promoting access to White Rose research papers

f A\. White Rose

ANSZFA  Research Online

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Transportmetrica.
White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/43674/

Paper:

Clark, A, Sumalee, A, Shepherd, S and Connors, R (2009) On the existence and
uniqueness of first best tolls in networks with multiple user classes and elastic
demand. Transportmetrica 5 (2). 141 - 157.

http://dx.doi.org/10.1080/18128600802673281

White Rose Research Online
eprints@whiterose.ac.uk


http://eprints.whiterose.ac.uk/43674/
http://dx.doi.org/10.1080/18128600802673281

On the existence and unigueness of first best
tolls in networks with multiple user classes
and elastic demand

Anna Clark:*, Agachai Sumalée Simon Shephefd& Richard Connor

Linstitute for Transport Studies, University of Leeds
2Department of Civil and Structural Engineering, Hong Kong Polytecbmiversity

Abstract.System optimal or first best pricing is examined in networkk wiultiple user classes
and elastic demand, where different user classes haveeasatiffaverage value of VOT (value
of time). Different flows (and first best tolls) are obtainezpdnding on whether the system
optimal characterisation is in units of generalised timenoney. The standard first best tolls
for time unit system optimum are unsatisfactory, due to #ue that link tolls are differentiated
across users. The standard first best tolls for the moneysystiém optimum may seem to be
practicable, but the objective function of the money ungteyn optimum is nonconvex, leading
to possible multiple optima (and nonunique first best tol&hce these standard first best tolls
are unsatisfactory, we look to finding common money tollschitdrive user equilibrium flows
to time unit system optimal flows. Such tolls are known to eixighe fixed demand case, but
we prove that such tolls do not exist in the elastic demand.c&$hough common money tolls
do not exist which drive the solution to tlegacttime system optimal flows, tolls do exist which
can push the system close to time system optimal flows.
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1. INTRODUCTION

As more road pricing schemes become reality in places sudlordon, there is increasing
interest in how to design efficient schemes. Part of the dgsigcess involves a comparison
of benefits against a benchmark based on system optimaltdvésspricing, whereby all links
in the network may be tolled. In the single user class casesyistem optimal or first best
tolls are easily calculated and the aggregate link flows argue. However, there has been
some discussion in the literature about the formulatiorhefgystem optimum with multiple
user classes used to represent heterogeneity in value @f tmparticular for system optimal
formulations, it is found that differing flows are obtaineebgnding on whether the system is
described in time units or in money units. This result is vikalbwn in the fixed demand case
(Yang and Huang, 2004; Engelson and Lindberg, 2006).

It has long been recognised that one of the major deficiemegdighted in the original traf-
fic assignment formulation is the homogeneous descriptidhe users in the system. This
problem was originally addressed by Dafermos (1971, 19id@)Netter (1972). There are two
major ways of introducing heterogeneity into an assignmedel. The firstis used to represent
multiple vehicle types, where class distinctions are basethe physical characteristics of the
vehicles in the system; the second represents multipleclessses (MUC) where the distinction
between different groups is based on their perception ofdhee of time (VOT). Furthermore,
there are two approaches to dealing with variations in wabfetime. The first uses several
discrete classes of users, each one with a VOT belongingne saterval (Dafermos (1972);
Van Vliet et al. (1986); Yang and Huang (2004, 2005); Engelson and Lind280&)); the sec-
ond approach is to assume a continuously distributed VO®sacthe users (Dial, 1999a,b;
Leurent, 1993; Mayet and Hansen, 2000).

In this paper, we consider the multiple user class distincivith an average VOT for each UC,
since most large assignment models used in the design ofprigidg schemes still use this
approach to represent segmentation of demand by incomerang/purpose. We extend the
work by Yang and Huang (2004) and Yang and Huang (2005): wie &dthe properties of the
system optimal solution (and first best tolls) formulatethvgeneralised time and generalised
money, but with elastic demand, and discuss the implicationuse as a benchmark. We argue
that the time system optimal solution - despite having déér properties - should not be used,
as the resulting common time tolls imply differentiated rptolls which could not be applied
in practice. We then show that the money system optimal Gilageéunction is non-convex,
and as such, there may be more than one solution, and findengldbal optimum cannot be
guaranteed. Given this, we consider an alternative benthb@sed on common money tolls
which result in the time system optimal solution. In the fixEinand case, a method has been
provided to find these tolls (Yang and Huang, 2004). In thetel@lemand case, not only does
the method provided for the fixed demand case not give thersshiolls, but we prove that it is
impossibleto find common money tolls which result in time system optimudrhis then leads
us to a further possible benchmark solution whereby we sekwn money tolls which drive
the flows as close as possible to the time system optimalisol(&lthough without actually
achieving it).

Section 2 sets out the MUC problem, considering standaridbi@st tolling and the properties
of the user equilibrium (UE) and system optimal (SO) forntiiolas in both generalised time



and money units. Section 3 discusses the alternative bearkspand shows that, in the elastic
demand case, common money tolls do not exist which drive Uisfto the time system optimal
solution. Section 4 draws conclusions and sets out dinesfior future research.

2. THE MULTIPLE USER CLASS NETWORK EQUILIBRIUM PROBLEM

LetG = (N,A) be a graph, wherH is the set of nodes, arflthe set of arcs. This graph can be
taken to represent a transportation network where the nagemtersections and the arcs are
links between intersections. On this network, there wilalset of origin-destination (OD) pairs
W and a set of pathB which connect OD pairs. The network is used by different utesses

k € K. The costg, of travelling on a particular linka, for a particular user cladsis given as

a sum of travel timet{(va)) and a monetary cost or taly. The travel time is a function of the
total flow (v5) on the linka, and is assumed to be strictly monotonically increasings démand
gw from an origin to a destination is a variable, and is a funcbbthe cost between an origin
and destination with different demand functions for diéfer user classes, anfj, refers to the
demand for OD paiw and user clask. The demand function is assumed to be invertible, and
the inverse demand function assumed to be strictly moncatipidecreasing. The following
constraints apply over the system:

ngwzq'v‘v vk e K,weW (1a)

P

fsw>0 vkeK,pe PweW (1b)

aqy >0 vke K,weW (1c)
with definitional constraints = 3,5, fiud4p and 3 V& = va. Here 5, is the path flow on

pathp between OD paiw for user class (UCK, X is the flow on linka of user clask anddy,

is an indicator equal to 1 if linka is on pathp between OD paiw, and zero otherwise. User
classes differ by their value of time (VOTRx (with Bk > 0Vk € K). Equations|(1a)-(1c), can be
written more succinctly in matrix form & = {(f,q) : Bf = q,f > 0,q > 0}, with f the vector
of path flows,B the OD pair path incidence matrix agdthe vector of demand. A paif,q)
will be said to be feasible iff,q) € Q, and the definitional constraints apply.

The cost of travelling on link is given by:
time —
Clgt = ta(Va) + By 1 (2)
Note that the costs from equation (2) are in time units bubhwgtls (15 on link a) in money
units. The tolls are common money tolls across all users oh ak. Note that since the users
differ only by their VOT, a common toll in time units would rdsin the same link cost for all
user classes, rendering the MUC distinction redundant.

The same cost function (2) written in money units gives:

C;money: Bkta(Va) + Ta 3
These generalised cost functions give the mechanism byhdifierent user classes will make
different trade-offs between time and money: a class witigh ROT will not be as affected
by a monetary toll as a low VOT group. The MUC user equilibri(ld) (with tolls) is also



known as bicriteria/multicriteria UE (Nagurney, 2002; Did999a,b) or cost versus time UE
(Leurent, 1993).

Flows satisfying the multiple user class user equilibril) with elastic demand (ED) can be
obtained by solving the following optimisation:

mnz=Y% \ft (x)dx+ Y B LTkvK — S ?fsvg\‘fv(w)dw (4)
ta 4o aZ‘(aa WZO
subject to(f,q) € Q

wheredX,(q) is the inverse demand function for UCon OD pairw, and is in time units (al-
though can be converted into money units by multiplying yaker class VOT). The first order
conditions of the minimisation program|(4) give the MUC ED dénditions (in time units),
where the analysis follows that in the fixed demand (FD) c#aad and Huang, 2004):

fr'§w<z (ta(va)+§> 6‘5"p—u'fv) =0 VkeK,pe PweW (5a)
a
fow=>0 VkeK,pe PweW (5b)
T
;(ta(va)JrB—i) 6‘%—%20 VkeK,pe PweW (5¢)
(K, — Glu(dly)) = O vkeK,weWw (5d)
Q>0 vke K,weWw (5e)
My, — giu(dl) = 0 vkeK,weW (50
Multiplying equations/(5) by, gives the MUC ED UE conditions in money units:
fiw (z«skta(va) +Ta))8%p— ukN) =0 vkeK,pePweW  (6a)
a
fiy>0 vkeK,pe PweW (6b)
;((Bkta(va)—{—Ta))é\gp—Ml,(\,/zO vkeK,pe PweW (6¢c)
K (k! K (kY
Gw(Hw — BrGw(thw)) =0 vkeK,weW (6d)
>0 vke K,weW (6e)
Wy — Bedli(dl) > 0 vkeK,weW  (6f)

Therefore((4) gives the MUC ED UE conditions in both time arahey units.

We now consider the system optimal (SO) solutions in timerandey units. In the case where
demand is elastic, the objective of the SO problem is to meseraconomic benefit (EB) (or
minimise negative EB) where EB = User Benefit - Social Cost. Tigstesn optimal (TSO)
flows are therefore solutions to

rg(iqn ztime — ;Vata(Vd -> Z [ gi(w)dw (7)

W 0

subject to(f,q) € Q

a%,



Similarly, money system optimal (MSO) flows are solutions to

mm zmoney— z Z Bkata (Va) — z Z f Bkgw (8)

subject to(f,q) € Q

TSO (7) maximises the EB measured in time units, whereas M$@éximises EB in money
units. Although this appears to be an innocuous distinctioese two formulations give rise to
different solution flows.

Practitioners may wish to use system optimal flows as bendtsragainst which to compare
possible tolling schemes: in the single user class caselistinction between time and money
Is irrelevant; both TSO and MSO formulations give the santetems. In the MUC case, how-
ever, it is crucial to know whether analysis is to be donenmetunits or in money units, since
different flows and hence different benchmark figures wilbbéained in each case. The next
section considers these issues and the implications foingritie associated system optimal
and first best tolls.

2.1. Standard First Best Tolling. In this paper a set of tolls is defined to be first best if the
UE flows under this tolling regime coincide with the SO flows.fist best toll can easily be
derived from the first order optimality conditions. Yang dtdlang (2004) show this in the
fixed demand (FD) case, and their results hold under elastitadd. We will refer to this as
thestandard first best talllf SO is in time units (equation (7)), the standard first kiektr, for
user clas&on link ais:

dta(Va)

Bgada = Ba—g, ©)

Note that this standard first best toll (for TSO) is differéot each user class, sin@ is
different for each class. The VOT is only an inferred quarditd is not known for any specific
user or class of users, and so such tolls could not be appliptactice. Furthermore, as will
be shown in section|3, ncommonmoney toll exists that can drive UE to TSO in the elastic
demand case.

Similar analysis in the MSO case (8) gives a common toll in eyamits:

dta (Va)
ta= 3 Bok—g, (10)

This would suggest that the MSO with common money tolls wdadda useful and practical
benchmark. However, as we will show in the next section, tt8&\solution and thus the tolls
from equation (10) are not necessarily unique.

2.2. Uniqueness of UE and SO flows with MUC.In general the UE MUC link flows are not
unique (Dafermos, 1972; Netter, 1972; Van Vigtal, 1986). The derivation of the uniqueness
results has been relegated to the appendix. These ressdtstiedly follow the fixed demand
case (Engelson and Lindberg, 2006; Yang and Huang, 2005) anchmary of uniqueness re-
sults is given in table 1.

The analysis for the MSO optimisation shows that the objediinction is nonconvex with
respect to individual user class link flows (this is shown @tadl in the appendix), so there



TABLE 1. Summary of uniqueness results for MUC ED flows.

UE SO

Time | A non-unique set of user class link flow#& non-unique set of user class link flows
specified by theinique aggregate specified by theinique aggregate
link flow andunique demand link flow andunique demand

as long as, (va) > 0

Unigue aggregate link flowas long as
Money | Same as UE time t.(Va) > 0 andunique demandbut
possiblemultiple optima for

individual user class link flows

may be multiple solutions for these individual user clas& flows. However, for the MSO,
theaggregatdink flow and user class demand are both unique. Althougletbasameters are
unigue at MSO, it is impossible to find them without first cddding the individual user class
link flow. Since these latter are not necessarily uniqueythgueness of the aggregate link flow
and user class demand can not be used in any practical way.

It is noteworthy that the unique optimal aggregate TSO liokv# are not equal to the unique
optimal aggregate MSO link flows. This follows from the firstler KKT conditions. It may
seem trivial to state that two different optimisation pexks do not have the same solution,
but it is important to highlight this point, particularly wh in practice the choice of units may
appear to be arbitrary. In the single user class case, théfgamo difference whether the aim
IS to maximise economic benefit in time or in money units.

2.3. An Example. To take a simple example, consider a two link network conngaine OD
pair with two user classes. Assume the cost functions aengig:

t1=15+0.1vy and t; =10+0.1v,

Assume there are two user classes: the first with VOT of 3.p€imce per minute (PPM)), and
the second with VOT of 1.5 PPM and inverse demand functions:

ot ars(3) ™ ot iars(E) "

where the elasticity for user class 1 is -0.35, and that fer akass 2 is -0.2. Possible UE flows
are: vi = 125 v2 = 3125 v} = 1875 andv3 = 1875 (or, since the solution is not unique:
vi = 16252 = 1625,v1 = 37.5,v3 = 337.5). Note that the aggregate link flows, and the
UC specific demands are unique, givimg= 325 andv> = 375 andg® = 200,¢2 = 500 (the
subscripts refer to links, and the superscripts to usesetgs A contour plot of the objective
function for varying flows on link 1 is given in Figure 1(a). iSlplot shows the value of the
objective function over the possible range \‘érandv%. The plot shows that there is a ‘basin’
of solutions across the plot, where the objective functgimgn by negative economic benefit)
finds its minimum. It shows the line along which the UC spedifi& flow solutions lie, and
thus that there are infinitely many solutions.

In the TSO case, there are multiple individual user class #olutions, whereas the demands
and aggregate link flows are uniqug,= 170.33,9° = 456.17,v; = 300.75 andv, = 32575. A
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contour plot of the objective function (for flows on link 1)gsven in Figure 1(b). This shows a
similar picture as in Figure 1(a).
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(a) Contour map of objective functigiv) Contour map of objective function
over UC demands. Dashed line for different UC demands showing
shows local min., and continuous two local optima.
line the global min.

(c) Contour Plot of ED Money case
overvi andv? for optimal FD slice
with g* = 18292 and? = 4456.
FIGURE 2. Contour plots for MSO.

As discussed in the previous section, the MSO case is diffeleis more difficult to provide a
visual representation in this case, as it is difficult to eaghat we have arrived at the optimal
solution (due to the nonconvexity of the objective funcjiodsing different initial conditions
for the optimisation, two solutions may be found. Using twibedlent starting points for the
algorithm, we can track these two optima under various fixadahds for each UC. Figure 2(a)
shows this done over a large area: the non-dashed contaaksttre global optimal solution,



and the dashed ones the local optimal solution. Althougioks on this scale that there is only
one optimum, we can see when we zoom in on the relevant areae(fjf{b)), that there are
in fact two optima: one global and one local. Figure 2(c) tehows the contour plot of the
objective function at the fixed demand slice for the globdlrogl solution indicated in figure
2(b). The solution flows are given in table 2 for both the laad global minima. Note that the
first best tolls (given by equation (10)) and aggregate lioW4 differ considerably between the
local and global optimal solutions.

TABLE 2. MSO flows for global and local optima. The objective fuantvalue
at the solution for global (local) minimum is 1411.3 (1422.7

Optimum| vj i v V5 Vi Vo qt o 1 T
Global 0 347.49 182.92 98.11347.49 281.03182.92 445.600.87 1.16
Local 181.72 74.09 0 371.6[7255.81 371.67181.72 445.761.09 0.93

3. NON-EXISTENCE OF A COMMON MONEY TOLL FOR TSO

With the first best toll defined as any toll set that drives US@, then there may be more than
one first best toll (Bergendorét al,, 1997; Hearn and Yildirim, 2002). First best tolls provide
useful benchmark figures for the best possible welfare gaailadble, even if they cannot be
implemented in practice.

We have seen that there are two system optimal charactensdtased on whether the objective
function is measured in generalised time or money. We hayeear that the TSO solution,
although theoretically appealing, does not transfer vegfiractice since the common time tolls
imply different money tolls per user class on each link. Weehalso shown that the MSO,
despite having the desired property of common money toldiple has a nonconvex objective
function implying that a global optimum cannot be guaradtda this section, we investigate
an alternative benchmark based on trying to drive flows ta®@ solution but with a common
money toll on each link. This builds on the work by Yang and kug2004) for the fixed
demand case.

3.1. Time SO with common money tolls. In the preceding section, we argued that the stan-
dard first best tolls do not provide a useful benchmark. Analwstep is to try to find common
money tolls that will drive UE to a TSO. This has been done enftked demand (FD) case for
both UE (Yang and Huang, 2004; Yin and Yang, 2004), and mixgdlierium (Zhanget al,,
2008; Yang and Zhang, 2008), but the extension to the eldstiand (ED) case is not straight-
forward. We now show that in a general network, iingpossibleto derive common money
tolls that will push UE to TSO. Although it has been noted thate are problems with finding
common money tolls in the elastic demand case (KarakosthKalliopoulos, 2006), the proof

of the nonexistence of these tolls is new.

3.1.1. Common Money Tolls in a General Netwotlkis perhaps useful to return to the look at
the FD case before venturing into the ED case, to show therdiites that arise when ED is



introduced. Looking at the toll set in the FD case, we get ¢as so that (Yang and Huang,
2004):

fhw (Y (talv) + )~ 1) = O (11a)
fiw =0 (11b)
3 (tava) + )85~y > 0 (11¢)

where the asterisk indicates that the flows are at TSO. Nataritthe FD case, the minimum
cost parametersk, are unconstrained. In the ED case, however, there are extditions to be
added, so that along with constraints (11a-11c) the foligvélso hold:

oy (M — gl (al ) =0 (12a)
¢ >0 (12b)
(W —dl(d)) >0 (12¢)

Conditions (12a-12c) mean that the minimum OD cost for a @aler user classuf,) will be
equal to the inverse demand function for that user classiaied at the TSO solution, as long
as that user class travels on the OD pair.

At the TSO solutionv*,q*), the aggregate link flow and the user class specific demaeds ar
unique; this means that the minimum OD cost for a user clast aiso be unique. Not only
this, but if we want equations (11a) - (12c) to hold (so we warfind tolls T that push UE to
TSO flows), then the minimum OD costs for two different usassks on the same OD will be
equal if the user classes travel on the same path. This isrsimotlie following lemma.

Lemma 1. If equations (11a) 4 (12c) hold at TSO fldw*,q*), and if some user classes travel
on OD pair w (so §, > 0for some ke K), then the minimum OD costyjis equal for all of these
user classes if they travel on the same path in the networktrasdninimum cost is unique.

Proof. Since the flows are at UE, it follows thatdf,” > 0 theng¥,(gk,") = L&, by the comple-
mentarity condition. Sincq'v‘v* is unique at time SO flow, and the inverse demand function is

strictly monotonic, them,(¢X,") = | is unique also.

Now for the second part of the lemma, to show qdﬁtzuj,\, for any two user classes travelling
on the same path. Assume for contradiction {gat4 iy, when user classdsand j travel on
pathp. Notice that if this holds, then at SO flow:
gy = M= > (ta(v) +Vata' (vV))Bp # 5 (ta(v') +Vita' (V) B = My = gl
a a

But of course this gives rise to a contradiction, so thn= u\JN = [ for any two user classes
travelling on pathp on OD pairw. O

The fact that the minimum OD cost will be the same for all udasses at TSO flows means
that only one user class can travel on any path in the netwihl tolled UE is to hold. This is
shown in the following lemma:



Lemma 2. If equations|(11a) 4 (12c) hold at TSO fldw/,g*) then there is only one user class
using any particular path in the network. All other user clessnust have zero flow on that
path.

Proof. Assume for contradiction that there are two user cladsasd ) with non-zero flow on
a pathp between OD paiw. This means that (by the complementarity conditions):

;mm+§%ﬁm
;M@+%%F%

These equations can be rewritten as:

zE%Fmﬁzu@%
a
zﬁﬁm W Y )3y

As shown in lemma (1), if user classkesind j travel on the same path (at TSO flow), it holds
that i, = Wy = pw and this minimum OD cost is a unique constant. Siviges unique at SO
flow, and the travel time function is strictly monotonic, thg,ta(v;)05, is unique also. Now
let K = pw — Y ata(V3) 03, Where Kiis a unique constant defined by the TSO flows. This espli
that

ZTaa\é\vp = BkK = BjK

a

Which will only be possible i8¢ = Bj, so the users belong to the same class. This contradiction
shows that only one user class can travel on a particular aaththe proof is complete. [J

The question of course arises, as to which user class tramdlse paths in the network. First
we will show that the minimum path cost on any OD pair will beiakfor all user classes, and
this will enable us to show that only the highest VOT classtcavel on a path in the network.

Lemma 3. If equations|(11a) 4 (12c) hold, then the minimum OD cost vélelgual for all user
classes on a particular OD pair.

Proof. Assume for contradiction that there are two user clakse®l j with differing OD costs
on OD pairw: L& # . From lemma 2, we know that these two user classes must wavel
different paths between the origin and destination. Let akessk travel on pathp, and user
classj travel on pathp’. At TSO flows, if user clask travels on pathp, it follows, by the
complementarity condition that:

3 (ta(Va) + Vata' (V2)) 8% = M (13)

a
Similarly, since user clasgtravels on pathp':

S (ta(V3) + Vata' (v2) 3y = W, (14)

a
From lemma 2, only one user class can travel on any path tipukglcomplementarity condi-
tions, the cost of travel for user clak®n pathp’ must be greater than the minimum OD cost



for user clask:

> (ta(Va) + Vata'(Va)) 85y > W (15)
a

Similarly, user clasg does not travel on patp, so:
S (ta(Va) + Vata' (v2)) 8% > Wy (16)

a

From equations (13) and (16) we see tat> MJ,\, and from equations (14) and (15) we know
thatpy > K. This means that, = W), against our assumption. Thus the minimum OD cost
for all user classes on an OD is equal for all user classes. O

Lemma 4. It is only possible for the user class with the highest VOT &ovét on any path in
the network if MUC UE conditions prevail at SO flows (so equati@ria) - (12c) hold).

Proof. For contradiction, assume that a user claafich does not have the highest VOT travels
on some patlp in the network. Sd3; > Bk, and fr'§w > 0. From lemma|(3), we know that

the minimum OD cost is the same for all user classes on an OD\',‘Vsep\‘}v = . By the
complementarity constraint at UE:
T
Y (ta(Va*) + =) 8% = b
a Bk
remembering of course, that at TSO flawy and zata(va*)é‘gvp are unique. We know from
lemma(2) that if user clagdss travelling on the path, then user clgssan not travel on the path,
thus pathp for user clasg will be unused, so it must hold that (again by the complemégta
condition): .
> (ta(va’) + 5)8p > H (17)
j

a
Now, we know that

T
Z _aa\évp = Mw— z ta(Va)é\évp
= Bx a
(because user clakss using the path). But because we assumed3pat3; then it holds that:
T T %
Z B_a_lé\évp < Z B_aa\évp =Hw— Zta(Va )6\évp
a Pl a Pk a
But this implies that:
o T
Z(ta(Va )+ B_e_l)é\gp < Mw
a J
And this provides a contradiction to the assumption thahascivhich does not have the highest

VOT can travel on any path in the network. This concludes tohefthat only the highest VOT
group can travel on any path in the network. O

This then leads us to our main proposition, that there areonomon money tolls that will push
UE flows to TSO flows in a general network.

Proposition 1. Consider a general network with separable link cost functiamergin gener-
alised time units by equation|/(2), and with different usessks identical except for their values
of time. The travel time functions are assumed to be stnmatipotonically increasing, and the
demand functions strictly monotonically decreasing. lis tase the TSO optimum flows can
not also be at user equilibrium with common money tolls onitiies]



Proof. From the description of proposition 1, we need equationg)(1112c) to hold. From
lemma (4), we see that only the highest VOT class can travahgrpath in the network. This
means that, if there is flow on some path in the network, thisrflttw constitutes of only users
in the highest VOT class. But then the TSO solution must ordjuishe demand for the highest
VOT group. Except in the special case where the TSO solutibnltas demand for the highest
VOT user class, there will be more than one user class tnagedh the network at TSO flow.
Thus no common money tolls exist on the network that can supMildC UE at TSO flows. [

Note that proposition (1) allows there to be common monelg ial the extreme case where
only the highest VOT user class is on the network at TSO.

3.2. Some small examplesAlthough it is impossible to have common money tolls thavelri
ED MUC UE to TSO, it may be possible to get tolls which achiewsvfl which are close to
TSO. In order to find these tolls, it is required to solve advel programming problem which
is formulated as:

min ;Vata(va) - Z ;/’ Sg(0)de (18)

subject to(v,g) € Q and(v,q) are at tolled MUC UE (with common money tolls).

It is instructive to look at some examples in order to haved®aiof how close it might be
possible to get to the TSO while still being at tolled UE witthnamon money tolls. For small
networks it is practical to find the optimal tolls by a grid sgamethod, looping over all possible
tolls, or through direct optimisation.

3.2.1. 1 Link Example.Take a very simple one link example with two user classes.tiEvel

time and inverse demand functions on this link are given as:
1

o ~(52) P ~(o3s)
ty =12+01v; gi=15 (E) L= 15(?))

With the generalised cost function for UCgiven by c‘{ =t1 + 11/Pk, and the VOT given
asP1 = 1,B2 = 2. The TSO flows of this system are givenvgs= 9.67, v% = 18.87, and these
flows are unique. The welfare gain calculated is the diffeedretween the welfare of the system
when it is at UE flows with no toll employed & 0) and the welfare of the system when it is at
UE flow with a toll employed{ > 0) The total possible welfare achieved is at TSO. This is a
standard way of calculating change in benefits for a new tbiéme (Rouwendal and Verhoef,
2006). Plotting this welfare gain against possible tollegifigure((3). We see that the welfare
gain increases up to a maximum, and then decreases. Thisnnmaxoccurs whem; = 4.27,
with corresponding UE flows} = 9.52,v2 = 19.14 and at this point, 900% of the maximum
possible welfare gain is achieved.

3.2.2. 5 Link Example.Optimal tolls are also calculated for the 5 link network inufig| 4.
There are two OD pairs, and two user classes (with VOT of 1 gndTRe inverse demand



Optimal Toll = 4.27
91.00% of TSO

Welfare Gain

0 2 4 6 8 10 12 14
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FIGURE 3. Plot showing the welfare gain compared to no toll UE fofedént
tolls on a 1 link network with ED.

FIGURE 4. Diagram for five link network as seen in Yang and Huang (2004

functions are:

1 CI% o2 2 Cﬁ e
; g\ % > B\ o
9 4667<2—O) g5 4667(1—O>

where superscripts refer to the UC, and subscripts to the @QDIps of course impossible to
provide a visual representation of the welfare gain in thseg since there are 5 tolls over which
we vary. However, we can still find the optimal tolls which afe= 22.15,1, = 27.33 13 =
18.01,14 = 19.60 andts = 47.25. These tolls correspond to UE flows shown in table 3, and
achieve 943% of the total possible welfare gain.

These examples show that, in these small cases, it is pessiathieve close to TSO flows and
welfare, but the method used here can not be used in largs, @ssik cannot be readily applied
to large networks. Methods of bi-level programming showddibed instead, although it should
be noted that these methods do not guarantee finding thel gipti@al solution.



TABLE 3. Tolled MUC UE flows with optimal tolls, and TSO flows for 5 kmetwork.

V1 Vo V3 V4 V5 Q% q% q% q%
Tolled UE| 8.89 8.88 17.42 854 18.648.82 8.95 18.08 9.1
TSO 8.44 9.11 17.76 8.64 18.219.09 8.46 18.30 8.5

(9]

Q)

4. CONCLUSIONS AND FURTHER WORK

First best tolls are used as benchmarks against which aihieigtschemes can be compared.
First best tolls in the MUC case are tolls which, when addetthéocost function, cause users
to reach SO flows where SO flows maximise economic benefitraith@ne or money units.
This paper has shown that the flows (and therefore the firsttbés are different depending
on whether the system is in time or money units. Although ithssilt is known, it is important
to highlight this, as this differs from the single user claase where the unit of analysis does
not affect the flows or tolls.

Furthermore, itis straightforward to derive standard best tolls in the ED case, as the analysis
follows that done in the FD case. We suggest that the mosbpgpte benchmark should have
tolls in money units which are common across links (so thastime money toll is applied to all
user classes across a link). We dismiss the TSO solutioe $ivese tolls are differentiated by
user class which is unacceptable since the users only dyféneir VOT which is an invisible
economic concept rather than a physical characteristic.

However, having selected the money-based benchmark, westimved that the MSO flows
cannot be guaranteed to be found, since the optimisatidslggrohas a nonconvex objective
function. Although this is known for some cases (Engelsahlandberg, 2006; Yang and Huang,
2005), the proof provided here that shows non-convexity fAggoendix), allows for a more gen-
eral class of network, including allowance for the elasgeodnd case. The standard first best
tolls under MSO depend on individual user class link flows] #rus are unsatisfactory, since
there may be multiple solutions. This has important impites since current guidance in the
UK (DfT, 2007) proposes a money-based benchmark, and funibre suggests an iterative
approach may be used to obtain the so-called marginal clist ths with any optimisation
problem with multiple solutions, such an iterative appfoaannot guarantee that a global so-
lution will be obtained.

Given the problem with MSO, we then proposed using commoneawyaalls to drive flows
toward the TSO solution. However, it has been proved thaketde not exist any common
money tolls that will push UE to TSO. This differs from the FBAse, and although it was
known that finding these tolls was problematic, their noistexice has been proved for the first
time in this paper.

Although it is impossible to find common money tolls that waillsh UE to TSO flows, we did
demonstrate via simple examples that near optimal commameyntolls can be found. The
comparisons in terms of welfare gain were obviously spetofibose examples and an obvious
area for further research is to look at the bounds on how ¢w3$&O we can get with common
money tolls.
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APPENDIX: UNIQUENESS RESULTS

A minimisation program gives a unique solution if the obizfunction is strictly convex, and
the constraint set is convex. The UE MUC ED objective funciio time) is given in/(4). The
Hessian with respect to user class link flows is positive saefinite, thus all local minima are
global minima, but are not necessarily unique. Note thattbéssian with respect taggregate
link flows is positive definite, and thus the optimal aggredatk flows are unique. The UC
specific OD demandsjf,) are also unique since the Hessian is positive definite eispect to
the demand parameters.

The Hessian of the TSO objective function (equation (7))pisifive semi-definite if the second
derivatives of the link cost functions are non-nega(i.\géva) > 0). In this case the uniqueness
results are the same as in MUC UE ED case above.

The MSO objective function is defined in/ (8). The Hessian aévéhat this objective function
is not convex. The Hessian has elements:

522, SkBvita (Va) + 2Bida(Va), ifb=a,j=k
a0V 0, otherwise

Consider a single link with two user classes. The determiogifite Hessian is given by:

H|= ‘ ( Bavity (va) +Bavity (va) +2Baty (va)  Bavity (va) +Bavity (va) + (By+B2)ty (va) > '
Bavity (vi) +Bavity (Vi) + (Br+B2)ty (Vi) Bavity (Vi) + Bavity (Vi) +2Baty (v1)

(A-1)
We decompose this &6 = A+ M where
A ( BlV%t; (V1) + Bzvfti (V1) BlV%t; (V1) + Bzvft; (V1) ) (A-2)
[31V%t1 (V1) + BZV%tl (V1) BlV%tl (V1) + BZV%tl (V1)
_( Bit(v)  (Bi+B2ty(va) ) )
M= (st o (A9)



.~ ([ at+a b+a _|a b B L
For a matrixB = ( c+o d+o ) detB) = R long ass+d —b—c=0, whichin
this case holds. So then
/ 2
detH) = detM) = t; (v1)" (4B1B2 — (B1+B2)?) (A-4)
without loss of generality, s¢; = 1, to give
;o2
det(H) =t (v) (~(1-B2)*) <O (A-5)

for all B2 # 1. The first principal minor is non-negative (as Iong%(yl) > 0), and the second
is negative, no matter what values we use (unfass 32 wherein the problem reduces to the
single user class case).

Extending this to a larger network withlinks, andm user classes, the vector of individual user
class link flows will be

1 1 1 T
v=(Viva vV )

so the first two principal minors of the Hessian will alwayskdike those in equation (A-1)
with first principal minor unrestricted in sign, while thecead always negative. This means
that the objective function is not convex for any values offly@nd any network, as long as
the restrictions on the cost function apply. This strengsitbe result in Engelson and Lindberg
(2006) which says that the money unit objective functiorl @ nonconvexn generalin the
fixed demand case, along with the analysis from Yang and H(20@p) which points out the
possibility of this nonconvexity, again in the fixed demaage.

The UC demands follows the analysis for the TSO case; the MB@uiation leads to unique
user class specific OD demands.



	1. Introduction
	2. The Multiple User Class Network Equilibrium Problem
	2.1. Standard First Best Tolling
	2.2. Uniqueness of UE and SO flows with MUC
	2.3. An Example

	3. Non-existence of a common money toll for TSO
	3.1. Time SO with common money tolls
	3.2. Some small examples

	4. Conclusions and Further Work
	5. Acknowledgments
	References
	APPENDIX: Uniqueness Results

