
promoting access to White Rose research papers 

   

White Rose Research Online 
eprints@whiterose.ac.uk 

 

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 

 
 
This is an author produced version of a paper published in Transportation 
Research Part B: Methodological. 
 
White Rose Research Online URL for this paper: 
 
http://eprints.whiterose.ac.uk/43675/ 
 
 

 
 
Paper: 
Connors, RD and Sumalee, A (2009) A network equilibrium model with travellers' 
perception of stochastic travel times. Transportation Research Part B: 
Methodological, 43 (6). 614 – 624. 

 

http://dx.doi.org/10.1016/j.trb.2008.12.002 

 

 

http://eprints.whiterose.ac.uk/43675/
http://dx.doi.org/10.1016/j.trb.2008.12.002


 

 

Page 1 of 12 

 

A Network Equilibrium Model with Travellers' Perception of 
Stochastic Travel Times 

Richard D. Connors, Agachai Sumalee 

Abstract 
In this paper we consider a network whose route travel times are considered to be random variables. In this scenario 
travellers choose their route, uncertain of the travel time they will experience on any of the available alternative routes. 
The attractiveness of a given route involves evaluation of both the possible travel time outcomes, and their perceived 
probability of occurring. We consider a modelling framework where the perceived value and perceived probabilities of 
travel time outcomes are obtained via nonlinear transformations of the actual travel times and their probabilities. In this 
context, we present the analysis required to formulate an equilibrium condition analogous to that of User Equilibrium, 
wherein travellers choose the routes that maximises their perceived value in the face of uncertain travel times. Existence 
and uniqueness conditions for this equilibrium are established. 

Cumulative prospect theory (CPT) provides a well supported paradigm for choices made under uncertainty, where each 
choice alternative presents a discrete probability distribution of a finite number of possible outcomes. Our analysis 
admits the particular transformations associated with CPT as a special case, and holds for a more general class of 
transformations and for the case of a continuous distribution of outcomes. 

1 Introduction 
A transportation network is a system with many sources of variability that influence network performance and hence 
affect travellers’ experiences and their subsequent choices. Sources of variability occur in both demand and supply: 
variations in individuals’ activity schedules and in the flexibility of their desired trips result in flows that vary from day 
to day, meanwhile the capacity of the road network is sporadically degraded by accidents and both planned and 
unplanned incidents, among other causes.  

The impact of this variability on the traveller occurs through the induced variability of travel times. To represent this 
uncertainty, various stochastic network models have been proposed (see for example Lo and Tung 2003; Watling 2002). 
Such models assume demand and/or supply uncertainty and result in a continuous travel time distribution for each 
route. Including this travel time uncertainty into transport network modelling has received considerable attention in the 
literature; Noland and Small (1995), Bates et al. (2001), Noland and Polak (2002), de Jong et al. (2004), and Watling 
(2006) provide summaries of contributions to date. A central component of these researches concerns the way travellers 
decide between routes having different travel time distributions; in particular an unreliable route with low mean travel 
time and a reliable route that on average takes longer. Typically an additional element of route cost is associated with 
unreliability, relating directly to the variance of travel times (Noland and Small 1995), to the probability of being late 
(Watling 2006), or to the safety margin required to arrive on time (Lam et al. 2008; Lo et al. 2006). Other works 
concerning risk averse behaviour (Bell and Cassir 2002; Szeto et al. 2006) have ascribed a cost to the travel time 
uncertainty according to travellers’ risk attitudes, yet still assuming that travellers accurately perceive the travel time 
probability distribution. 

In all cases cited above, travellers continue to follow the paradigm of expected utility maximisation (EUmax) according 
to the actual travel time distribution. Mirchandani and Soroush (1987) propose a model that includes subjective 
perception of the travel time distribution. Given a continuous distribution of actual travel times, they assume different 
travellers each perceive the mean and variance of travel time differently, giving rise to a distribution of perceived travel 
time means and variances. On the basis of these perceived travel time distributions they compute an equilibrium 
assignment. The authors note that a formulation including perceived disutilities arising from nonlinear transformations 
of the travel time distribution remains an open problem. 

In the area of choice modelling, transformations of both the distribution of outcomes’ utilities and probabilities are 
proposed by cumulative prospect theory (CPT) (Tversky and Kahneman 1992). The tenets of CPT require specific 
characteristics of these transformations. CPT as a choice model has previously been applied in the transport field (for 
example, see Avineri and Prashker 2003; Michea and Polak 2006). Senbil and Kitamura (2004) and Jou et al (2008) 
applied prospect theory to commuters departure time choice and verified its explanatory power against survey data. As 
a model for route choice Avineri (2006) considered CPT for the case of a two-link network with stochastic travel times 
comprising a finite discrete set of outcomes.  

This paper considers a general approach to represent travellers’ route choice in the face of uncertain travel times; not 
only allowing for subjective perceived costs associated with the distribution of travel times, but also allowing for 
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subjective perception of their uncertainty. A general equilibrium condition is derived for a network whose travel times 
arise from arbitrary probability distributions, with travellers’ choosing their route based on subjective perceptions of the 
route travel time distributions. This formulation accommodates monotonic nonlinear transformations for the (i) 
perceived disutilities in terms of actual travel times and (ii) perceived risk in terms of the actual travel time 
probabilities. Existence and uniqueness of the resulting equilibrium is established. 

In reality, and in stochastic network models, the distribution of travel times is continuous. Meanwhile travellers may in 
fact perceive a continuous or a discrete distribution of travel times; the formulation in this paper allows for both. As 
such the analysis presented subsumes the case of CPT with discrete outcomes, and the extension of CPT to the case of 
continuously distributed outcomes.  

Section 2 introduces notation necessary for the formulation of network equilibrium and the two transformations of the 
travel time distributions. Motivated by CPT, the perceived value of an alternative is defined in Section 3. Section 4 then 
presents the equilibrium formulation and shows existence and uniqueness. Numerical examples are presented in Section 
5 before the concluding remarks in Section 6. 

2 Network Representation and Definitions 
We represent the road network by a directed graph consisting of N links labelled 1, 2,...,a N ; a demand vector q, with 
entries rq representing the travel demand on the rth origin-destination (OD) movement; and a set of paths rK connects 
the rth OD movement. An assignment of flows to all paths is denoted by the vector f, with r

kf the flow on the kth path 
connecting  the rth OD. The assignment is feasible for demand vector q if and only if  

r

r r
k

k K

f q r


  and 0 ,r
kf k r  .       (1) 

The (closed, convex) set of feasible path flows thus defined is denoted F. The link travel times are stochastic 
variables, aT , whose means are single-valued, monotonic, continuous functions,  at x of the vector of link flows, 
 x f , where the link-path incidence matrix Δ has elements denoting the links a that are part of path k ordered by OD 

movement r. The joint distribution of the link travel times,  1 , , NT TT  , is assumed known and independent of x. 
The mapping between link flows and mean path costs arises from the link cost-flow relationships according to the 
standard link-additive model: 

    T   c f t f .        (2) 

The experienced path costs, C (upper case), are stochastic and have a joint distribution arising (via (2)) from that of the 
links. 

The foundation text for deterministic network equilibrium is Wardrop (1952), who proposed that travellers will change 
route in order to reduce their travel cost, c(.). The consequence is that, at equilibrium, all used routes have equal 
minimum cost for each OD movement; this condition is called User Equilibrium (UE). The link flow vector * *  x f  
is a solution to the UE if *f satisfies (1) and 

   * * 0
T

F   c f f f f .        (3) 

This formulation ignores any travel time variability and presupposes that travellers consider only the deterministic mean 
route costs. 

Since travel time is associated with disutility (an increase in travel time corresponds to a loss), for convenience we 
formulate route choice in terms of travellers’ utilities, so that an increase in utility will correspond to a gain. Assuming 
that travel is motivated by utility gained at the destination, destU , the net utility gained by a traveller on route k is 

 k dest k dest k kU U C U c     x .       (4) 

The utilities  kU  are random variables; superscripts designating the OD have been dropped for brevity.  

2.1 Perceived Value of a Travel Time Distribution 
Consider a decision maker choosing from a set of available alternatives: in the context relevant here, this will be the set 
of routes connecting the decision maker’s origin and destination. Each alternative in the choice set comprises a 
(continuous or discrete) set of possible outcomes with utilities u , and with  Uf u  the probability density function 
(PDF) giving the probability that any outcome occurs. The expected utility of a given alternative, 
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   UE u u f u du



  , is a single value providing a summary of the overall attractiveness of this alternative’s PDF to 

the decision maker.  

Motivated by the approach taken in CPT we assume that the decision maker compares some such summary statistic for 
each alternative in the choice set in order to choose one; we call this the perceived value (PV). The perceived value of 
an alternative is evaluated by the decision maker from the actual outcomes and their probabilities of occurring via two 
transformations  

(i) a value function  .g  describes the payoff level experienced by the decision maker for each possible 
outcome (travel time) 

(ii) a probability weighting function  .w that transforms the probability scale into the perceived likelihood of 
occurrence.  

To make the formulation as general as possible, in particular to accommodate CPT, we include the notion of a reference 
point. This splits outcomes into gains (having utility greater than the reference point) and losses (conversely). 

2.1.1 Value Function 
In prospect theory the payoff level is considered to be a gain or loss from the reference point, 0u ; the canonical example 
of a value function is 

    
 

0 0

0 0

u u u u
g u

u u u u





   
   

.       (5) 

The parameters 0 , 1    give concavity for gains and convexity for losses, and determine the degree of diminishing 
sensitivity to gains/losses away from the reference point. The degree of loss aversion is governed by , with 1   
corresponding to the tenet of prospect theory that the value function is steeper for losses than for gains. Our analysis 
allows other value functions to be considered, with or without reference points, that do not necessarily conform to the 
specifications of prospect theory. 

2.1.2 Probability Weighting Function 
While decision makers could be assumed to act rationally with perfect information about the probabilities of all possible 
outcomes, instead we relax this assumption and consider travellers base their decisions on perceived probabilities. 
Based on experimental evidence, prospect theory proposes that small probabilities are typically over-weighted and 
moderate and high probabilities are under-weighted. However, this transformation could also be proposed as a synthesis 
of experienced and preconceived probabilities in the mind of the decision maker, or an internal representation based on 
full knowledge of the true PDF of outcomes. 

The choice modelling literature provides examples of transformations of the outcome probabilities that have been 
validated experimentally (though not for the case of route choice in transport networks). In particular, Prelec (1998) 
derived the probability weight function  

    exp logw p p


     ,       (6) 

from a behavioural invariance condition, where w(p) and p denote the perceived probability and actual probability of an 
event respectively and 0 1  . This probability weighting function is guaranteed to be monotonic for all parameter 
settings 0 1   (Rieger and Wang 2006).  

3 Definition of Perceived Value from Cumulative Prospect Theory 
For the case of stochastic travel times we require a formulation that does not exclude a continuous distribution of actual 
outcomes. In deriving CPT, Tversky and Kahneman (1992) defined the PV of an alternative only for the case of a finite 
discrete set of outcomes, though explicitly noted CPT “can be extended to continuous distributions”. Several researches 
have made this step, applying prospect theory or CPT to continuous outcome distributions (Barberis and Huang 2005; 
Davies and Satchell 2004; De Giorgi et al. 2004). In particular, Levy and Levy (2004) compare a prospect theory based 
approach with the mean-variance rule in the case of portfolio investments, where outcomes (asset returns) are 
continuous variables following normal or lognormal distributions. This is extended to a model for portfolio selection 
under CPT in continuous-time (including continuous outcome distributions) by Jin and Zhou  (2008). Rieger and Wang 
(2006) determine analytical properties of CPT in the case of arbitrary (i.e. including continuous) outcome distributions, 
and have formulated standard prospect theory in the continuous cases (Rieger and Wang 2008).  Despite these works, 
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the existing literature does not explicitly present a derivation of the continuous formulation of CPT, nor verify that the 
continuous formulation recovers the original discrete theory. In this section we present the necessary formulation, with 
the supporting analysis included in the appendix.  

Consider an alternative with finite discrete outcomes, {ui}, ordered by their utility; the greatest loss being u-m and the 
greatest gain un. If these outcome have probabilities  ip ,  Tversky and Kahneman (1992) define 

   1i i n i nw p p w p p   
         for 0 i n   and  n nw p     (7) 

   1i m i m iw p p w p p   
          for 0m i    and  m mw p  

  . (8) 

Here different weighting functions are permitted for gains (w+) and losses (w-). According to CPT, the PV of an 
alternative having a finite discrete set of outcomes is defined to be 

v v v      with    i i
i

v g u   and  i i
i

v g u       (9) 

with v being the contribution from those outcomes designated as gains by choice of reference point, and v is the 
contribution from losses. This original discrete formulation can be extended to give the PV for an alternative with a 
continuous distribution of outcomes. For an alternative with (continuous or discrete) outcomes described by the CDF 

 UF u , and reference point 0u , the PV is defined to be: 

    
    

0

0

1 u
U U

u

dw F u dw F u
v v v g u du g u du

du du

 
 




      .    (10) 

The appendix includes the derivation of (10) and illustration that it reproduces (7)-(9) when the probability density 
function represents a discrete distribution of outcomes. It is also shown that the PV (10) recovers the expected utility 
when both w(.) and g(.) are the identity mappings. 

The original version of prospect theory simply mapped outcome probabilities and utilities, giving the prospect value to 
be    i ii

w p g u . This clearly reduces to the expected utility under the identity value and decision weight mappings. 
Note that in (10) the argument of the weight function is the outcomes’ CDF; for the continuous case, the probability of 
any particular outcome is zero so mapping the probabilities of ‘individual’ outcomes under w(.), as in original prospect 
theory, would be meaningless. 

4 Network Equilibrium Based On Perceived Value 
The PV equilibrium condition analogous to UE is that, at equilibrium, all used routes have equal (maximum) perceived 
value, as defined in (10). With vk the flow dependent perceived value of route k, and v(f) the corresponding vector of 
perceived values, we have that * Ff is a PV-UE if and only if 

   * * 0
T

F   v f f f f .       (11) 

We assume that (i) the link costs functions, (ii) the value function, (iii) the probability weighting function, (iv) the 
cumulative density function of the outcomes, are all continuous and strictly monotonic. Under these assumptions, the 
PV is a sum of integrals of continuous functions (of link flow); the derivatives appearing in (10) are therefore 
integrable. The PV is a continuous function of network flow.  

The path-based proofs of existence and uniqueness follow those of Watling (2006), originating from Smith (1979) and 
are only briefly described here. 

4.1 Existence 

The feasible region of path flows, F, is closed and convex, so for any vector of path flows, f, there exists a unique 
nearest feasible point   Fp f , the projection of f onto F. We define a mapping : F F  ,       f p f v f , so 

that f is a PV-UE if and only if   f f  (see Smith 1979). Since the constituent functions are continuous as stated 

above, so  .  is continuous, and by Brouwer’s fixed point  theorem an equilibrium solution exists. 

4.2 Uniqueness 
We begin by showing  that the PV is a decreasing function of flow. The location (mean) of the distribution of route 
travel times (hence utilities) is determined by the deterministic, flow-dependent travel times The dependence of PV on 
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the flow therefore arises via the CDF of utility. Consider the CDF  UF u , as determined by the mean and variance of 

its underlying PDF,  2; ,Uf u   . The effect on  UF u  of a small increase in the mean is exactly that obtained by a 
small decrease in u. 

     U U
U

F u F u
f u

u
 

   
 

         

For a single link with mean cost function  c x  and a distribution of utilities (as above) centred on  destU c x    this 
gives  

     
   

, ,
'destU U

U

U c xF u x F u x
f u c x

x x

      
  

.      

Therefore the PV is affected by the link flow as follows: 

     
 

     
 

   0

0 1

'
U U

u

U U
u F u F u

v x dw s dg u dw s dg u
c x f u du f u du

x ds du ds du

 



      
   

  .   

Following the assumption that the link travel time functions are strictly increasing functions of flow,  ' 0c x  . If both 
the value function and decision weight function are also strictly increasing, all terms in the integrands are positive and 
hence PV is a monotonic and strictly decreasing function of flow. 

Uniqueness is now established by contradiction. Given that solutions exist, consider two PV-UE path flow solutions f 
and g with distinct link flows   f g . The mean path travel times give 

                     0
TT TT                c f c g f g t f t g f g t f t g f g . 

This is positive by the definition of t(.) being strictly monotone. Above we assumed that the link travel time functions, 
value and decision weight functions are all strictly monotonic, hence (from above)  .v is strictly monotonic 
decreasing: 

       0 , ,
T

F      v f v g f g f g f g .             (12) 

We can then write  

               0
TT T      v f f g v g f g v f v g f g      

The first term is non-negative since g is a PV-UE solution, and the second term is strictly positive by (12). Since f is 
also a PV-UE solution, by (11), 

        0T T    v f f g v f g f         

Giving a contradiction. Hence two distinct PV-UE link flow solutions cannot exist and the PV-UE solution is unique (in 
the link flows). 

The PV-UE defined in this section is deterministic: given travel time distributions for each route, and the relevant CPT 
model parameters, (11) defines a vector of PV-UE path flows. However, since the travel time variances are assumed 
independent of the mean (and hence independent of the flow) we may assume that this variability persists and that the 
equilibrium predicted is one where the mean flows are given by (11) and the variability is that prescribed in the network 
definition. 

5 Illustrative Examples 

5.1 Two Link Network 
Consider the two link network with travel time distributions 

  2~ ,i i i iT N t x            

so that the utility of travelling on route i will be 
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  2~ ,i dest i i iU N U c f  ,         

where the path costs and the path utility variances 2
i derive from the constituent link cost distributions. For each OD 

movement, the equilibrium path flows give equal maximum PV for each used path. The equilibrium flows are the 
solution to the following gap-function minimisation programme (dependence on other parameters in calculating the PV 
omitted here for brevity): 

    min max j iji
v v 

 
 
f

f f .        

Consider the two link network with deterministic mean travel times depending on flow as follows 

 
2

1
1 1 10

10
xt x     

 
and  

2
2

2 2 15
25
xt x     

 
.       

With fixed total travel demand = 100, the mean costs on the two links are uniquely determined by the flow on link 1, 
since the remainder will travel on link 2. We set the utility gain at the destination to be 200destU  . The UE solution 
is    1 1 1 2 234.45, 21.87f c f c f    corresponding to an expected utility of 178.13. 

With 2 12   we compute the PV for both links, under each feasible flow pattern for different values of the reference 
point. The other parameters are given as before by alpha = 0.52 = beta, lambda = 2.25, gamma = 0.74. The equilibrium 
flows, defined as those giving equal PV on all used routes, occur at the intersection of the surfaces in. The absolute 
difference in link-PV is shown in Figure 1; equilibrium flows occur at the minimum. The influence of the reference 
point on the equilibrium solution can be seen. Note that as the reference point becomes increasingly distant from the 
expected utility at UE, so the PV-UE flows return to the UE solution. In practice, the reference point can be calibrated 
from survey data, see e.g. Sebil and Kitamura (2004) and Jou et al (2008). 

 

  
Figure 1: PV disequilibrium: │PV1-PV2│ Figure 2: PV equilibrium as reference point and travel 

time variance change 

Different route cost variances were deliberately chosen for this illustration. The PV includes the route travel time 
variance (TTV) through its definition that depends on the entire CDF of the travel time outcomes and hence the 
comparison of PV-UE with UE cannot be fully illustrated unless there is a choice between alternatives with different 
variabilities; with 2 1   we find that PV-UE reproduces the UE flows. 

The above figure shows how the magnitude of TTV impacts upon the way PV-UE departs from the UE solution. Recall 
that for all values of the reference point the UE path 1 flow is 34.45, this is where the σ = [1,2] line intersects the x-axis. 
Both lines on this graph shows the link 1 flow PV-UE solution for different values of the reference point. The solid line 
for utility distributions having standard deviations [1,2], and the broken line for the case with standard deviations [5,10]. 
Increasing the TTV on each link while maintaining the same ratio of variability shows the same type of behaviour 
around the underlying UE solution, which PV-UE recovers as the reference point becomes more distant from the UE 
expected utility. 
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5.2 Five Link Network 
Consider the five link network with two OD movements: a demand of 3 from node 1 to node 3 (OD1) and a demand of 
7 from node 1 to node 4 (OD2). The path covariance matrix is assumed diagonal with elements [7.5, 2.5, 5, 7.5, 10] 
corresponding to paths using links [(1,3), 2, (2,5), (1,4), (1,3,5)]. The link cost functions (LCFs) are given in Figure 3. 

We set the utility of arriving at the destination as [OD1, OD2] = [30,50]. The UE solution has OD costs [15.89, 29.04] 
and hence expected OD utilities [14.11, 20.96]. The PV-UE solution at different combinations of reference point is 
shown in Figure 11 

 
Figure 3: Five Link Network 

 

 
Figure 4: PV-UE for the five link network with 2 OD movements 

The central row of figures shows the PV for each used route and confirms that equilibrium is attained, since the plotted 
lines for each route coincide (2 lines for OD1, 3 lines for OD2). The range of reference points was chosen to cover a 
range around the UE solution for each OD, the reference points tested spanned the range and were changed 
simultaneously, other combinations (e.g. large reference point for OD1, small for OD2) were not tested. Although it 
appears at this level of detail that all three path costs intersect at a point for OD2, on closer inspection this is not the 
case and its appearance is coincidental. 

In the first row of figures we see the path-flow switching phenomena that is a familiar artefact in UE, due to the non-
uniqueness of path flows; the equilibrium algorithm converges to an arbitrary path flow solution while satisfying the 
equilibrium condition, the flow conservation constraints, and corresponding to a unique (aggregate) link flow solution. 
For this test network, flow on paths 1 and 2 (OD1 flow) can be interchanged with OD2 flows on paths 3 and 5, while 
maintaining the same total link flows. Such non-unique path flows can be avoided in UE with non-additive route costs 
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(Gabriel and Bernstein 1997). However, the non-additive nature of the PV route choice model arises from the reference 
point being defined for each OD separately and hence the PVs for all paths connecting a given OD are evaluated with 
respect to the same (non-additive) reference point. The switching phenomena displayed above are exactly those familiar 
in UE analysis: a unique link flow PV-UE gives unique link costs, path costs and hence PV for each OD. Interchanging 
path flows can be done due to linear dependence in the path flow specification: 

*  
        

x
f

q
          

Here x* is the unique equilibrium link flow, q the demand vector, Δ the link path incidence matrix and the matrix Ψ 
represents the demand conservation constraint. For this network, the matrix pre-multiplying  f is of rank 4, leaving one 
degree of freedom that allows the path flow switching. 

6 Conclusion & Discussion 
In this paper we proposed cumulative prospect theory as a model for individual route choice behaviour in a network 
where link travel times are random variables. Since the existing literature does not provides a clear derivation of the 
continuous analogue of Tversky and Kahneman’s original discrete formulation of cumulative prospect value, we 
provide a derivation and show that the continuous formulation obtained generalises both the discrete definition, and the 
expected utility. We then propose an equilibrium criterion based on UE and show that the PV-UE exists and is unique in 
the link flows under assumptions of continuity and monotonicity that are no more onerous than the corresponding 
requirements for UE. Finally we present numerical examples to show that the PV includes information about the 
variability of travel times, and we find PV-UE for two simple networks and illustrate the dependence of PV-UE on the 
underlying TTV. The parameters needed to compute perceived values are taken from the choice modelling literature 
and are not necessarily appropriate in the context of route choice. 

It remains to find meaningful parameters for the value and decision weight functions that comprise the formulation of 
CPT. The reference point in particular is shown to have a strong influence on the equilibrium achieved. One intuitively 
appealing approach would be to allow determination of the reference point to be endogenous: travellers modify their 
reference point based on experienced (stochastic) travel times via a learning model. Conditions for an equilibrium to be 
attained under a stochastic process model such as this is left for future research. 

It is worth making some remarks on the equilibrium formulation under this framework that would be analogous to that 
of SUE. At any given set of flows, for each path in the network the perceived value is deterministic. Following the case 
of stochastic user equilibrium (SUE) we can instead propose that there is a distribution of PVs for each path and, 
analogously to the case of SUE (Daganzo and Sheffi 1977), define a random variable of path PVs  

     V f v f   where  ~ 0,D  ,        

with ζ a zero-mean random variable, having variance-covariance matrix Ξ and distribution function D(.). Assuming that 
travellers choose the route with the highest random PV, the flow on route k will be that proportion of the OD flow, qr, 
determined by the probability that route k is more attractive than all other OD routes. 

    Prr r r r
k k jf q V V j  f f .         

The equilibrium flows therefore solve the following fixed point problem: 

  * * f q P V f ,                   

where P(.) is the function mapping the vector of random PVs to flow proportions. As for the case of PV-UE, since the 
mappings composed to form the fixed point condition are all continuous, Brouwer’s fixed point theorem guarantees that 
an equilibrium solution exists. Note that, as for SUE, flow conservation is automatically satisfied at equilibrium and is 
not required as an additional constraint. Uniqueness can also be established following the analysis (see Sheffi 1985) 
establishing this results for SUE, replacing the cost function, c(.) used in SUE with the PV. The necessary properties of 
the cost functions (continuity and monotonicity) are attributes of the PV. 

However, this formulation is implausible since the stochasticity introduced in this way is not attributed to any 
identifiable behavioural cause; the underlying PV formulation captures subjective perception of value and probability, 
and introducing variation in these perceptions between individuals should obey the model structure. A more plausible 
explanatory model could therefore be proposed from the assumption that the reference point (or other parameters in the 
value function) have a distribution across the population of travellers, resulting in a continuous distribution of PVs for 
each route, as written above. However, due to the nonlinear transformation of utility into PV, the induced stochastic 
behaviour of the PV (its PDF) will not follow a standard distribution therefore making analysis difficult. A consistent 
model incorporating a continuous distribution of travellers is left for further research. 
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Appendix: Derivation of the Perceived Value for a Continuous Distribution of 
Outcomes 

Ordered Discrete Alternatives 
The perceived value of an alternative, taking into account the probabilities of all its possible outcomes is 

 v v v    with   i i
i

v g u   and  i i
i

v g u   

With (an ordered) discrete set of outcomes 

 

Outcomes mu  … 
1u  0u  1u  … nu  

Probability mp  … 
1p  0p  1p  … np  

Values  mg u  …  1g u   0 0g u    1g u  …  ng u  

Decision 
Weight 

 m mw p  
   … 

1 
   0 0    1

  … 
n
  

 

Tversky and Kahneman (1992) define 

    1i i n i nw p p w p p   
         for 0 i n   and  n nw p    

   1i m i m iw p p w p p   
          for 0m i    and  m mw p  

  . 

While these definitions are not necessarily consistent for i = 0 

       0 0 1 0 1 0m m n nw p p w p p w p p w p p      
                   

the contribution of the reference outcome is zero since  0 0g u  . The arguments of the decision weight functions used 
here can be written in terms of the cumulative distribution function of the outcomes 

   1 11 1i n m i U ip p p p F u           , 

 m i U ip p F u    . 

So that 

             1
1 1

1

1 1
1 1 U i U i

i U i U i i i
i i

w F u w F u
w F u w F u u u

u u


 
  

 


  
      


 

Similarly  

             1
1 1

1

U i U i
i U i U i i i

i i

w F u w F u
w F u w F u u u

u u


 
  

 



   


. 

Continuous Distribution of Alternatives 
In the case of a continuous probability density function, begin by sampling the PDF to give an approximate discrete 
distribution of outcomes. If we consider a symmetric (about the reference point) and regularly spaced sampling, the 
probability associated with outcome iu  reflects continuous outcomes in the interval  / 2, / 2i iu du u du  , which 

occur with probability approximated by  U if u du : 

Outcome 

Intervals 

… mu  … 
1u  0u  1u  … nu  … 

Probabilities …  U mf u du  …  1Uf u du   0Uf u du   1Uf u du  …  U nf u du  … 
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Values …  mg u  …  1g u   0 0g u    1g u  …  ng u  … 

Decision  

Weight 

… 
m 

  … 
1 

  0  1
  … 

n
  … 

Note that 0 0 0     . Writing 

       
11

1 11 1 1 1
iui

i n i U j U U i
i

p p p f u du f w dw F u


 
 

               , 

where the discrepancy between the sum and integral vanishes in the limit 0du  . We find that 

           1
1

1 1
1 1 U i U i

i U i U i

w F u w F u
w F u w F u du

du


 
  



  
          

Hence we define the function 

 
  1

: Udw F u
u du

du






  .        (13) 

Note that the negative sign is appropriate since it gives a positive decision weight (event probabilities are mapped to 
positive decision weights) 

 
    

 

   
 

 
1 1

1
0

U U

U U
U

s F u s F u

dw F u dw s dF u dw s
u du du f u du

du ds du ds


  


   

  
       

 
 

Similarly 

           1
1

U i U i
i U i U i

w F u w F u
w F u w F u du

du


 
  




       (14) 

and we define the function 

 
  

: Udw F u
u du

du



  .          (15) 

Again this gives decision weights that are positive. Hence the perceived value for the gains, with arbitrary reference 
point 0u , is 

    
0

1 U

u

dw F u
v g u du

du





  

 
 

   
0 1 U

U
u F u

dw s
f u g u du

ds





      (16) 

Similarly, for the losses 

    
0u

Udw F u
v g u du

du






  .        (17) 

The perceived value for the distribution of utilities,  Uf u , with reference point 0u  is then: 

    
    

0

0

1 u
U U

u

dw F u dw F u
v v v g u du g u du

du du

 
 




          (18) 

Notice that when both ,w w  and g are the identity mappings, integrating by parts gives 

     
0

0

01
u

U U T
u

v F u du F u du u f u du u
 

 

        

the expected value of the r.v. U (when the reference point is zero). 
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