length ratios) to

the nearest 0.1 mm (for more details see [38] and [47]). In order

to minimize autocorrelation between predictor variables, inde-

pendent and composite sperm traits were tested separately (note

that independent traits were not correlated with each other,

r,|0.17| and p.0.2). Although five sperm per male are

generally used to describe sperm morphometry in passerine birds

([38]), we included all sampled males in the analysis irrespective

of number of sperm measured each (mean= 7 sperm per male,

range = 1 to 10; see Fig. S2) since this species has low intra-male

variation (Table S2), reasonable intra-male repeatability ([45];

Table S2), and a single sperm captures c. 70% of this intra-male

variation (see [54]; Fig. S3). In fact, the superb fairy-wren shows a

two fold difference between inter- and intra-male coefficient of

variation for sperm length, one of the highest for which

comparable variation indices are available (inter:intra CV

ratio = 1.9; range in 26 species = 0.8 to 2.1; [44–46]). Nonethe-

less, we conservatively weighted all analyses by sampling effort

category (low weight given to males with fewer than five sperm

measured). Although we cannot report across-year repeatability

in sperm traits, it is unlikely that sperm sampling restriction to

2005 would significantly confound our results for the following

three reasons. First, in contrast to the only study that has shown

environmentally-induced plasticity in sperm morphology in a

passerine [41], there is no evidence that primary sexual traits and

hormonal profiles at the time of sperm production differ across

males of different social status or social group in this species (e.g.

[25,31]). Second, we found no variation in any sperm

morphometric trait with respect to age, status or group

composition at the time of sampling (MANOVA, p.0.2, Table

S3). Third, evidence from a two passerine species suggests

considerable within-individual across-year repeatability (Agelaius

phoeniceus, S Lüpold, pers. comm.; Troglodytes aedon, E. Cramer,

pers. comm.). Nonetheless, all analyses were repeated with the
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subsample of males with at least 5 sperm measured (see Table

S4).

Finally, the inclusion of males that are potentially still

reproductively active past the 2008–9 breeding season, the last

year we have completed paternity assignment data (n = 20/59 and

n=17/47 males for extrapair and within-pair success, respective-

ly) create a further and potentially confounding factor in our

sample. We highlight the possibly biased data points in the Figures

and provide the results using a restricted dataset excluding those

males in Table S4. Model simplification was achieved using

stepwise removal of terms and comparison of alternative models’

fit using likelihood ratio tests [55]. Quasibinomial error structure

was used in cases where overdispersion needed to be accounted for

[55]. All analyses were conducted in R version 2.10.1 (R

Development Core Team). Effect sizes and their 95% confidence

intervals [56] were calculated for each alternative data subset’s

minimal adequate final models, based on the standardized variable

methods proposed by [57] (see Table S5).

Results

After controlling for the positive effect of male breeding

experience (i.e. breeding season number), success at siring

extrapair offspring declined with both flagellum length (Fig. 1;

GLM with quasibinomial errors; season number: estimate (6

s.e.) = 0.9860.27, z = 3.64, p = 0.0006; flagellum length: estimate

(6 s.e.) =20.67–44.83616.56, z =22.71, p = 0.009; n= 59

males) and flagellum:head length ratio (Fig. 1; GLM with

quasibinomial errors; season number: estimate (6 s.e.) = 0.90

60.26, z = 3.43, p = 0.001; flagellum:head ratio: estimate (6

s.e.) =218.5969.23, z =22.01, p = 0.049, n= 59 males). There-

fore, cuckolding success was associated with sperm with a shorter

flagellum and relatively larger heads. The alternative negative

binomial GLM method shows these results are robust (Table S4).

Removal of males that could be reproductively active past the end

date for paternity data (n = 12 males who could change from low

to high extrapair success late in their lives), did not qualitatively

change the results (flagellum length p= 0.018; flagellum:head ratio

p= 0.048; Table S4 and Table S5). The same was true for the

restriction of the dataset to males with at least five measured

(Table S4 and Table S5).

In contrast, males with sperm with a longer flagellum and

relatively shorter heads were more successful at preventing

cuckoldry (Fig. 2; binomial GLMMs with male identity as a

random factor; flagellum length: estimate (6 s.e.) = 20.0868.31,

z = 2.42, p= 0.016; flagellum:head ratio: estimate (6

s.e.) = 11.5064.31, z = 2.67, p = 0.008; n = 255 broods assigned

to 47 males). The number of helpers did not affect within-brood

paternity success in this sample (p.0.2). Although our measure of

cuckolding avoidance (proportion of fledgling sired in all assigned

nests) can be biased either way by future potential breeding

attempts (n = 17 dominant males alive past the last available

paternity analysis), removal of these data points did not change

any of the previous results (flagellum length p= 0.03; flagellum:-

head ratio p= 0.008). Note, however, that restriction of the dataset

to males with at least five measured sperm considerably decreased

effect size estimates (c. by one third) and rendered the results not

significant for either sperm trait (Table S4 and Table S5).

Midpiece size (absolute or relative to flagellum length) was not

associated with either extra- or within-pair reproductive success

(all models, p.0.4; see Table S4). In summary, the same sperm

morphometric traits have opposite effects for cuckoldry success

and cuckoldry avoidance.

Discussion

We found evidence of opposite selection on male sperm traits in

superb fairy-wrens, a species under intense sperm competition.

Male fairy wrens with shorter flagella and relatively larger heads

sired more extrapair offspring, but were less likely to secure

paternity at their own nest than males with the opposite sperm

phenotype. To our knowledge, this is the first evidence for a

naturally occurring selective trade-off for sperm morphology in a

wild population.

Sperm size, design and numbers are known to influence the

outcome of sperm competition (e.g. reviewed in [18,58,59]).

Figure 1. Negative associations between extrapair reproductive success and sperm morphology. (A) flagellum length and (B) relative
length of flagellum to head section. Extrapair paternity success was transformed into a categorical variable based on the observed binomial
frequency distribution peaks of fledged extrapair sired young (low=one or fewer, high= two or more). Males that are potential active breeders past
the date of the current paternity assessment (2008/9 season) are represented by the open circles (n = 20 of the total n = 59 males). Fitted curves were
calculated using the regression estimates from fitted models (male breeding experience included as a covariate).
doi:10.1371/journal.pone.0028809.g001
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Fertilization efficiency of sperm is a complex trait that is further

influenced by female (cryptic) choice processes, often mediated by

ejaculate storage [60,61]. Although we currently lack data on

female fairy-wren sperm storage morphology, we can speculate on

possible mechanisms that explain the association between sperm

design and reproductive success based on what we know about (i)

the likely sperm competition processes operating in this species, (ii)

the differences in the timing and number of copulations between

the pair and the extrapair mate, and (iii) the unique features of

passerine sperm morphology.

Sperm competition context
The mating system of fairy-wrens theoretically generates a

sperm competition scenario that is analogous to a random role (i.e.

no strict assignment of males to the offense or defense position in

the interaction), possibly loaded raffle (i.e. one male’s sperm is

devalued), with negligible sperm limitation, and very high risk of

sperm competition for both the extrapair and the pair male (e.g.

[62]). Females seek extrapair copulations regardless of the quality

of their own mate [27], and unless paired to their son, always

copulate with the social pair male as well (Cockburn & Double,

unpublished data). Moreover, the high rate of sperm production

[63,64], large testes and cloacal protuberance [31–33], relatively

low breeding synchrony and hence intensity of extrapair matings

[25,30], and similar levels of circulating testosterone and sperm

reserves between dominant males during the breeding season

[25,31], suggest that sperm limitation may be negligible. In this

scenario, males are theoretically predicted to invest equally in

sperm numbers irrespective of their perceived role (i.e. offense or

defense) at the time of copulation [65–67]. Therefore, we can

assume that adaptive ejaculate allocation (e.g. reviewed in [68]) is

unlikely to influence sperm competition outcome in this species.

Moreover, the strong directional selection on a honest phenotypic

signal (nuptial plumage moult date, e.g. [26]) suggests that sperm

competition processes based on genetic (in)compatibility ‘loaded

raffle’ (e.g. [69]) are also an unlikely confound in this system. In

addition, the timing of extrapair copulations is fairly consistent

across females (see below).

Timing of mating
Rival males copulate at the same time relative to ovulation.

Extragroup copulations are always sought by females three days

prior to egg laying [27]. Pair males follow their females closely on

her return from the foray, and they copulate with her within half

an hour of her return (Cockburn & Double, unpublished data).

Thereafter, males show little interest in mate-guarding and/or

copulation, and instead spend large part of the day displaying to

females on neighbouring territories [70]. Potential ‘loading’ in

such sperm competition raffle is thus intimately associated with the

relative timing of copulation, with the extragroup male always first

to inseminate the female. Paradoxically, when discussing sperm-

female interactions mechanisms at the proximate level (see below),

the extrapair and pair males exert the roles of paternity defender

and offender, respectively: the within-pair male tries to overcome

the extrapair male’s previously stored ejaculate. At the ultimate

level, securing within-pair paternity in species with paternal care is

inherently a defensive fitness strategy.

Sperm morphology and female-sperm interactions
Sperm design, i.e. the relative lengths of sperm components

rather than total length or absolute component size, might be

important target of selection, especially when they provide better

correlates of sperm function [71]. For instance, the relative size of

the head to the flagellum (i.e. drag vs. power) was proposed [71]

and later found ([40,47,51], but see [48]) to be a good predictor of

sperm velocity in birds: sperm with higher flagellum:head ratios

swam faster, although this relationship did not hold at the

intraspecific level in three promiscuous species (Agelaius phoeniceus,

[49]; Quelea quelea, [50]; Tachycineta bicolor, [52]). Nevertheless, the

pre- and post-copulatory scenarios where selection acts in our

study species are quite different (e.g. EPC-seeking by all females

and lack of precopulatory pair choice; see Introduction) from the

Figure 2. Positive associations between within-pair reproductive success and sperm morphology. (A) flagellum length and (B) relative
length of flagellum to head section. Within-pair reproductive success is measured as the proportion of young at a social dominant male’s nest(s).
Analyses were conducted using male identity as a random factor (i.e. mixed models). Plots refer to mean paternity for all broods sampled. Males that
are potential active breeders past the date of the current paternity assessment (2008/9 season) are represented by the open circles (n = 17 of the total
n = 47 males). Fitted curves were calculated using the regression estimates from non-mixed effects fitted models.
doi:10.1371/journal.pone.0028809.g002
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more ‘traditional’ mating ecology of the three other promiscuous

species aforementioned. More data are therefore needed. The

relationship between flagellum and midpiece lengths has also been

considered an important trait, associated with sperm energetic

dynamics and sperm function [71–73]. It is interesting to note that

in the present study neither absolute midpiece length nor its ratio

to flagellum length were found to be associated with either type of

paternity success. However, (relative) midpiece size is not as closely

linked to sperm function in passerine birds ([40,48,51], cf. [47]) as

in chickens or mammals (e.g. [74,75]), which might explain its lack

of relationship with fitness.

Passerine sperm are stored in sperm storage tubules (SSTs),

located at the utero-vaginal junction of the female reproductive

tract, with their heads facing the distal blind-ended part [76,77].

Across bird species, sperm total length generally increases with

sperm competition level, but the latter relationship is the indirect

result of a stronger sperm-length-SST-length correlation [42]. In

fact, the role of sperm-female interactions in the evolution of male

gametes is clear and well supported empirically (reviewed in [61]).

The most detailed histological study of SSTs in another highly

promiscuous passerine, the alpine accentor, Prunella collaris [78],

found no evidence for contractile elements, which would provide

direct female anatomical control mechanisms over sperm access to

and persistence in the SSTs. Therefore, although we can not rule

out possible biochemical processes, it is not unrealistic to assume

that features of passerine sperm themselves might strongly

influence access to and endurance within the SSTs. For instance,

relatively longer heads (e.g. more twists in the helix) might improve

a sperm’s resistance to passive loss from the SSTs, thus benefiting

the extrapair male. Sperm with a longer flagellum and relatively

shorter heads are predicted to have higher thrust forces and

reduced drag [71,79], often explaining the associated higher in vitro

velocity [47]. However, it is unclear how higher thrust benefits

sperm in the offense capacity, since (i) sperm velocity and

flagellum:head ratio are not correlated across males of promiscu-

ous species (see Introduction), (ii) there is no evidence for active

sperm displacement in birds [19,80], and (iii) it has been shown

that avian sperm are passively transported from the SSTs to the

site of fertilization, the infundibulum [81]. We can speculate that

more powerful and/or energy efficient (if not faster) morphometry

might increase the proportion of within-pair male sperm that enter

the SSTs, or perhaps those SSTs placed higher in the reproductive

tract, and thus closer to the site of fertilization, or reduce the rate

at which sperm are lost from the SSTs, as was observed in the

domestic fowl (Gallus g. domesticus, [82]).

The short sperm of Maluridae
The evolution of sperm morphology in a within-species context

has been the focus of several empirical (e.g. reviewed in [58]) and

theoretical studies (e.g. [65,66,83]). For instance, longer sperm

increase the competitive potential of an ejaculate or promote

female sperm choice because longer sperm may, among other

reasons, swim faster, live longer, be more effective in sperm

displacement within the female reproductive tract, or indicate

higher male quality [58]. On the other hand, shorter sperm might

be favored under raffle processes if the same number of sperm

can be invested into an ejaculate for reduced energetic (and/or

spatial) cost (e.g. [66]). Recent theoretical and comparative work

suggest that the typical mode of sperm competition in birds

follows raffle principles [43,83], and the latter also applies to

fairy-wrens (see above). Cuckolding success (cf. avoidance) is

likely to be the major cause of male differential reproductive

success in this species (cf. other passerines; e.g. [84]) since: (i) it is

mostly under female control [27], (ii) a very small percentage (4–

5%) of males sire the majority of extrapair offspring in the

population (33–47% [28], this study), (iii) most dominant males

suffer some within-pair paternity loss (77–95% broods have at

least one extrapair chick [28], this study) and one third of males

sire none of the young raised on their territory (13/46, 38%; this

sample), (iv) subordinate male direct fitness is mostly derived

through extragroup cuckoldry, particularly as they never mate

with their mother [21,30,85]. Since shorter sperm was positively

associated with greater cuckolding success, this might explain why

Maluridae has relatively shorter sperm than expected for their

body and relative testes sizes [43]. Moreover, producing shorter

sperm might be a consequence of the selection for higher

proportion of sperm producing tissue [33] in already space-

constrained testes.

Conclusion
The observed antagonistic selection forces acting on superb

fairy-wren sperm morphology provide a feasible mechanism for

maintenance of some morphological variation under extreme

postcopulatory sexual selection and preclude the existence of a

universally favorable sperm phenotype at any given breeding

season (cf. sexually-selected sperm hypothesis; [86]). Moreover,

this study attests to the value of using well-documented, long-term

study systems to improve our understanding of sperm competition

evolutionary processes in natural conditions. We recommend that

future work on this, and other (promiscuous) wild taxa should

focus on proximate level enquiries, including female reproductive

morphology and the genetic basis and covariation between sperm

form and function.
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