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Abstract: This paper proposes a flexible transport network capacity evaluation and design 
problem (FNDP) under demand variability. The future stochastic demand is assumed to follow a 
normal distribution. Travellers’ path choice behaviour is assumed to follow the Probit Stochastic 
User Equilibrium (SUE). The network reserve capacity is used to evaluate the performance of 
the network. Since the future demand is stochastic, the reserve capacity is measured by possible 
increases in both mean and standard deviation (SD) of the base demand distribution. The 
proposed model therefore represents the flexibility of the network in its robustness to OD 
demand variation (i.e. high SD). The proposed model can also determine an optimal network 
design to maximize the reserve capacity of the network in terms of both the mean and SD of the 
increased demand distribution. The paper applies the implicit programming approach to solve the 
FNDP. Sensitivity analysis is adopted to provide all necessary derivatives. The model and 
algorithm are tested with a hypothetical network to illustrate the merits of the proposed model. 
 
Keywords: Network capacity, stochastic network design, network design problem, bilevel 
optimization 
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INTRODUCTION 
 
Recently, governments and local authorities in many countries have shifted their focus to 
designing and developing a transportation network that can cope with future uncertainties in 
demand and supply (1). On the demand side the network should have sufficient network reserve 
capacity to deal with unexpected increases or changes in the demand pattern. The concept of 
network reserve capacity was originally developed for analyzing an isolated signal-controlled 
intersection (2); Wong and Yang (3) extended this concept to evaluate the optimal signal setting 
for a road network. The network reserve capacity is defined as the maximum multiplier 1θ >  
applied to a given Origin Destination (OD) demand matrix such that the equilibrium link flows 
satisfy the link capacity constraints, i.e. ( )max . . a as t v c a Aθ θ ≤ ∀ ∈q  where θ  is a scalar and 

the base OD demands are q; ( )av θq  is the equilibrium flow on link a that has capacity ca. This 

problem can be considered as a deterministic network design problem (NDP). 
Chen et al. (4) originally proposed capacity reliability as a new network performance 

index based on the concept of reserve capacity. The capacity reliability index was developed to 
evaluate the probability that the network capacity can accommodate a certain traffic demand at a 
required level of service under random link degradation (5). Sumalee and Kurauchi (6) utilized 
this concept to evaluate the network capacity after a major disaster. Lo and Tung (7) defined the 
capacity reliability as the maximum flow that the network can carry subject to link capacity and 
travel time reliabilities with random link capacities. 

Most of the network capacity models mainly focussed on the reserve capacity with the 
deterministic demand. In reality, the travel demand forecast is uncertain from economic factor, 
demand concentration, energy situation, etc. and can be defined by a statistical distribution. 
Under stochastic demand, the definition of the network capacity can be analyzed from two 
perspectives. On one hand, the network should be able to handle a certain level of growth in the 
average OD demands, i.e. increase in the mean. On the other hand, this network may not 
necessarily be able to cope with increases in the variability of the OD demand, i.e. increase in the 
standard deviation (SD) of the demand distribution. Thus, it is important to evaluate the ability of 
the network to absorb increases in the variability or uncertainty of future OD demands. Patil and 
Ukkusuri (8) proposed a flexible network design problem (FNDP) to consider uncertain demand 
by generating a number of possible future scenarios.   

In this paper, FNDP is defined for strategic policy design, allowing planners to 
accommodate different levels of variation in future stochastic OD demands based on a desired 
level of link capacity reliability (risk preference measure). The stochastic demand is assumed to 
follow a normal distribution. Both the mean and SD of the base OD demand can be scaled up by 
some multipliers. The increase in the mean demand can be interpreted as the original network 
reserve capacity. The increase in the SD of demand, on the other hand, can be viewed as the 
flexibility of the network to cope with an increase in the level of demand variability.  

A mathematical program is proposed to find the maximum multipliers for both the mean 
and SD of the existing OD demands, subject to the link capacity chance-constraints (due to the 
stochastic link flows). The chance-constraint could be also referred to as the Value-at-Risk in 
Chen et al. (9). The objective function of this problem is defined as a weighted sum of the mean 
and SD of the increased demands. This objective function is referred to as the mean-standard 
deviation network capacity (M-SD). The model is then incorporated into FNDP by optimizing 
the link capacity investments in the future so as to maximize the M-SD network capacity. An 
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analytical approach to solve the proposed model, following the implicit programming approach 
(6, 10, 11), is developed. The method of sensitivity analysis (SA) (12, 13) is employed to 
calculate both the gradient of the objective function, and Jacobian of the constraints with respect 
to changes in the design parameters, namely the mean and SD demand multipliers, and link 
capacity investments. This paper is organized into four further sections. The next section defines 
notation and assumptions of the stochastic model. The model formulation and solution algorithm 
is then presented in the third section. The fourth section presents an application of the proposed 
model to a test network and discusses the results. The conclusion and discussion for future 
research are given in the last section. 
 
 
STOCHASTIC NETWORK FRAMEWORK 
 
Traffic Flow Distribution 
 
The network is represented by a graph with a set of directed links A and nodes N. Let R as the set 
of OD pairs with R  total number of OD pairs. Due to demand uncertainty, the day-to-day travel 

demand for the OD pair from node r to s ( ; ,r s r s N≠ ∈ ), denoted by ,rsQ rs R∈ , is assumed to 

follow the Normal distribution (14-16). This can be expressed as ( )( )2
, rs

rs rs qQ N q σ∼ , where rsq  

and rs
qσ  are mean and SD, respectively. Define p having size K , where K is the set of possible 

paths, as the vector of path choice proportions in which each entry rs
kp  ( rsk K∈ ) serves an OD 

pair rs. The random path flow can then be expressed as rs rs
k k rsF p Q= . Since the OD demand is a 

normally distributed random variable, the path flow, which is the product of deterministic path 
choice proportion and stochastic OD demand, then follows a normal distribution. The mean and 

variance of random path flow, denoted by rs
kf  and ( )2,k rs

fσ , respectively, can be defined as: 

 

=

; ,

rs rs
k k

rs
k rs

rs
rs k rs

f E F

E p Q

q p k K rs R

  

 =  

= ∀ ∈ ∀ ∈

 (1) 

 

( ) ( )
( )

( )

2,

2
; .

k rs rs
f k

rs
k rs

rs rs
q k rs

Var F

Var p Q

p k K rs R

σ

σ

=

=

= ∀ ∈ ∀ ∈

 (2) 

The covariance between two arbitrary path flows (say rs
kF  and rs

jF ) joining the same OD 

pair rs is formulated, following (16), as: 

 ( ) ( )2
, ; , ; ,rs rs rs rs rs

k j q k j rsCov F F p p k j k j K rs Rσ= ≠ ∀ ∈ ∀ ∈  (3) 

while the covariance of the path flows from paths connecting different OD pairs is zero. 
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Let f  be a K  column vector of the mean path flows from Eq. (1) and f
Σ , of size 

K K× , is the variance-covariance matrix of path flows from Eqs. (2) and (3). The link flow aV , 

which is a sum of stochastic path flows (i.e. ( )( )2,,rs rs k rs
k k fF N f σ∼ ), follows MVN, i.e. 

( )MVN , vV v Σ∼  where v  is the vector of mean link flows with size A , and v
Σ  is the A A×  

variance-covariance matrix of link flows. v  and v
Σ  are defined as: 

 

1

,
R

rs
rs rs

rs

q
=

= ⋅

= ⋅ ⋅∑

v ∆ f

∆ p
 (4) 

 
( )

1

,

v f T

R
Tf

rs rs rs
rs=

= ⋅ ⋅

= ⋅ ⋅∑

Σ ∆ Σ ∆

∆ Σ ∆
 (5) 

where ( )..., ,...rs=∆ ∆  is the link-path incident matrix of the network, and rs∆  is the link-path 

incident matrix associated with OD pair rs . 
 
Link and Path Travel Times 
 
The link travel time function is assumed to follow a standard Bureau of Public Roads (BPR) 
function, which is defined as: 

 ( )
( )

0 ,na
a a a an

a a

b
T V t V a A

c s
= + ∀ ∈

+
 (6) 

where 0
at  is the free-flow travel time on link a; ba and n are parameters for the link travel time 

function; ca is the existing link capacity; and sa is the additional link capacity to be determined.  
Since link flows are stochastic, link and path travel times are random variables. Let ta be 

a A  vector of mean link travel times in which each element, denoted by ta, is: 

 

( )

( )
0 .

a a a

na
a an

a a

t E T V

b
t E V a A

c s

=   

 = + ∀ ∈ +

 (7) 

In Eq. (7), n
aE V    is the nth raw moment of the normally distributed link flow. The 

method of moment generating function (MGF) applied in (11) and (17) is adopted to calculate 
n

aE V   . Note that previous studies (11) and (17) only applied the MGF method to derive the 

expected link travel time from Poisson and Binomial randomly distributed link flows, 
respectively. 

From (18), the MGF of the normal distribution can be defined as 

( ) ( )( )21exp 2a

a
V a tM vα α σ α= + . Since this paper aims to apply the BPR function with 4n = , 

the 4th raw moment of aV  can be derived as: 
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( )
( )

( ) ( )
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V M
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d
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α

α
α
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=

  ≡ 

=

= + +

 (8) 

Thus, mean link travel time can be explicitly expressed in the closed form as a function 
of the mean and variance of the random link flow: 

 
( )

( ) ( ){ }2 40 4 2
4 6 3 .a aa

a a a a v v

a a

b
t t v v a A

c s
σ σ= + + + ∀ ∈

+
 (9) 

Finally, the K  mean path travel time vector kt , with entry rs
kt , can be calculated from: 

 . .T
k a=t ∆ t  (10) 

 
Path Choice Model 
 
This paper assumes travellers only consider personal travel time in the dis-utility of their trips. 
Since travel times are stochastic, the perceived expected travel time is considered to be the 
deterministic dis-utility term of each path, following (11). The perceived expected travel cost for 

path k is defined as ;rs rs rs
k k k rsC E C k K rs Rε = + ∀ ∈ ∀ ∈ 
ɶ  where rs

kE C    is the mean travel cost 

(i.e. mean route travel time rs
kt ); and rs

kε  is the travel time perception error on path k of OD pair 

rs. ε  is assumed to be MVN with zero mean and variance-covariance matrix ε
Σ , which can be 

determined from link travel time perception errors and the link path incident matrix, see e.g. 
(13). 

Following the Probit SUE model (19), the fixed-point (FP) condition for the assignment 
problem can be defined as: 

 ( ) ( )( )( )
( ) ( )( )( )

Pr

, , ,
Pr ,

, , ,

rs rs rs
k k j

rs rs a rs rs rs
k a a k rs v k q k

rs rs a rs rs rs
j a a j rs v j q j rs

p C C

t t v p q p

t t v p q p j K

σ σ ε

σ σ ε

 = ≤ 

 + ≤
 =  + ∀ ∈  

ɶ ɶ

 (11) 

where [ ]Pr .  denotes probability.  

In Eq. (11), rs rs
k kt E C ≡    can be calculated from at  which can be further expressed as a 

function of the mean and SD of random link flow. These two parameters of link flow can be 
determined from the mean and SD of stochastic OD demands and path choice proportion. Eq. 
(11) is thus the FP condition. To solve this FP problem, the method of successive average (MSA) 
(19) is adopted, with the simple step size of 1/i where i is the current iteration of the solution. 
The Probit path choice probabilities (Pr) are analytically calculated following (13). The MSA 
algorithm can be summarized as follows: 
Step 0 Initialization: Set i = 1; define sets of possible paths for each OD pair (denoted as Krs). 

Find a feasible path choice proportion vector gi and set pi  = gi. 
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Step 1 Travel time calculation: Assign pi to the stochastic network according to Eqs. (1)-(5) and 
then calculate new mean link and path travel time vectors following Eqs. (9) and (10). 

Step 2 Descent direction finding: For each OD pair, evaluate the path choice proportions 
, , , , ,Pr .rs i rs i rs i rs i rs i

k k k j j rsg t t j Kε ε = + ≤ + ∀ ∈   

Step 3 Convergence test: If i i i δ− ≤g p p  or maxi i≥  then terminate the algorithm where δ  is 

the convergence criteria and maxi  is the predefined maximum number of iterations. 

Step 4 Move: ( )1 .i i i i iα+ = + −p p g p  where 1i iα = ; set : 1i i= +  and return to step  1. 

 
Link Capacity Chance-Constraint 
 
Let 1

rsθ  and 2
rsθ  represent the multipliers of the r to s OD demand distribution’s mean and SD; 

1θ  and 2θ  denote the vectors comprising 1
rsθ  and 2

rsθ  rs R∀ ∈  and s  is the vector of as  a A∀ ∈ . 

After multiplying the existing OD demand distribution with 1
rsθ  and 2

rsθ , the mean and SD of the 

new OD demand distribution are 1
rs

rs rsq qθ=ɶ  and 2
rs rs rs
q qσ θ σ=ɶ , respectively. The equilibrated 

stochastic link flow *
aV  can be reformulated as a function of the vectors of mean demand ( )1q θɶ , 

SD of demand ( )2qσ θɶ , and Probit SUE route choice proportion ( )*
1 2, ,p θ θ s  satisfying FP 

condition in Eq. (11).  
Adopting the chance-constraint concept in (7, 9), the chance-constraint of the equilibrated 

stochastic link flow, based on the desired level of link capacity reliability, is shown in Figure 1. 
 

P
ro

ba
bi

lit
y 

d
en

si
ty

Deterministic 
link capacity, 

Shade area = 
Desired level 
of link capacity 
reliability,

*
av

( )1 *. a
a vα σ−Φ

a ac s+
aα

*
aV

Stochastic
link flow,

 
 

FIGURE 1 Chance-constraint of stochastic link flow. 
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In Figure 1, the link capacity reliability can be evaluated from the frequency that the 
equilibrated stochastic link flow is less than or equal to total deterministic link capacity. This 
capacity reliability must not be less than the desired level aα  (shaded area). The relation can be 

written as: 

 ( ) ( ) ( )( )* *
1 2 1 2Pr , , , , .a q a a aV c s a Aα ≤ + ≥ ∀ ∈ q θ σ θ p θ θ sɶ ɶ  (12) 

The level aα  allows planners to easily specify a risk preference. Increasing aα  increases the risk 
aversion level (meaning more reliability is desired).  Eq. (12) is explicitly reformulated as the 
chance-constrained equation: 

 ( ) ( )( ) ( ) ( ) ( )( )* * 1 * *
1 1 2 2 1 2, , , , , , ,a

a a v q a av c s a Aα σ−+ Φ ≤ + ∀ ∈q θ p θ θ s σ θ p θ θ sɶ ɶ  (13) 

where ( )1 .−Φ  is the inverse cumulative distribution function (CDF) of the standard normal 

distribution. Note that the left hand side of Eq. (13) could be referred to as VaR of the 
equilibrated stochastic link flow with ( )1 *a

a vα σ−Φ  above the mean value. 

 
MODEL FORMULATION AND SOLUTION ALGORITHM 
 
Flexible Transport Network Capacity Evaluation and Design Problem (FNDP) 
 
This paper proposes a model to solve a flexible transport network capacity evaluation and design 
problem (FNDP). The model can also be employed to evaluate the M-SD reserve capacity. The 
model assesses the reserve capacity of the existing network from the maximum multipliers, 1θ  

and 2θ , of the base OD demand distributions’ mean and SD respectively, subject to the link 
capacity chance-constraints (due to the stochastic link flows). To consider the preferred trade-off 
level of mean and SD reserve capacity, the objective function can be defined as a weighted sum 
of mean and SD of the increased demands with a predefined weight factor τ . This model is then 
used within the FNDP, to optimize the link capacity investments s , so as to maximize the M-SD 
reserve capacity (under different variations of OD demand distributions) subject to link capacity 
chance-constraints under the Probit SUE condition, budgetary constraint, and design parameter 
constraints (on 1θ , 2θ ,s ). The FNDP can be formulated as a mathematical program with 
equilibrium constraint (MPEC) as: 

 
( )

( ) ( ){ }
1 2

1
2 22

1 2
, ,

max . . 1 . .T T
qZ τ τ≡ + −

θ θ s
θ q θ σ  (14) 

 subject to:  
 ( ) ( ) ( )* 1 *

1 2 1 2, , . , , ,v
−+ Φ ≤ +v θ θ s α σ θ θ s c s  (15) 

 . . ,Tγ β≤l s  (16) 

 
11CV ,θδ≤θ  (17) 

 
22CV ,θδ≤θ  (18) 

 0 1,τ≤ ≤  (19) 

 max
1 11 ,rsθ θ≤ ≤  max

2 21 ,rsθ θ≤ ≤  (20) 

 max0 ,as s≤ ≤  (21) 



A. Sumalee, P. Luathep, W.H.K. Lam, R.D. Connors  8 

where γ  is the cost per unit link length per unit capacity investment; l  is the vector of link 

lengths; β  is the total budget; 
2

1 1 1 1
1 1 1

1 1 1
CV

1

R R R
rs rs rs

rs rs rsR R R
θ θ θ

= = =

 = − −  
∑ ∑ ∑θ  and 

2

2 2 2 2
1 1 1

1 1 1
CV

1

R R R
rs rs rs

rs rs rsR R R
θ θ θ

= = =

 = − −  
∑ ∑ ∑θ ; 

1θδ and 
2θδ  are the allowable coefficients of 

variation (CV) of 1θ  and 2θ , respectively; max
1θ  and max

2θ  are the mean and SD demand 

multiplier upper bounds; and maxs  are the link capacity investment upper bounds. 

The objective of the optimisation (14) is to maximize the M-SD reserve capacity using 
the predefined weight factor. Constraint (15) is the link capacity chance-constraint due to the 
stochastic link flow under the Probit SUE condition. This chance-constraint is written as an 
implicit function of design parameters (1θ , 2θ , and s ). The budgetary constraint is written in Eq. 

(16). The OD demand multiplier constraints (17) and (18) allow the model to deal with the 
FNDP by controlling the variation of the increasing demands on different OD pairs. For 
example, if both mean and SD of demands from all OD pairs equally increase, 

1θδ and 
2θδ are set 

to be 0. In addition, 
1 2
, 0θ θδ δ >  can be adjusted to control different variations of the increasing 

OD demands; higher 
1 2
,θ θδ δ  allows higher variation between the increasing OD demands. The 

former is referred to as a whole area based control scheme when the latter is referred to as an OD 
based control scheme. Finally, the bounds for possible τ ; 1

rsθ  and 2
rsθ ; and as  are expressed in 

constraints (19)-(21), respectively. 
 
Solution Algorithm 
 
An analytical approach to solve the FNDP follows the implicit programming approach (6, 9, 10). 
The fmincon solver in MATLAB, which implements Sequential Quadratic Programming (SQP) 
algorithm, is used to find an optimal solution. This method requires the gradient of the objective 
function (14) and the Jacobians of link capacity chance-constraint (15) and OD demand 
multiplier constraints (17)-(18) with respect to the design parameters (1θ , 2θ , and s ). The chain 

rule and SA of the equilibrium link flow under the Probit SUE (12, 13) are used to attain all 
derivative expressions. The details of gradient of the objective function and Jacobians of two 
constraints are shown in APPENDIX A, B and C, respectively. 
 
 
ILLUSTRATIVE TESTS 
 
The test network with 18 directed links, six OD pairs, and 34 paths from (10) is adopted as 
shown in FIGURE 2. The mean and CV of OD demands (CV in brackets) are listed in Table 1. 

The BPR link cost function, i.e. ( )
( )

0 na
a a a an

a a

b
T V t V

c s
= +

+
, is used with  4,an a A= ∀ ∈ . The 

other parameters of the BPR function and the length for each link are given in Table 2.  
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FIGURE 2 Hypothetical network. 

 
TABLE 1 Mean and CV of OD Normal Distribution Demand 

Origin 
Destination 

1 5 7 
1 - 600 (0.25) 400 (0.20) 
5 500 (0.50) - 600 (0.60) 
7 375 (0.28) 800 (0.20) - 

 
TABLE 2 Link Cost Parameters and Lengths 

Link 0
at  ab  ac  al  

1 0.0125 0.0025 1800 1.0 
2 0.0125 0.0025 1800 1.0 
3 0.0917 0.6261 1100 5.5 
4 0.0917 0.6261 1100 5.5 
5 0.0917 0.6261 1100 5.5 
6 0.0250 0.1708 1100 1.5 
7 0.0750 0.1087 1100 6.0 
8 0.0917 0.6261 1100 5.5 
9 0.0250 0.1708 1100 1.5 
10 0.0750 0.1087 1100 6.0 
11 0.0250 0.1708 1100 1.5 
12 0.0250 0.1708 1100 1.5 
13 0.0200 0.1366 1100 1.2 
14 0.0750 0.1087 1100 6.0 
15 0.0750 0.1087 1100 6.0 
16 0.0200 0.1366 1100 1.2 
17 0.0125 0.0025 1800 1.0 
18 0.0125 0.0025 1800 1.0 
 
To illustrate the applications of the FNDP model and solution algorithm, two sets of tests 

are conducted. Without any improvement, the first set is to evaluate the M-SD reserve capacity 
of the existing network. The second set is to enhance the M-SD reserve capacity of the network 
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by optimizing the link capacity investment while satisfying the link capacity chance-constraints 
under the Probit SUE condition and budgetary constraint. The details are explained as follows. 
 
Network Capacity Evaluation 
 
To evaluate the existing M-SD network reserve capacity, Eqs. (16) and (21) in the FNDP are 
excluded. The first test is to determine the maximum *

1θ  and *
2θ  without violating the link 

capacity chance-constraints (15). The desired level of link capacity reliability is set as 
0.9a a Aα = ∀ ∈ . To solve Probit SUE, the independent link travel time perception error is 

assumed as ( )( )200,0.3a aN t a Aε ∀ ∈∼ , and the convergence criteria and maximum iteration 

number are set to be 61eδ −=  and max 500i = . This test is conducted on the basis of the whole 

area based control scheme (
1θδ ,

2θδ = 0) when max
1 10θ =  and max

2 10θ = . The results of maximum 

demand multipliers and M-SD network capacities under different values of τ  with the increasing 
step of 0.2 are shown in Figure 3. 

Theta 1

T
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FIGURE 3 Maximum demand multipliers and M-SD network capacities. 
 

From Figure 3, the pairs of *1θ  and *
2θ  can be classified into three categories. When τ  = 

0.6-1.0, the first case focuses on the higher expected network capacity, *1θ  = 1.323 ( *
2θ  = 1.000), 

as optimal M-SD capacities are M = 4,333 (SD = 508). This is referred to as the mean capacity 
approach. On the other hand, the solutions change to *

1θ  = 1.000 and *
2θ  = 1.693 for τ  = 0.0 and 

0.2. This allows the existing network to cope with the higher variation or uncertainty of the 
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demand, SD = 859 (M = 3,275), which is referred to as the SD capacity approach. Lastly, the 
trade-off between M-SD multipliers can be observed at τ  = 0.4. The solutions are *1θ  = 1.320 

and *
2θ  = 1.016 as M = 4,322 and SD = 516. The changes of demand distributions from these 

three evaluation approaches can be clearly explained as depicted in Figure 4. 
Figure 4a) shows the mean capacity approach which shifts only the mean of the initial 

demand distribution to be 4,333 (same SD). In contrast, Figure 4b) presents the SD capacity 
approach which changes the shape of the base demand distribution to be flattened with the new 
SD = 859 (same mean). A joint result, trade-off approach, is illustrated in Figure 4c) when both 
mean and SD of the increased demand distribution are shifted and flattened to M = 4,322 and SD 
= 516. From the results, these three evaluation approaches can be adopted to the network design 
problem to enhance the reserve capacity of the network. 

The second test assesses the vulnerability of each link to increasing OD demands in terms 
of the link capacity reliability. The results based on three evaluation approaches are shown in 
Figure 5. Figure 5a) shows that Links 17 and 18 are the first two critical links that violate the 
minimum desirable value (aα = 0.90) at *

1θ  = 1.323 ( 2θ  = 1.0). As 1θ  increases (mean demand 

increases) without any improvement on each link, the link capacity reliability gradually 
decreases. The next four critical links are found to be Links 2, 13, 1, and 16, respectively. Figure 
5b) indicates that Link 18 is the first critical link based on the SD capacity approach (1θ  = 1.0, *

2θ  

= 1.693) following by Links 17, 16, 1 in that order. The order of critical links from the trade-off 
approach is similar to that of SD approach. Figure 5c) only shows Link 18 which is the first 
critical link at ( *

1θ  = 1.32, *
2θ  = 1.016). Here the series of critical links from different evaluation 

approaches are identified. The next section will investigate link capacity investments to enhance 
the reserve capacity of the network. 
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FIGURE 4 The changes of demand distributions based on three evaluation approaches. 
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Network Capacity Enhancement 
 
This test is to optimize the link capacity investments so as to maximize the M-SD reserve 
capacity subject to Eq. (16). The demands on different OD pairs can increase independently, 
with some constraints in (17) and (18). This is referred to as the OD based control scheme. For 
the test, we assume 1γ =  and max 1,800s = . The M-SD network capacities are measured based on 

the OD control scheme with two scenarios, i.e. (i) 
1 2
, 0.1θ θδ δ ≤  and (ii) 

1 2
, 0.3θ θδ δ ≤ . Note that 

1 2
, 0.1θ θδ δ ≤  and 

1 2
, 0.3θ θδ δ ≤  represent low and high variations of the increasing demands on 

different OD pairs. The results at different budgets are shown in Figure 6. 
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FIGURE 6 M-SD network capacities based on whole area and OD control schemes at 

different budgets. 
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From Figure 6a the mean network capacities based on mean design approach and two OD 
control schemes increase in a similar way as the budget increases. In contrast, the results from 
the trade-off design approach decrease from 4,322 (budget = 0) to 3,275 (budget = 5,000). 
However, the mean capacities under the SD design approach are constant. On the other hand, 
Figure 6b shows that the SD network capacities under the SD and trade-off design approaches 
increase as the budget increases. The results from the OD control scheme (

1 2
, 0.3θ θδ δ ≤ ) slightly 

increases when that from 
1 2
, 0.1θ θδ δ ≤  initially increase to 622 (budget = 2,500) and then 

decreases as the budget increases. The SD capacities under the mean design approach are 
constant.  

Figure 7a, 7b, and 7c show the link capacity investments from three network design 
approaches under the whole area based control scheme. The amount of additional link capacity 
investment occurs in the same order as mentioned in the vulnerable link evaluation test (see 
Figure 5). However, under the mean approach, the first two investment links change to Links 12 
and 11 at high budgets (5,000 and 7,500) instead of Links 17 and 18 at budget = 2,500. From 
Figure 7d and 7e, as OD demands are allowed to increase independently, the patterns of link 
capacity investment are different. However, Link 18 which is related to the highest volume of 
traffic is the most significant link to be improved. Figure 7 implies that different approaches 
provide different link capacity investment forms.  

Note that the computational times for network design (at budget = 2,500) under the whole 
area based control scheme are 22, 57, and 25 seconds for mean-, SD-, trade-off design approach, 
respectively; whereas the computational times under the OD based control scheme are around 3 
minutes for 

1 2
, 0.3θ θδ δ ≤ , and 18 minutes for 

1 2
, 0.1θ θδ δ ≤ . The tests were carried out with a 

computer with Pentium Dual Core 1.86 GHz. and 2 GB RAM. In these tests, computational time 
increases as higher variations are considered in the increasing OD demands. This result requires 
exploration with large networks in future research. 
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FIGURE 7 Link capacity investments based on the whole area and OD control schemes at 

different levels of budget. 
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CONCLUSIONS 
 
This paper extended the original network reserve capacity to the case with stochastic demand. 
The FNDP is proposed to analyze the ability of the network to accommodate different levels of 
variation in future stochastic OD demands. The stochastic OD demand is assumed to follow a 
normal distribution with travellers’ route choice behaviour following Probit SUE. By introducing 
multipliers to both mean and SD of the base OD demand distributions, the network capacity is 
assessed by the maximum weighted sum of the mean and SD of increased demands, satisfying 
the link capacity chance-constraints. The proposed model therefore represents the flexibility of 
the network in its robustness to OD demand variation. The proposed model can also be employed 
to determine an optimal network design to enhance the M-SD reserve capacity of the network. 
The optimal design also satisfied the probability link capacity and budget constraints. The paper 
adopted the implicit programming approach to solve this optimization problem, applying the SA 
method to obtain all essential derivatives. 

The proposed model and algorithm were tested with a hypothetical network. Firstly, the 
reserve capacity of the existing network was evaluated, based on the whole area control scheme. 
The results were classified into three main categories: the mean capacity, SD capacity, and trade-
off approaches. Secondly, the vulnerabilities of links were assessed, based on these three 
evaluation approaches. Next, the optimal network designs were determined at different budgets 
based on the three approaches under the whole area control strategy, and on two conditions under 
the OD based control scheme. The results suggest different investment strategies under mean and 
robustness perspective. The planners can focus on certain critical links (intensive investment 
program) to enhance the network in coping with typical growth of demand. On the other hand, 
the spread-investment strategy (investing on a larger set of links) is more appropriate for 
strengthening the network robustness against future uncertain demand pattern.  

In current practice, the approach taken to evaluate the robustness of existing network or 
level of service (LOS) (at link and network level) is to assess the LOS of links at different 
assumptions of demand (e.g. low, medium, and high demand level). The proposed FNDP can 
provide an alternative modelling framework to evaluate the probability of different LOS of the 
network. Such probabilistic outcome of link-flow and travel time distributions can be compared 
against some required statistical criteria of LOS over a period of time (e.g. % of link flow to 
exceed the 70th percentile of link capacity over a year). Future research should introduce the time 
dimension into the design process and apply the proposed model to a practical large scale case 
study to evaluate the computational efficiency.  
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APPENDIX A. Gradient of Objective Function 
 
The gradient of objective function Eq. (14) with respect to 1θ , 2θ , and s  can be easily derived as 

. .τ I q ; ( ) ( ){ } ( )
1

2 22 2
2 21 . . . .T T

q qτ
−

− θ σ θ σ ; and 0 , respectively. 

 
 
APPENDIX B. Jacobian of Link Capacity Chance-Constraints 
 
Let  ( )1 2, ,Ψ θ θ s  be the vector of the capacity chance-constraints, Eq. (15), for all links. It can be 

rewritten as: ( ) ( ) ( )* 1 *
1 2 1 2, , . , , ,v

−+ Φ ≤ +v θ θ s α σ θ θ s c s  

 ( ) ( ) ( ) ( )* 1 *
1 2 1 2 1 2, , , , . , , .v

−= + ΦΨ θ θ s v θ θ s α σ θ θ s - c - s  (B.1) 

Then, the Jacobian of ( )1 2Ψ θ ,θ ,s  evaluated at 1θ , 2θ , and s  can be formulated as: 

 ( ) ( ) ( ) ( )
1 1 1

* 1 *
1 2 1 2 1 2, , . , , ,v

−∇ = ∇ + Φ ∇
θ θ θ
Ψ θ ,θ , s v θ θ s α σ θ θ s   (B.2) 

 ( ) ( ) ( ) ( )
2 2 2

* 1 *
1 2 1 2 1 2, , . , , ,v

−∇ = ∇ + Φ ∇
θ θ θ
Ψ θ ,θ , s v θ θ s α σ θ θ s   (B.3) 

 ( ) ( ) ( ) ( ) ( )
* 1 *

1 2 1 2 1 2, , . , , .v A A

−
×∇ = ∇ + Φ ∇ −s s sΨ θ ,θ ,s v θ θ s α σ θ θ s I  (B.4) 

1

*∇
θ

v , 
2

*∇
θ

v , and *∇sv  in Eqs. (B.2)-(B.4) can be determined by using the mean link 

flow in Eq. (4) and the chain rule as follows: 
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Similarly, 
1

*
v∇

θ
σ , 

2

*
v∇

θ
σ , and *

v∇sσ  can be derived from the link flow variance from 

variance-covariance matrix in Eq. (5) and the chain rule as follows: 

 ( )
1 1

*
*

1
. . . ,

2
f T

v
v

diag  ∇ = ∇ θ θ
σ ∆ Σ ∆

σ
 (B.8) 

 ( )
2

*
*

1
. . . ,

2
f T

v
v

diag  ∇ = ∇ 2θ θ
σ ∆ Σ ∆

σ
 (B.9) 
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 ( )*
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1
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v
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diag  ∇ = ∇ s sσ ∆ Σ ∆
σ

 (B.10) 

where the diagonal entries of 
1

f∇
θ
Σ , 

2

f∇
θ
Σ  and f

s∇ Σ  can be calculated from: 
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and off-diagonal elements of 
1

f∇
θ
Σ , 

2

f∇
θ
Σ  and f

s∇ Σ  can be derived from: 

 

( ) ( ) ( )

( )

2
* *

2* * * *

1 1 1 1

* *
2 * *

1 1

,

,

rs rs rs rs rs
k j q jrs rs rs rs rs k

k j q k jrs rs rs rs

rs rs
jrs rs rs k

q k jrs rs

Cov F F p p
p p p p

p p
p p

σ
σ

θ θ θ θ

σ
θ θ

∂ ∂  ∂ ∂= + +  ∂ ∂ ∂ ∂ 

 ∂ ∂= +  ∂ ∂ 

ɶ

ɶ

ɶ

  (B.14) 

 

( ) ( ) ( )

( ) ( )

2
* *

2* * * *

2 2 2 2

* *
2 2* * * *

2
2 2

,

2 ,

rs rs rs rs rs
k j q jrs rs rs rs rs k

k j q k jrs rs rs rs

rs rs
jrs rs rs rs rs rs rs k

q k j q k jrs rs

Cov F F p p
p p p p

p p
p p p p

σ
σ

θ θ θ θ

θ σ σ
θ θ

∂ ∂  ∂ ∂= + +  ∂ ∂ ∂ ∂ 

 ∂ ∂= + +  ∂ ∂ 

ɶ

ɶ

ɶ

  (B.15) 

 

( ) ( ) ( )

( )

2
* *

2* * * *

* *
2 * *

,

.

rs rs rs rs rs
k j q jrs rs rs rs rs k

k j q k j
a a a a

rs rs
jrs rs rs k

q k j
a a

Cov F F p p
p p p p

s s s s

p p
p p

s s

σ
σ

σ

∂ ∂  ∂ ∂= + +  ∂ ∂ ∂ ∂ 

 ∂ ∂= +  ∂ ∂ 

ɶ

ɶ

ɶ

  (B.16) 

 To complete Eqs. (B.5)-(B.7) and (B.11)-(B.16), the sensitivity analysis of Probit SUE 
path choice probability (

1

*∇
θ

p , 
2

*∇
θ

p , and *∇sp ) are required. 
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Sensitivity Analysis of Probit SUE Path Choice Probability 
 
Let ω  be the vector of three design parameters (1θ , 2θ , and s ). The gap function of the path 

choice proportion in Eq. (11) is defined as ( ) ( )( )Θ ≡p,ω p - Pr p ω ,ω . Let ( )*p ω  be the 

solution of Probit SUE, for any given value of ω, ( )( )* 0Θ =p ω ,ω . Assuming that all related 

functions are differentiable, the linear approximation of ( )Θ p,ω  around ( )( )*
0 0Θ p ω ,ω  is 

defined as ( ) ( )( ) ( ) ( )( ) ( ) ( )* *
0 0 0 0

* *
0 0 0 0, ,

Θ ≈ Θ + ∇ Θ − + ∇ Θ −p ωp ω ω p ω ω
p,ω p ω ,ω p p ω ω ω , where 

( )*
0 0,

∇ Θp p ω ω
 and ( )*

0 0,
∇ Θ
ω p ω ω

 are the Jacobian matrices (J1 and J2) of Θ  with respect to p  and 

ω , evaluated at the solution ( )*
0p ω  and 0ω . The equilibrium condition ( ) 0Θ =p,ω  can be 

approximately solved for ( )p ω , 0≠ω ω , from ( )( ) ( )*
1 0 2 00 0≈ + − + −J p p ω J ω ω , and hence: 

 

( )( )
( )0

*
0*

0

1
1 2

lim

,

→

−

−
∇ =

−
= −

ω
ω ω

p p ω
p

ω ω

J J

 (B.17) 

 where 

 [ ] ( )2
2

1 . . . . ,
v

T
vE= − ∇ ∆ ∇ ∇ + ∇ ∇v a p a pC σ

J I Pr t v t σ
ɶ ɶ

ɶ ɶ  (B.18) 

 [ ]2 . . .T
E= −∇ ∆ ∇s aCJ Pr t   (B.19) 

To complete Eqs. (B.18) and (B.19),[ ]E∇ C Pr  can be determined following (13). Due to 

( ) 0a a bt x x∂ ∂ =ɶ ɶ  for a b∀ ≠ , off-diagonal entries of ∇v at
ɶ

 and 2
v

∇ aσ
t

ɶ
 are zero. When diagonal 

elements can be calculated from: 

 
( )

( ){ }23
4 4 12 ,aa a

a a v
a a a

t b
v v

v c s
σ∂

= +
∂ +

ɶ ɶ ɶ
ɶ

 (B.20) 

 
( ) ( )

( ){ }22
2 4 6 6 ,aa a

a v
a

a av

t b
v

c s
σ

σ
∂ = +

+∂
ɶ ɶ

ɶ

  (B.21) 

where avɶ  and a
vσɶ  are computed from perturbed mean demand ( )1q θɶ , SD of demand ( )2qσ θɶ  

using Eqs. (1)-(5). 
In Eqs. (B.18) and (B.19), ∇pvɶ  and ∇p vσɶ  can be derived from: 

 
( )

( )( )
1

1

. . .

. . ,rs

R
rs rs

rs rs rs
rs

R
K

rs rs K K
rs

q q

q

=

×
=

∇ = ∇ + ∇

=

∑

∑

p p pv ∆ p p

∆ I

ɶ ɶ ɶ

ɶ

 (B.22) 

 ( )2 . . ,f T
v diag  ∇ = ∇ p pσ ∆ Σ ∆ɶ  (B.23) 

where f∇pΣ  can be determined from: 
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( ) ( ) ( ) ( ) ( )

( ) ( )

2 2

2 2

2
2 ,

rs rs rs
k q krs rs

k qrs rs rs
k k k

rs rs
q k

Var F p
p

p p p

p

σ
σ

σ

∂ ∂ ∂
= +

∂ ∂ ∂

=

ɶ

ɶ

ɶ

 (B.24) 
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p p p p

p

σ
σ

σ
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=

ɶ
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 (B.25) 

To achieve Eq. (B.17), the second term, 2J , can be derived from: 

 
[ ] ( )( )
[ ] ( )

2
1 1 1

2. . . .

. . . ,

T
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θ v a θ a θE C σ

v a θE C
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ɶ
ɶ

ɶ
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 (B.26) 
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v
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T
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 (B.27) 

 [ ] . . ,T∇ Θ = −∇ ∆ ∇s s aE C Pr t  (B.28) 

where ∇v at
ɶ

 in Eq. (B.26) and 2
v

∇ aσ
t

ɶ
 in Eq. (B.27) can be obtained from Eqs. (B.20) and (B.21), 

respectively. 
To complete Eq. (B.26), ∇

1θ
vɶ  can be determined from: 

 

( )

( )( )
1 1

1

1

. .

. . . .

R
rs

rs rs
rs

TR
rs rs

rs rs R R
rs

q

q

=

×
=

∇ = ∇

=

∑

∑

θ θ
v ∆ p

∆ p I

ɶ ɶ

 (B.29) 

 In Eq. (B.27), 2
v∇

2θ
σ  can be calculated from ( )

2
. .f Tdiag  ∇ θ
∆ Σ ∆ , whence the 

components of 
2

f∇
θ
Σ  can be calculated from: 
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Finally, in Eq. (B.28), each diagonal element of ∇s at  can be calculated from: 

 
( )

( ) ( ){ }2 44 2
5

4
6 3 .a aa a

a a v v
a a a

t b
v v
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 In summary, all derivatives in Eqs. (B.18)-(B.31) can be substituted in the reverse order 
to obtain the Jacobian of the Probit path choice proportions. Then, these results can be 
substituted in Eqs. (B.5)-(B.7) and (B.11)-(B.16) to complete the Jacobian of the link capacity 
chance-constraints (B.2)-(B.4).  
 
APPENDIX C. Jacobians of OD Demand Multiplier Constraints 
 
Let 

1cvθΨ  and 
2cvθΨ  be the OD demand multiplier constraints (17) and (18), respectively. These 

two constraints can be rewritten as 
1 1

2

cv 1 1 1
1 1 1

1 1 1
0

1

R R R
rs rs rs

rs rs rsR R Rθ θθ θ δ θ
= = =

 Ψ = − − = −  
∑ ∑ ∑  and 

2 2

2

cv 2 2 2
1 1 1

1 1 1
0

1

R R R
rs rs rs

rs rs rsR R Rθ θθ θ δ θ
= = =

 Ψ = − − = −  
∑ ∑ ∑ , respectively. The entries of Jacobians 

1cvθ∇ Ψ
1θ

 and 
2cvθ∇ Ψ

2θ
 can be similarly derived from:  
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