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On the existence and uniqueness of first best
tolls in networks with multiple user classes

and elastic demand
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1Institute for Transport Studies, University of Leeds
2Department of Civil and Structural Engineering, Hong Kong Polytechnic University

Abstract.System optimal or first best pricing is examined in networks with multiple user classes
and elastic demand, where different user classes have a different average value of VOT (value
of time). Different flows (and first best tolls) are obtained depending on whether the system
optimal characterisation is in units of generalised time ormoney. The standard first best tolls
for time unit system optimum are unsatisfactory, due to the fact that link tolls are differentiated
across users. The standard first best tolls for the money unitsystem optimum may seem to be
practicable, but the objective function of the money unit system optimum is nonconvex, leading
to possible multiple optima (and nonunique first best tolls). Since these standard first best tolls
are unsatisfactory, we look to finding common money tolls which drive user equilibrium flows
to time unit system optimal flows. Such tolls are known to exist in the fixed demand case, but
we prove that such tolls do not exist in the elastic demand case. Although common money tolls
do not exist which drive the solution to theexacttime system optimal flows, tolls do exist which
can push the system close to time system optimal flows.
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1. I NTRODUCTION

As more road pricing schemes become reality in places such asLondon, there is increasing
interest in how to design efficient schemes. Part of the design process involves a comparison
of benefits against a benchmark based on system optimal or first best pricing, whereby all links
in the network may be tolled. In the single user class case, the system optimal or first best
tolls are easily calculated and the aggregate link flows are unique. However, there has been
some discussion in the literature about the formulation of the system optimum with multiple
user classes used to represent heterogeneity in value of time. In particular for system optimal
formulations, it is found that differing flows are obtained depending on whether the system is
described in time units or in money units. This result is wellknown in the fixed demand case
(Yang and Huang, 2004; Engelson and Lindberg, 2006).

It has long been recognised that one of the major deficiencieshighlighted in the original traf-
fic assignment formulation is the homogeneous description of the users in the system. This
problem was originally addressed by Dafermos (1971, 1972) and Netter (1972). There are two
major ways of introducing heterogeneity into an assignmentmodel. The first is used to represent
multiple vehicle types, where class distinctions are basedon the physical characteristics of the
vehicles in the system; the second represents multiple userclasses (MUC) where the distinction
between different groups is based on their perception of thevalue of time (VOT). Furthermore,
there are two approaches to dealing with variations in values of time. The first uses several
discrete classes of users, each one with a VOT belonging to some interval (Dafermos (1972);
Van Vliet et al.(1986); Yang and Huang (2004, 2005); Engelson and Lindberg (2006)); the sec-
ond approach is to assume a continuously distributed VOT across the users (Dial, 1999a,b;
Leurent, 1993; Mayet and Hansen, 2000).

In this paper, we consider the multiple user class distinction with an average VOT for each UC,
since most large assignment models used in the design of roadpricing schemes still use this
approach to represent segmentation of demand by income and/or trip purpose. We extend the
work by Yang and Huang (2004) and Yang and Huang (2005): we look at the properties of the
system optimal solution (and first best tolls) formulated with generalised time and generalised
money, but with elastic demand, and discuss the implications for use as a benchmark. We argue
that the time system optimal solution - despite having desirable properties - should not be used,
as the resulting common time tolls imply differentiated money tolls which could not be applied
in practice. We then show that the money system optimal objective function is non-convex,
and as such, there may be more than one solution, and finding the global optimum cannot be
guaranteed. Given this, we consider an alternative benchmark based on common money tolls
which result in the time system optimal solution. In the fixeddemand case, a method has been
provided to find these tolls (Yang and Huang, 2004). In the elastic demand case, not only does
the method provided for the fixed demand case not give the required tolls, but we prove that it is
impossibleto find common money tolls which result in time system optimum. This then leads
us to a further possible benchmark solution whereby we seek common money tolls which drive
the flows as close as possible to the time system optimal solution (although without actually
achieving it).

Section 2 sets out the MUC problem, considering standard first best tolling and the properties
of the user equilibrium (UE) and system optimal (SO) formulations in both generalised time



and money units. Section 3 discusses the alternative benchmarks, and shows that, in the elastic
demand case, common money tolls do not exist which drive UE flows to the time system optimal
solution. Section 4 draws conclusions and sets out directions for future research.

2. THE M ULTIPLE USER CLASS NETWORK EQUILIBRIUM PROBLEM

Let G = (N,A) be a graph, whereN is the set of nodes, andA the set of arcs. This graph can be
taken to represent a transportation network where the nodesare intersections and the arcs are
links between intersections. On this network, there will bea set of origin-destination (OD) pairs
W and a set of pathsP which connect OD pairs. The network is used by different userclasses
k∈ K. The cost,ck

a, of travelling on a particular link,a, for a particular user classk is given as
a sum of travel time (ta(va)) and a monetary cost or tollτa. The travel time is a function of the
total flow (va) on the linka, and is assumed to be strictly monotonically increasing. The demand
qw from an origin to a destination is a variable, and is a function of the cost between an origin
and destination with different demand functions for different user classes, andqk

w refers to the
demand for OD pairw and user classk. The demand function is assumed to be invertible, and
the inverse demand function assumed to be strictly monotonically decreasing. The following
constraints apply over the system:

∑
p

f k
pw = qk

w ∀k∈ K,w∈W (1a)

f k
pw ≥ 0 ∀k∈ K, p∈ P,w∈W (1b)

qk
w ≥ 0 ∀k∈ K,w∈W (1c)

with definitional constraintsvk
a = ∑w∑p f k

pwδw
ap and∑k vk

a = va. Here f k
pw is the path flow on

pathp between OD pairw for user class (UC)k, vk
a is the flow on linka of user classk andδw

ap
is an indicator equal to 1 if linka is on pathp between OD pairw, and zero otherwise. User
classes differ by their value of time (VOT),βk (with βk > 0∀k∈K). Equations (1a)-(1c), can be
written more succinctly in matrix form asΩ = {(f,q) : Bf = q, f ≥ 0,q ≥ 0}, with f the vector
of path flows,B the OD pair path incidence matrix andq the vector of demand. A pair(f,q)
will be said to be feasible if(f,q) ∈ Ω, and the definitional constraints apply.

The cost of travelling on linka is given by:

ck
a
time

= ta(va)+β−1
k τa (2)

Note that the costs from equation (2) are in time units but with tolls (τa on link a) in money
units. The tolls are common money tolls across all users on each link. Note that since the users
differ only by their VOT, a common toll in time units would result in the same link cost for all
user classes, rendering the MUC distinction redundant.

The same cost function (2) written in money units gives:

ck
a

money
= βkta(va)+ τa (3)

These generalised cost functions give the mechanism by which different user classes will make
different trade-offs between time and money: a class with a high VOT will not be as affected
by a monetary toll as a low VOT group. The MUC user equilibrium(UE) (with tolls) is also



known as bicriteria/multicriteria UE (Nagurney, 2002; Dial, 1999a,b) or cost versus time UE
(Leurent, 1993).

Flows satisfying the multiple user class user equilibrium (UE) with elastic demand (ED) can be
obtained by solving the following optimisation:

min
f,q

Z =∑
a

va

∫
0

ta(x)dx+∑
a

∑
k

β−1
k τk

avk
a−∑

w
∑
k

qk
w

∫
0

gk
w(ω)dω (4)

subject to(f,q) ∈ Ω

wheregk
w(q) is the inverse demand function for UCk on OD pairw, and is in time units (al-

though can be converted into money units by multiplying by the user class VOT). The first order
conditions of the minimisation program (4) give the MUC ED UEconditions (in time units),
where the analysis follows that in the fixed demand (FD) case (Yang and Huang, 2004):

f k
pw

(

∑
a

(

ta(va)+
τa

βk

)

δw
ap−µk

w

)

= 0 ∀k∈ K, p∈ P,w∈W (5a)

f k
pw ≥ 0 ∀k∈ K, p∈ P,w∈W (5b)

∑
a

(

ta(va)+
τa

βk

)

δw
ap−µk

w ≥ 0 ∀k∈ K, p∈ P,w∈W (5c)

qk
w(µk

w−gk
w(qk

w)) = 0 ∀k∈ K,w∈W (5d)

qk
w ≥ 0 ∀k∈ K,w∈W (5e)

µk
w−gk

w(qk
w) ≥ 0 ∀k∈ K,w∈W (5f)

Multiplying equations (5) byβk, gives the MUC ED UE conditions in money units:

f k
pw

(

∑
a

((βkta(va)+ τa))δw
ap−µk

w
′
)

= 0 ∀k∈ K, p∈ P,w∈W (6a)

f k
pw ≥ 0 ∀k∈ K, p∈ P,w∈W (6b)

∑
a

((βkta(va)+ τa))δw
ap−µk

w
′
≥ 0 ∀k∈ K, p∈ P,w∈W (6c)

qk
w(µk

w
′
−βkg

k
w(qk

w)) = 0 ∀k∈ K,w∈W (6d)

qk
w ≥ 0 ∀k∈ K,w∈W (6e)

µk
w
′
−βkg

k
w(qk

w) ≥ 0 ∀k∈ K,w∈W (6f)

Therefore (4) gives the MUC ED UE conditions in both time and money units.

We now consider the system optimal (SO) solutions in time andmoney units. In the case where
demand is elastic, the objective of the SO problem is to maximise economic benefit (EB) (or
minimise negative EB) where EB = User Benefit - Social Cost. Time system optimal (TSO)
flows are therefore solutions to

min
f,q

Ztime =∑
a

vata(va)−∑
w

∑
k

qk
w

∫
0

gk
w(ω)dω (7)

subject to(f,q) ∈ Ω



Similarly, money system optimal (MSO) flows are solutions to

min
f,q

Zmoney=∑
a

∑
k

βkv
k
ata(va)−∑

w
∑
k

qk
w

∫
0

βkg
k
w(ω)dω (8)

subject to(f,q) ∈ Ω
TSO (7) maximises the EB measured in time units, whereas MSO (8) maximises EB in money
units. Although this appears to be an innocuous distinction, these two formulations give rise to
different solution flows.

Practitioners may wish to use system optimal flows as benchmarks against which to compare
possible tolling schemes: in the single user class case, thedistinction between time and money
is irrelevant; both TSO and MSO formulations give the same solutions. In the MUC case, how-
ever, it is crucial to know whether analysis is to be done in time units or in money units, since
different flows and hence different benchmark figures will beobtained in each case. The next
section considers these issues and the implications for finding the associated system optimal
and first best tolls.

2.1. Standard First Best Tolling. In this paper a set of tolls is defined to be first best if the
UE flows under this tolling regime coincide with the SO flows. Afirst best toll can easily be
derived from the first order optimality conditions. Yang andHuang (2004) show this in the
fixed demand (FD) case, and their results hold under elastic demand. We will refer to this as
thestandard first best toll. If SO is in time units (equation (7)), the standard first besttoll τa for
user classk on link a is:

τk
a = βk∑

k

vk
a
dta(va)

dva
= βkva

dta(va)

dva
(9)

Note that this standard first best toll (for TSO) is differentfor each user class, sinceβk is
different for each class. The VOT is only an inferred quantity and is not known for any specific
user or class of users, and so such tolls could not be applied in practice. Furthermore, as will
be shown in section 3, nocommonmoney toll exists that can drive UE to TSO in the elastic
demand case.

Similar analysis in the MSO case (8) gives a common toll in money units:

τa = ∑
k

βkv
k
a
dta(va)

dva
(10)

This would suggest that the MSO with common money tolls wouldbe a useful and practical
benchmark. However, as we will show in the next section, the MSO solution and thus the tolls
from equation (10) are not necessarily unique.

2.2. Uniqueness of UE and SO flows with MUC.In general the UE MUC link flows are not
unique (Dafermos, 1972; Netter, 1972; Van Vlietet al., 1986). The derivation of the uniqueness
results has been relegated to the appendix. These results essentially follow the fixed demand
case (Engelson and Lindberg, 2006; Yang and Huang, 2005) anda summary of uniqueness re-
sults is given in table 1.

The analysis for the MSO optimisation shows that the objective function is nonconvex with
respect to individual user class link flows (this is shown in detail in the appendix), so there



TABLE 1. Summary of uniqueness results for MUC ED flows.

UE SO
Time A non-unique set of user class link flowsA non-unique set of user class link flows

specified by theunique aggregate specified by theunique aggregate
link flow andunique demand link flow andunique demand

as long ast
′′

a(va) ≥ 0
Unique aggregate link flowas long as

Money Same as UE time t
′′

a(va) ≥ 0 andunique demandbut
possiblemultiple optima for
individual user class link flows

may be multiple solutions for these individual user class link flows. However, for the MSO,
theaggregatelink flow and user class demand are both unique. Although these parameters are
unique at MSO, it is impossible to find them without first calculating the individual user class
link flow. Since these latter are not necessarily unique, theuniqueness of the aggregate link flow
and user class demand can not be used in any practical way.

It is noteworthy that the unique optimal aggregate TSO link flows are not equal to the unique
optimal aggregate MSO link flows. This follows from the first order KKT conditions. It may
seem trivial to state that two different optimisation problems do not have the same solution,
but it is important to highlight this point, particularly when in practice the choice of units may
appear to be arbitrary. In the single user class case, there will be no difference whether the aim
is to maximise economic benefit in time or in money units.

2.3. An Example. To take a simple example, consider a two link network connecting one OD
pair with two user classes. Assume the cost functions are given as:

t1 = 15+0.1v1 and t2 = 10+0.1v2

Assume there are two user classes: the first with VOT of 3.0 (inpence per minute (PPM)), and
the second with VOT of 1.5 PPM and inverse demand functions:

D1
−1 = 47.5

(

q1

200

)− 1
0.35

D2
−1 = 47.5

(

q2

500

)− 1
0.2

where the elasticity for user class 1 is -0.35, and that for user class 2 is -0.2. Possible UE flows
are: v1

1 = 12.5,v2
1 = 312.5,v1

2 = 187.5 andv2
2 = 187.5 (or, since the solution is not unique:

v1
1 = 162.5,v2

1 = 162.5,v1
2 = 37.5,v2

2 = 337.5). Note that the aggregate link flows, and the
UC specific demands are unique, givingv1 = 325 andv2 = 375 andq1 = 200,q2 = 500 (the
subscripts refer to links, and the superscripts to user classes). A contour plot of the objective
function for varying flows on link 1 is given in Figure 1(a). This plot shows the value of the
objective function over the possible range forv1

1 andv2
1. The plot shows that there is a ‘basin’

of solutions across the plot, where the objective function (given by negative economic benefit)
finds its minimum. It shows the line along which the UC specificlink flow solutions lie, and
thus that there are infinitely many solutions.

In the TSO case, there are multiple individual user class flowsolutions, whereas the demands
and aggregate link flows are unique,q1 = 170.33,q2 = 456.17,v1 = 300.75 andv2 = 325.75. A
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contour plot of the objective function (for flows on link 1) isgiven in Figure 1(b). This shows a
similar picture as in Figure 1(a).
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As discussed in the previous section, the MSO case is different. It is more difficult to provide a
visual representation in this case, as it is difficult to ensure that we have arrived at the optimal
solution (due to the nonconvexity of the objective function). Using different initial conditions
for the optimisation, two solutions may be found. Using two different starting points for the
algorithm, we can track these two optima under various fixed demands for each UC. Figure 2(a)
shows this done over a large area: the non-dashed contours track the global optimal solution,



and the dashed ones the local optimal solution. Although it looks on this scale that there is only
one optimum, we can see when we zoom in on the relevant area (figure 2(b)), that there are
in fact two optima: one global and one local. Figure 2(c) thenshows the contour plot of the
objective function at the fixed demand slice for the global optimal solution indicated in figure
2(b). The solution flows are given in table 2 for both the localand global minima. Note that the
first best tolls (given by equation (10)) and aggregate link flows differ considerably between the
local and global optimal solutions.

TABLE 2. MSO flows for global and local optima. The objective function value
at the solution for global (local) minimum is 1411.3 (1422.7).

Optimum v1
1 v2

1 v1
2 v2

2 v1 v2 q1 q2 τ1 τ2

Global 0 347.49 182.92 98.11 347.49 281.03 182.92 445.60 0.87 1.16
Local 181.72 74.09 0 371.67255.81 371.67 181.72 445.76 1.09 0.93

3. NON-EXISTENCE OF A COMMON MONEY TOLL FOR TSO

With the first best toll defined as any toll set that drives UE toSO, then there may be more than
one first best toll (Bergendorffet al., 1997; Hearn and Yildirim, 2002). First best tolls provide
useful benchmark figures for the best possible welfare gain available, even if they cannot be
implemented in practice.

We have seen that there are two system optimal characterisations based on whether the objective
function is measured in generalised time or money. We have argued that the TSO solution,
although theoretically appealing, does not transfer well to practice since the common time tolls
imply different money tolls per user class on each link. We have also shown that the MSO,
despite having the desired property of common money tolls per link, has a nonconvex objective
function implying that a global optimum cannot be guaranteed. In this section, we investigate
an alternative benchmark based on trying to drive flows to theTSO solution but with a common
money toll on each link. This builds on the work by Yang and Huang (2004) for the fixed
demand case.

3.1. Time SO with common money tolls. In the preceding section, we argued that the stan-
dard first best tolls do not provide a useful benchmark. An obvious step is to try to find common
money tolls that will drive UE to a TSO. This has been done in the fixed demand (FD) case for
both UE (Yang and Huang, 2004; Yin and Yang, 2004), and mixed equilibrium (Zhanget al.,
2008; Yang and Zhang, 2008), but the extension to the elasticdemand (ED) case is not straight-
forward. We now show that in a general network, it isimpossibleto derive common money
tolls that will push UE to TSO. Although it has been noted thatthere are problems with finding
common money tolls in the elastic demand case (Karakostas and Kolliopoulos, 2006), the proof
of the nonexistence of these tolls is new.

3.1.1. Common Money Tolls in a General Network.It is perhaps useful to return to the look at
the FD case before venturing into the ED case, to show the differences that arise when ED is



introduced. Looking at the toll set in the FD case, we get conditions so that (Yang and Huang,
2004):

f k
pw

∗
((∑

a
(ta(v

∗
a)+

τa

βk
))δw

ap−µk
w) = 0 (11a)

f k
pw

∗
≥ 0 (11b)

∑
a

(ta(v
∗
a)+

τa

βk
)δw

ap−µk
w ≥ 0 (11c)

where the asterisk indicates that the flows are at TSO. Note that in the FD case, the minimum
cost parameters,µk

w are unconstrained. In the ED case, however, there are extra conditions to be
added, so that along with constraints (11a-11c) the following also hold:

qk
w
∗
(µk

w−gk
w(qk

w
∗
)) = 0 (12a)

qk
w
∗
≥ 0 (12b)

(µk
w−gk

w(qk
w
∗
)) ≥ 0 (12c)

Conditions (12a-12c) mean that the minimum OD cost for a particular user class (µk
w) will be

equal to the inverse demand function for that user class evaluated at the TSO solution, as long
as that user class travels on the OD pair.

At the TSO solution(v∗,q∗), the aggregate link flow and the user class specific demands are
unique; this means that the minimum OD cost for a user class must also be unique. Not only
this, but if we want equations (11a) - (12c) to hold (so we wantto find tollsτ that push UE to
TSO flows), then the minimum OD costs for two different user classes on the same OD will be
equal if the user classes travel on the same path. This is shown in the following lemma.

Lemma 1. If equations (11a) - (12c) hold at TSO flow(v∗,q∗), and if some user classes travel
on OD pair w (so qkw > 0 for some k∈K), then the minimum OD cost, µw is equal for all of these
user classes if they travel on the same path in the network, andthis minimum cost is unique.

Proof. Since the flows are at UE, it follows that ifqk
w
∗
> 0 thengk

w(qk
w
∗
) = µk

w, by the comple-
mentarity condition. Sinceqk

w
∗

is unique at time SO flow, and the inverse demand function is
strictly monotonic, thengk

w(qk
w
∗
) = µk

w is unique also.

Now for the second part of the lemma, to show thatµk
w = µj

w for any two user classes travelling
on the same path. Assume for contradiction thatµk

w 6= µj
w when user classesk and j travel on

pathp. Notice that if this holds, then at SO flow:

gk
w = µk

w = ∑
a

(ta(v
∗)+v∗ata

′(v∗))δw
ap 6= ∑

a
(ta(v

∗)+v∗ata
′(v∗))δw

ap = µj
w = g j

w

But of course this gives rise to a contradiction, so thenµk
w = µj

w = µw for any two user classes
travelling on pathp on OD pairw. �

The fact that the minimum OD cost will be the same for all user classes at TSO flows means
that only one user class can travel on any path in the network if the tolled UE is to hold. This is
shown in the following lemma:



Lemma 2. If equations (11a) - (12c) hold at TSO flow(v∗,q∗) then there is only one user class
using any particular path in the network. All other user classes must have zero flow on that
path.

Proof. Assume for contradiction that there are two user classes (k and j) with non-zero flow on
a pathp between OD pairw. This means that (by the complementarity conditions):

∑
a

(ta(v
∗
a)+

τa

βk
)δw

ap = µk
w

∑
a

(ta(v
∗
a)+

τa

β j
)δw

ap = µj
w

These equations can be rewritten as:

∑
a

τa

βk
δw

ap = µk
w−∑

a
ta(v

∗
a)δ

w
ap

∑
a

τa

β j
δw

ap = µj
w−∑

a
ta(v

∗
a)δ

w
ap

As shown in lemma (1), if user classesk and j travel on the same path (at TSO flow), it holds
thatµk

w = µj
w = µw and this minimum OD cost is a unique constant. Sincev∗a is unique at SO

flow, and the travel time function is strictly monotonic, then ∑a ta(v∗a)δw
ap is unique also. Now

let K = µw−∑a ta(v∗a)δw
ap where K is a unique constant defined by the TSO flows. This implies

that
∑
a

τaδw
ap = βkK = β jK

Which will only be possible ifβk = β j , so the users belong to the same class. This contradiction
shows that only one user class can travel on a particular path, and the proof is complete. �

The question of course arises, as to which user class travelson the paths in the network. First
we will show that the minimum path cost on any OD pair will be equal for all user classes, and
this will enable us to show that only the highest VOT class cantravel on a path in the network.

Lemma 3. If equations (11a) - (12c) hold, then the minimum OD cost will be equal for all user
classes on a particular OD pair.

Proof. Assume for contradiction that there are two user classesk and j with differing OD costs
on OD pairw: µk

w 6= µj
w. From lemma 2, we know that these two user classes must travelon

different paths between the origin and destination. Let user classk travel on pathp, and user
class j travel on pathp′. At TSO flows, if user classk travels on pathp, it follows, by the
complementarity condition that:

∑
a

(ta(v
∗
a)+v∗ata

′(v∗a))δ
w
ap = µk

w (13)

Similarly, since user classj travels on pathp′:

∑
a

(ta(v
∗
a)+v∗ata

′(v∗a))δ
w
ap′ = µj

w (14)

From lemma 2, only one user class can travel on any path thus, by the complementarity condi-
tions, the cost of travel for user classk on pathp′ must be greater than the minimum OD cost



for user classk:
∑
a

(ta(v
∗
a)+v∗ata

′(v∗a))δ
w
ap′ ≥ µk

w (15)

Similarly, user classj does not travel on pathp, so:

∑
a

(ta(v
∗
a)+v∗ata

′(v∗a))δ
w
ap ≥ µj

w (16)

From equations (13) and (16) we see thatµk
w ≥ µj

w, and from equations (14) and (15) we know
thatµj

w ≥ µk
w. This means thatµk

w = µj
w, against our assumption. Thus the minimum OD cost

for all user classes on an OD is equal for all user classes. �

Lemma 4. It is only possible for the user class with the highest VOT to travel on any path in
the network if MUC UE conditions prevail at SO flows (so equations (11a) - (12c) hold).

Proof. For contradiction, assume that a user classk which does not have the highest VOT travels
on some pathp in the network. Soβ j > βk, and f k

pw > 0. From lemma (3), we know that

the minimum OD cost is the same for all user classes on an OD, soµk
w = µj

w = µw. By the
complementarity constraint at UE:

∑
a

(ta(va
∗)+

τa

βk
)δw

ap = µw

remembering of course, that at TSO flow,µw and ∑a ta(va
∗)δw

ap are unique. We know from
lemma (2) that if user classk is travelling on the path, then user classj can not travel on the path,
thus pathp for user classj will be unused, so it must hold that (again by the complementarity
condition):

∑
a

(ta(va
∗)+

τa

β j
)δw

ap ≥ µw (17)

Now, we know that

∑
a

τa

βk
δw

ap = µw−∑
a

ta(va)δw
ap

(because user classk is using the path). But because we assumed thatβk < β j then it holds that:

∑
a

τa

β j
δw

ap < ∑
a

τa

βk
δw

ap = µw−∑
a

ta(va
∗)δw

ap

But this implies that:

∑
a

(ta(va
∗)+

τa

β j
)δw

ap < µw

And this provides a contradiction to the assumption that a class which does not have the highest
VOT can travel on any path in the network. This concludes the proof that only the highest VOT
group can travel on any path in the network. �

This then leads us to our main proposition, that there are no common money tolls that will push
UE flows to TSO flows in a general network.

Proposition 1. Consider a general network with separable link cost functions given in gener-
alised time units by equation (2), and with different user classes identical except for their values
of time. The travel time functions are assumed to be strictlymonotonically increasing, and the
demand functions strictly monotonically decreasing. In this case the TSO optimum flows can
not also be at user equilibrium with common money tolls on the links.



Proof. From the description of proposition 1, we need equations (11a) - (12c) to hold. From
lemma (4), we see that only the highest VOT class can travel onany path in the network. This
means that, if there is flow on some path in the network, then this flow constitutes of only users
in the highest VOT class. But then the TSO solution must only include demand for the highest
VOT group. Except in the special case where the TSO solution only has demand for the highest
VOT user class, there will be more than one user class travelling on the network at TSO flow.
Thus no common money tolls exist on the network that can support MUC UE at TSO flows. �

Note that proposition (1) allows there to be common money tolls in the extreme case where
only the highest VOT user class is on the network at TSO.

3.2. Some small examples.Although it is impossible to have common money tolls that drive
ED MUC UE to TSO, it may be possible to get tolls which achieve flows which are close to
TSO. In order to find these tolls, it is required to solve a bi-level programming problem which
is formulated as:

min
v,q ∑

a
vata(va)−∑

k
∑
w
∫

qk
w

0 g(ω)dω (18)

subject to(v,q) ∈ Ω and(v,q) are at tolled MUC UE (with common money tolls).

It is instructive to look at some examples in order to have an idea of how close it might be
possible to get to the TSO while still being at tolled UE with common money tolls. For small
networks it is practical to find the optimal tolls by a grid search method, looping over all possible
tolls, or through direct optimisation.

3.2.1. 1 Link Example.Take a very simple one link example with two user classes. Thetravel
time and inverse demand functions on this link are given as:

t1 = 12+0.1v1 g1
1 = 15

(

q1

10

)−( 1
0.2)

; g2
1 = 15

(

q2

20

)−( 1
0.35)

With the generalised cost function for UCk given by ck
1 = t1 + τ1/βk, and the VOT given

asβ1 = 1,β2 = 2. The TSO flows of this system are given asv1
1 = 9.67,v2

1 = 18.87, and these
flows are unique. The welfare gain calculated is the difference between the welfare of the system
when it is at UE flows with no toll employed (τ = 0) and the welfare of the system when it is at
UE flow with a toll employed (τ > 0) The total possible welfare achieved is at TSO. This is a
standard way of calculating change in benefits for a new toll scheme (Rouwendal and Verhoef,
2006). Plotting this welfare gain against possible tolls gives figure (3). We see that the welfare
gain increases up to a maximum, and then decreases. This maximum occurs whenτ1 = 4.27,
with corresponding UE flowsv1

1 = 9.52,v2
1 = 19.14 and at this point, 91.00% of the maximum

possible welfare gain is achieved.

3.2.2. 5 Link Example.Optimal tolls are also calculated for the 5 link network in figure 4.
There are two OD pairs, and two user classes (with VOT of 1 and 2). The inverse demand
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FIGURE 4. Diagram for five link network as seen in Yang and Huang (2004).

functions are:

g1
1 = 33.33

(

q1
1

10

)− 1
0.2

g2
1 = 33.33

(

q2
1

10

)− 1
0.35

g1
2 = 46.67

(

q1
2

20

)− 1
0.2

g2
2 = 46.67

(

q2
2

10

)− 1
0.35

where superscripts refer to the UC, and subscripts to the OD pair. It is of course impossible to
provide a visual representation of the welfare gain in this case, since there are 5 tolls over which
we vary. However, we can still find the optimal tolls which areτ1 = 22.15,τ2 = 27.33,τ3 =
18.01,τ4 = 19.60 andτ5 = 47.25. These tolls correspond to UE flows shown in table 3, and
achieve 94.53% of the total possible welfare gain.

These examples show that, in these small cases, it is possible to achieve close to TSO flows and
welfare, but the method used here can not be used in large cases, as it cannot be readily applied
to large networks. Methods of bi-level programming should be used instead, although it should
be noted that these methods do not guarantee finding the global optimal solution.



TABLE 3. Tolled MUC UE flows with optimal tolls, and TSO flows for 5 link network.

v1 v2 v3 v4 v5 q1
1 q2

1 q1
2 q2

2
Tolled UE 8.89 8.88 17.42 8.54 18.648.82 8.95 18.08 9.13

TSO 8.44 9.11 17.76 8.64 18.219.09 8.46 18.30 8.56

4. CONCLUSIONS AND FURTHER WORK

First best tolls are used as benchmarks against which other tolling schemes can be compared.
First best tolls in the MUC case are tolls which, when added tothe cost function, cause users
to reach SO flows where SO flows maximise economic benefit either in time or money units.
This paper has shown that the flows (and therefore the first best tolls) are different depending
on whether the system is in time or money units. Although thisresult is known, it is important
to highlight this, as this differs from the single user classcase where the unit of analysis does
not affect the flows or tolls.

Furthermore, it is straightforward to derive standard firstbest tolls in the ED case, as the analysis
follows that done in the FD case. We suggest that the most appropriate benchmark should have
tolls in money units which are common across links (so that the same money toll is applied to all
user classes across a link). We dismiss the TSO solution since these tolls are differentiated by
user class which is unacceptable since the users only differby their VOT which is an invisible
economic concept rather than a physical characteristic.

However, having selected the money-based benchmark, we then showed that the MSO flows
cannot be guaranteed to be found, since the optimisation problem has a nonconvex objective
function. Although this is known for some cases (Engelson and Lindberg, 2006; Yang and Huang,
2005), the proof provided here that shows non-convexity (see Appendix), allows for a more gen-
eral class of network, including allowance for the elastic demand case. The standard first best
tolls under MSO depend on individual user class link flows, and thus are unsatisfactory, since
there may be multiple solutions. This has important implications since current guidance in the
UK (DfT, 2007) proposes a money-based benchmark, and furthermore suggests an iterative
approach may be used to obtain the so-called marginal cost tolls. As with any optimisation
problem with multiple solutions, such an iterative approach cannot guarantee that a global so-
lution will be obtained.

Given the problem with MSO, we then proposed using common money tolls to drive flows
toward the TSO solution. However, it has been proved that there do not exist any common
money tolls that will push UE to TSO. This differs from the FD case, and although it was
known that finding these tolls was problematic, their non-existence has been proved for the first
time in this paper.

Although it is impossible to find common money tolls that willpush UE to TSO flows, we did
demonstrate via simple examples that near optimal common money tolls can be found. The
comparisons in terms of welfare gain were obviously specificto those examples and an obvious
area for further research is to look at the bounds on how closeto TSO we can get with common
money tolls.
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APPENDIX: U NIQUENESS RESULTS

A minimisation program gives a unique solution if the objective function is strictly convex, and
the constraint set is convex. The UE MUC ED objective function (in time) is given in (4). The
Hessian with respect to user class link flows is positive semi-definite, thus all local minima are
global minima, but are not necessarily unique. Note that theHessian with respect toaggregate
link flows is positive definite, and thus the optimal aggregate link flows are unique. The UC
specific OD demands (qk

w) are also unique since the Hessian is positive definite with respect to
the demand parameters.

The Hessian of the TSO objective function (equation (7)) is positive semi-definite if the second
derivatives of the link cost functions are non-negative(t

′′

a(va) ≥ 0). In this case the uniqueness
results are the same as in MUC UE ED case above.

The MSO objective function is defined in (8). The Hessian reveals that this objective function
is not convex. The Hessian has elements:

∂2Z2

∂vk
a∂v j

b

=







∑k βkvk
at

′′

a(va)+2βkt
′

a(va), if b = a, j = k

∑k βkvk
at

′′

a(va)+βkt
′

a(va)+β jt
′

a(va), if b = a, j 6= k
0, otherwise

Consider a single link with two user classes. The determinantof the Hessian is given by:

|H|=

∣

∣

∣

∣

(

β1v1
1t

′′

1(v1)+β2v2
1t

′′

1(v1)+2β1t
′

1(v1) β1v1
1t

′′

1(v1)+β2v2
1t

′′

1(v1)+(β1 +β2)t
′

1(v1)

β1v1
1t

′′

1(v1)+β2v2
1t

′′

1(v1)+(β1 +β2)t
′

1(v1) β1v1
1t

′′

1(v1)+β2v2
1t

′′

1(v1)+2β2t
′

1(v1)

)∣

∣

∣

∣

(A-1)
We decompose this asH = A+M where

A =

(

β1v1
1t

′′

1(v1)+β2v2
1t

′′

1(v1) β1v1
1t

′′

1(v1)+β2v2
1t

′′

1(v1)

β1v1
1t

′′

1(v1)+β2v2
1t

′′

1(v1) β1v1
1t

′′

1(v1)+β2v2
1t

′′

1(v1)

)

(A-2)

M =

(

2β1t
′

1(v1) (β1 +β2)t
′

1(v1)

(β1 +β2)t
′

1(v1) 2β2t
′

1(v1)

)

(A-3)



For a matrixB =

(

a+α b+α
c+α d+α

)

, det(B) =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

as long asa+d−b−c = 0, which in

this case holds. So then

det(H) = det(M) = t
′

1(v1)
2
(4β1β2− (β1 +β2)

2) (A-4)

without loss of generality, setβ1 = 1, to give

det(H) = t
′

1(v1)
2
(−(1−β2)

2) < 0 (A-5)

for all β2 6= 1. The first principal minor is non-negative (as long ast
′′

1(v1) ≥ 0), and the second
is negative, no matter what values we use (unlessβ1 = β2 wherein the problem reduces to the
single user class case).

Extending this to a larger network withn links, andmuser classes, the vector of individual user
class link flows will be

v = (v1
1,v

2
1, . . . ,v

m
1 ,v1

2, . . . ,v
m
2 , . . . ,v1

n, . . . ,v
n
m)T

so the first two principal minors of the Hessian will always look like those in equation (A-1)
with first principal minor unrestricted in sign, while the second always negative. This means
that the objective function is not convex for any values of VOT, and any network, as long as
the restrictions on the cost function apply. This strengthens the result in Engelson and Lindberg
(2006) which says that the money unit objective function will be nonconvexin generalin the
fixed demand case, along with the analysis from Yang and Huang(2005) which points out the
possibility of this nonconvexity, again in the fixed demand case.

The UC demands follows the analysis for the TSO case; the MSO formulation leads to unique
user class specific OD demands.
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