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Abstract

This paper reports the findings of a systematic study using Monte Carlo
experiments and a real dataset aimed at comparing the performance of vari-
ous ways of specifying random taste heterogeneity in a discrete choice model.
Specifically, the analysis compares the performance of two recent advanced
approaches against a background of four commonly used continuous distribu-
tion functions. The first of these two approaches improves on the flexibility
of a base distribution by adding in a series approximation using Legendre
polynomials. The second approach uses a discrete mixture of multiple con-
tinuous distributions. Both approaches allows the researcher to increase the
number of parameters as desired. The paper provides a range of evidence on
the ability of the various approaches to recover various distributions from
data. The two advanced approaches are comparable in terms of the likeli-
hoods achieved, but each has its own advantages and disadvantages.
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1 Introduction

The widespread use of models such as the Mixed Multinomial Logit (MMNL)
model (cf. Revelt and Train, 1998; Train, 1998; McFadden and Train, 2000; Hen-
sher and Greene, 2003; Train, 2003) has made the issue of choosing a mixing
distribution very important. In these models we must specify a mixing distri-
bution, i.e. a distribution of random parameters, that may be interpreted as
representing random taste heterogeneity. The trouble is that we never observe
these random parameters and that we mostly have little a priori information
about the shape of their distribution except possibly a sign constraint. On the
other hand, the choice of a specific distribution may seriously bias results if that
distribution is not suitable for the data (cf. Hess et al., 2005; Fosgerau, 2006).
This kind of misspecification is particularly damaging when the distribution is it-
self of interest as is the case in estimation of the value of travel time, the response
to tolls, adoption of a new mode, etc.1

The point of this paper is to provide a comparison of two advanced approaches
for the representation of random taste heterogeneity in discrete choice models. A
prominent feature of the paper is the graphical evidence we provide on the ability
of the various approaches to approximate various challenging distributions. The
range of possible shapes of the mixing distribution is determined by a number
of deep parameters to be estimated. The two advanced approaches in this paper
are ways of specifying the mixing distribution with a variable number of deep
parameters such that an arbitrary level of flexibility may be achieved. In the
present paper, we limit our attention to univariate mixing distributions2; the use
of multivariate distributions is a topic for further research.

Various authors have estimated a range of parametric distributions, aiming
to gauge the advantages of distributions with a high degree of flexibility (see
for example Hensher and Greene, 2003; Train and Sonnier, 2005; Hess et al.,
2006). However, although different distributions have different properties, flexi-
bility is generally determined by the number of parameters for the distributions.
A two-parameter distribution corresponds to just a two-dimensional subset of
some space of distributions. So, while it may be possible to find a low-parameter
parametric distribution that fits well in a specific situation, it will not be more
flexible than other parametric distributions with the same number of parameters.
This acts as our main motivation for exploring alternative ways of representing
random taste heterogeneity.

1Misspecification has even lead some researchers to think that they have evidence of positive
marginal utility of travel time, when in fact they have just specified a mixing distribution that
has values on both sides of zero.

2In the application using real world data, we use multiple univariate distributions.
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The method of sieves is a natural choice for generating flexible distribu-
tions. Consider some model containing an unknown function to be estimated,
where, in the present case, the unknown function is the unknown density of a
taste coefficient α. The unknown function can be thought of as a point in an
infinite-dimensional parameter space. Rather than trying to estimate a point
in an infinite-dimensional space, one estimates over an approximating finite-
dimensional parameter space. As the dimension of the approximating space
grows, the resulting estimate approaches the true unknown function under quite
general circumstances (Chen, 2006). Additionally, the dimension of the approx-
imating space can increase with the size of the dataset such that better approx-
imations to the true function are obtained for larger datasets. In econometrics,
the resulting estimators are known as semi-nonparametric (Gallant and Nychka,
1987).

There are various ways of approximating an infinite-dimensional space of dis-
tributions by finite-dimensional spaces. In this paper, we shall confine attention
to just two convenient possibilities and we shall fix the number of parameters to
be estimated, corresponding to the dimension of the approximating space, at low
values. What we obtain is thus just some very flexible distributions with more
parameters than usual. The distributions can be extended with more parameters
as desired in a very straightforward way, as discussed in Section 2.

The first approach we consider is that described by Fosgerau and Bierlaire
(2007). The main feature of this approach is that it can use any continuous
distribution as its base. This is then extended by means of a series expansion,
in our case using Legendre polynomials, such that any continuous distribution
can be approximated at the limit, providing it has support within the support
of the base distribution. The number of parameters can be increased one by one
by increasing the number of terms used in the series expansion. Fosgerau and
Bierlaire (2007) present the technique as a test of the appropriateness of the base
distribution, used by testing the model with additional terms against the base
model. Here, we simply use the resulting model as a flexible means of retrieving
random taste heterogeneity.

The other approach that we consider employs a mixture of distributions
(MOD) estimator, which is another example of the use of the method of sieves.
Specifically, we make use of a discrete mixture of Normal distributions with dif-
ferent means and variances that are to be estimated, where such a mixture of
Normals can approximate any continuous distribution. In existing work, Coppe-
jans (2001) considers the MOD estimator for the case of cross-sectional binary
choice data, deterministic taste coefficients but randomly distributed error terms,
parallelling the estimator of Klein and Spady (1993). As such, our use of the idea
of a finite mixture of Normals is somewhat different. Another discussion on mix-
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tures of Normal distribution is given by Geweke and Keane (2001).
Both approaches have the flexibility of allowing for multiple modes in a dis-

tribution. This can be a significant advantage compared to the typically used
distributions (e.g. Normal, Lognormal, ...) that are restricted to a single mode,
given the possibility that the sample may be composed of distinct groups with
different behaviour.

In this paper, we present evidence from two separate studies. In the first part
of the paper, we conduct a systematic study using Monte Carlo experiments.
Here, we show that the two flexible approaches are both able to approximate well
a range of true distributions, even though the number of deep parameters is kept
reasonably low. The two approaches do about equally well in outperforming four
commonly used distributions over a range of situations. Hence, we recommend
the use of a flexible approach in applied modelling work, at least as a guide
to the selection of a simpler distribution. The choice between the two flexible
approaches may be guided by considerations on bias and variance, which seem to
favour the Fosgerau & Bierlaire approach, or by the ability of the MOD estimator
to approximate point masses.

In the second part of the paper, we provide evidence on the methods using
data from the Swiss value of time study. Here we simultaneously estimate flexible
distribution for four coefficients, which we believe is a first. We find the appli-
cation of the flexible approaches to be illuminating in that it reveals features of
the data that could not be revealed using the simpler approaches. The MOD ap-
proach did run into a limitation in that it turned out to be not computationally
possible to estimate beyond a mixture of two normals for each coefficient. On the
other hand, a larger number of parameters could be estimated with the Fosgerau
& Bierlaire approach, with no limit in sight.

We do not provide theoretical results concerning consistency and asymptotic
properties of the estimators of the distribution of α that we employ. Fosgerau
and Nielsen (2006) prove consistency of an estimator of the distribution of α in
a case when the distribution of the error terms3 is unknown. It seems feasible
to extend this result to the case of a MMNL model with an unknown mixing
distribution.

The paper is organised as follows. The following section presents the math-
ematical details of the two advanced approaches used in this paper. This is
followed in Section 3 by a discussion of the results from the Monte Carlo studies,
and a discussion of the results from the application on real data in Section 4.
Finally, Section 5 presents the conclusions of the analysis.

3I.e. the unobserved component of utility ε.
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2 Methodology

In this section, we discuss the two main methods compared in this analysis, with
the Fosgerau-Bierlaire approach described in Section 2.1, and the MOD approach
described in Section 2.2. This is followed in Section 2.3 by a brief description of
various continuous distributions used in our experiments.

2.1 Fosgerau & Bierlaire approach

Let Φ be the standard Normal cumulative distribution function with density φ
and let G be an absolute continuous distribution with density g. We take Φ as
the base distribution with which we seek to estimate the true distribution G.4

Since both Φ and G are increasing, it is possible to define Q(x) = G(Φ−1(x))
such that Q(Φ(β)) = G(β). Furthermore, Q is monotonically increasing and
ranges from 0 to 1 on the unit interval. Thus, Q is a cumulative distribution
function for a random variable on the unit interval. Denote by q the density of
this variable, which exists since G is absolute continuous. Then we can express
the true density as g = q(Φ)φ.

Consider now a discrete choice model P (y|v, α) conditional on the random
parameter α which has the true distribution G. Then the unconditional model is

P (y|v) =

∫
α

P (y|v, α)g(α)dα

=

∫
x

P (y|v,Φ−1(x))q(x)dx (1)

Thus the problem of finding the unknown density g is reduced to that of finding
q, an unknown density on the unit interval. The terms Φ−1(x) are just standard
Normal draws used in numerical simulation of the likelihood (cf. Train, 2003).

Now, let Lk be the kth Legendre polynomial on the unit interval (cf. Bierens,
2007; Fosgerau and Bierlaire, 2007). These functions constitute an orthonormal
base for functions on the unit interval5 such that

∫
LkLk′ is equal to 1 when

k = k′ and zero otherwise. We can then write

q(x) =
(1 +

∑
k γkLk)

2

1 +
∑

k γ2

k

. (2)

Squaring the numerator ensures positivity, while the normalisation in the denom-
inator ensures that q(x) integrates to 1. Thus this expression is in fact a density.

4It is generally appropriate to choose a base distribution that is a priori thought to be a likely
candidate for the true distribution. We choose the Normal distribution to have consistency with
the MOD approach.

5See Bierens (2007) for a precise definition of this and following statements in this paragraph.
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Bierens (2007) proves that any density on the unit interval can be written in this
way.

The choice of Legendre polynomials is not a necessity. There are many other
bases for functions on the unit interval that could have been used. Legendre
polynomials are convenient because they have a recursive definition that is easily
implemented on a computer.6

To define the estimator that we use in this paper, we simply select a cut-off K
for k, such that we only use the first K terms of (2). Thus we have a representation
of a flexible qK with K parameters and a corresponding cumulative distribution
function QK . This is inserted into equation (1) to enable estimation by maximum
likelihood. For more details on this approach, see Fosgerau and Bierlaire (2007).

Figure 1 shows cumulative distribution functions (CDF) for various parameter
combinations of a Q3(Φ) distribution, where the base distribution Φ is a standard
Normal distribution and the three γk parameters are set to all combinations of
-1, 0 and 1. As the figure shows, this general form is able to take a variety of
shapes.

2.2 Mixtures of distributions approach

In our MOD approach, we combine a standard continuous mixture approach
with a discrete mixture approach, as described for example by Hess et al. (2007)
and, in another context, Coppejans (2001). Specifically, the mixing distribution is
itself a discrete mixture of several independently distributed Normal distributions.
We define a set of mean parameters, µk and a corresponding set of standard
deviations, σk, with k = 1, . . . ,K. For each pair (µk, σk), we then define a
probability πk, where 0 ≤ πk ≤ 1, ∀ k, and where

∑K
k=1

πk = 1. A draw from the
mixture distribution is then produced on the basis of two uniform draws u1 and
u2 contained between 0 and 1, where we get:

α = Φ−1
µ1,σ1

(u1) , if u2 < π1

α = Φ−1
µk,σk

(u1) , if
k−1∑
l=1

πl ≤ u2 <
k∑

l=1

πl with 1 < k ≤ K − 1

α = Φ−1
µK ,σK

(u1) , if

K−1∑
l=1

πl ≤ u2, (3)

6The recursion formula for the Legendre polynomials on the unit interval states that Lk(x) =
√

4k2−1

k
(2x−1)Lk−1(x)− (k−1)

√
2k+1

k
√

2k−3
Lk−2(x). The first four polynomials are L0(x) = 1, L1(x) =

√

3(2x − 1), L2(x) =
√

5(6x
2
− 6x + 1), and L3(x) =

√

7(20x
3
− 30x

2 + 12x − 1).
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where Φ−1
µk,σk

is the inverse cumulative distribution of a Normal with mean µk

and standard deviation σk.
With k Normal terms, the resulting distribution allows for k separate modes,

where the different modes can differ in mass. However, the flexibility of this
approach is not limited to allowing for multiple modes, the method also allows
for saddle points in a distribution.

Furthermore, it is possible to have point-mass at a specific value, in which
case the associated standard deviation parameter becomes 0. This property of the
MOD approach is both a blessing and a curse. Coppejans (2001) enforces a lower
bound on the variance of the normally distributed components in order to ensure
that the estimated distribution is smooth and to prove asymptotic convergence
to the true distribution as the number of Normal distributions increases with
sample size. Thus imposing a lower bound on the variances is desirable when the
true distribution is thought to be smooth and it avoids the estimated distribution
becoming degenerate.

It is difficult to make a case for mass-points in a distribution of preference-
parameters. However, there is one exception, namely a heightened mass at zero.
This is useful in the representation of taste heterogeneity for attributes that some
individuals are indifferent to, a concept discussed for example in the context of
the valuation of travel time savings (VTTS) by Cirillo and Axhausen (2006). It
can also be useful in the context of attribute processing strategies in SP data,
with some respondents ignoring certain attributes, such that they obtain a zero
coefficient (cf. Hensher, 2006). In the results below we do not impose a lower
bound on the variances.

An illustration of the flexibility of the MOD approach is given in Figure 2,
which shows cumulative distribution functions (CDF) for various examples of a
mixture of two Normal distributions. In the first example, the only parameter
that changes is π1 (and hence by extension also π2), where, with π1 = 1, we
have a standard Normal distribution, with the shape gradually changing as we
increase the mass for the second Normal, π2. The second example illustrates
the potential of the method to retrieve a point mass at a given value. Here,
the standard deviation for the second support point, σ2 is gradually decreased,
where, with σ2 = 0, we get a point mass of 50% at a value of 0 (µ2 = 0), with
the CDF turning into a step function at a value of 0. In the third example,
the two support points have mean values at −2 and 2, and share a common
standard deviation, while π1 = π2 = 0.5. As we gradually increase the standard
deviations, we move from a distribution with two separate peaks (with little mass
in between) to a distribution looking like a Normal with a very high variance.
In the final example, we again have two Normals with equal standard deviation,
fixed at 0.5, along with equal probabilities π1 = π2 = 0.5, and a mean for the first
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Normal fixed at −2. As the mean of the second Normal is gradually decreased
from its initial value of 2, we move from a distribution with two separate peaks
to a distribution approximating a Normal.

2.3 Other distributions

Along with the approaches from Section 2.1 and Section 2.2, we also estimated
models making use of a set of standard continuous distributions, as commonly
used in Mixed Logit analyses. Here, we limit the set of distributions to the
Normal, the Uniform, the symmetrical Triangular and the Johnson SB.

3 Experiments on simulated data

This section presents the results from our systematic Monte Carlo analysis. We
first present the empirical framework used in this analysis (Section 3.1). We
then briefly discuss the issue of the number of parameters (Section 3.2) before
discussing the actual results (Section 3.3).

3.1 Generation of data

The setup for this analysis makes use of binary choice panel data. The conditional
indirect utility function for the first alternative is set to zero, while, in choice
situation t for respondent n, the utility of the second alternative is given by:

Un,t = αn + vn,t +
1

µ
εn,t, (4)

where ε follows a logistic distribution, vn,t is an observed quantity, and αn is
an individual-specific i.i.d. latent random variable. This is the simplest possi-
ble setup that allows us to identify the distribution of an unobserved random
parameter. This simplicity is a virtue, since we can then focus on the issue at
hand, namely the ability of different estimators to recover a true distribution.
The use of panel data is crucial, since otherwise it becomes hard to distinguish
the distribution of α from the distribution of ε.

We simulate datasets of a size that is realistic in applied situations, containing
1, 000 “individuals” making 8 “choices” each. We generate data for seven different
choices of true distribution for αn, with details given below. The observed variable
v is drawn from a standard Normal distribution, while the scale parameter µ is
fixed at a value of 2.

It is important to realise that results from a single experiment can be in-
fluenced by randomness, such that it is impossible to reach general conclusions.
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Therefore we generate 50 datasets for each distribution.7 Estimating the mod-
els many times for each true distribution of α allows us to take into account
the fact that the estimates are random variables obtained as functions of random
data. Altogether, we generate 50 datasets for each of the seven true distributions,
leading to a total of 350 datasets.

The seven true distributions were chosen with the aim of representing a wide
array of possibilities that challenge our ability to estimate them. An important
point here is to select the distributions such that they lie well within the support
of vn,t which is standard Normal. Thus we have selected the distributions to lie
mostly within the interval [-2,2].8

Specifically, we use the following seven data generating processes:

DM(2) data: discrete mixture with two support points, α = −1 with probabil-
ity π1 = 0.5, and α = 1 with probability π2 = 0.5

DM(3) data: discrete mixture with three support points, α = −1, α = 0 and
α = 1, with equal mass of π1 = π2 = π3 = 1

3

LN data: Lognormal shifted to the left, generated by α = exp(u)/2 − 1, where
u ∼ N(0, 1)

N data: Standard Normal, α ∼ N(0, 1)

NM data: Normal with point mass at zero. With probability π1 = 0.8, α ∼
N(−1, 1), and with probability π2 = 0.2, α = 0.

2N data: Mixture of two Normals, with π1 = 0.5, α ∼ N(−1, 0.5), and with
π2 = 0.5, α ∼ N(1, 0.5)

U data: Uniform distribution, α ∼ U [−1, 1]

3.2 The number of parameters

The Normal, Uniform and symmetrical Triangular distributions all have just two
parameters to be estimated, while the Johnson SB distribution is more flexible
with four parameters to be estimated. In addition there is the parameter µ
for the scale of the model. The MOD approach has three parameters for each

7With real data it is possible to use bootstrap methods to generate confidence intervals
around the estimated distribution. These confidence intervals can then be used to learn how
much is determined from the data about the estimated distribution.

8This is an issue in real applications, where data may not be sufficiently rich to identify
distributions of interest. Such a failure may be hard to detect, see Fosgerau (2006) for discussion
of this point.
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Normal distribution used (location, variance and mass), less one since the masses
sum to one. With a mixture of two Normals there are thus six parameters to
be estimated. Therefore we also elect to use a total of six parameters for the
Fosgerau-Bierlaire approach. Generally, we expect the ability of a distribution
to approximate an arbitrary true distribution to increase with the number of
parameters. Thus we expect the worst performance from the Normal, Uniform
and symmetrical Triangular distributions, while the best performance is expected
from the Fosgerau-Bierlaire approach and the MOD approach.

3.3 Results

In this section, we discuss the results of the Monte Carlo analysis carried out
to compare the different methods for representing random taste heterogeneity.
All estimation is carried out in Ox (Doornik, 2001) using customised code.9 Al-
together we have estimated six models10 on each of seven datasets, with fifty
replications of each dataset. Given the high number of models estimated, only
summary results across runs can be presented here. The two advanced models
are identified as M(MOD) (mixture of Normals) and M(FB) (Fosgerau-Bierlaire
approach), while the four more basic models are identified as M(N) (Normal),
M(U)(Uniform), M(T) (symmetrical Triangular) and M(SB) (Johnson SB). In
addition, a standard Multinomial Logit (MNL) model was estimated on the data.

Two different criteria are used in the presentation of the results. These are
the ability to recover the shape of the true distribution and the estimated log-
likelihoods. A combination of tables and graphs are used in the presentation of
the results.

• The performance of the various methods in terms of the recovery of the
shape of the true distribution is illustrated with the help of CDF plots for
the true and estimated distributions, where, for the latter, the mean CDF
across runs is presented alongside a pointwise 90% confidence band for the
CDF. The various plots are shown in Figure 3 for the DM(2) data, Figure
4 for the DM(3) data, Figure 5 for the LN data, Figure 6 for the N data,
Figure 7 for the NM data, Figure 8 for the 2N data, and Figure 9 for the
U data.

• These CDF plots are the main result of the analysis as they directly inform
on the ability to estimate the unknown true distributions. Vertical distances
in the CDF plots correspond to the L∞ norm of the difference between true

9Available from the authors on request.
10One for each distribution
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and estimated CDFs; indeed, in the space of CDFs, convergence of estimates
to the true distribution, as the number of terms increases, takes place in
L∞ norm. We have chosen to present CDFs rather than densities, since
many of the true distributions that we use have point masses and hence no
ordinary densities. Moreover, convergence in L∞ norm is easier to interpret
visually than convergence in L1 norm, which corresponds to densities.

• Table 1 shows the final log-likelihood (LL) obtained in estimation of the
various models. Here, we give the mean LL obtained across the fifty runs in
each model and dataset combination, along with the 5th and 95th percentiles
of the distribution of the LL measure across runs, giving an indication of
the stability of the methods.

We will now proceed with a discussion of the results obtained in the various
datasets.

DM(2) data: For the data generated by a discrete mixture with two support
points, we expect the M(MOD) and the M(SB) to perform best due to their
ability to become degenerate. The M(MOD) can accommodate the DM(2)
distribution with two Normals with zero variance, while the M(SB) can have
infinite variance for the Normal distribution.

Figure 3 shows that M(MOD) and M(SB) are able to reproduce the true

distribution quite closely. The M(SB) finds the two mass points and puts
almost all the mass there through a very large variance of the underlying
Normal distribution. The same goes for the M(MOD), which assigns very
low variances to the two Normal distributions at the two mass points. The
M(FB) is able to indicate roughly the shape of the true distribution but
is seemingly not able to generate very sharp kinks in the estimated CDF.
Note that the estimated confidence bands are somewhat tighter for the
M(FB) than for the M(MOD). The approximations given by M(U), M(T)
and M(N) are not able to reveal much about the true distribution except
its location and range.

DM(3) data: Now we are looking at a distribution with three mass points. It
is clearly outside the capabilities of all the estimated models to reproduce
such a shape, except possibly the M(FB) which may have more than two
modes with five parameters, the same number of parameters as a mixture of
two normals. We therefore replace the mixture of two normals by a mixture
of three Normals. This introduces three additional parameters (location,
variance and mass), so we also increase the number of parameters in the
M(FB) model by three. Given the data, this increase in parameters does
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not yield a significant improvement of the mean log-likelihood. But it does
allow the M(MOD) to reproduce the true distribution under investigation,
in principle perfectly.

Figure 4 now shows, as expected, that none of the four simplest distributions
are able to provide any information about the true distribution other than
its location and rough range. Both the M(MOD) and the M(FB) with the
increased number of parameters are able to indicate the shape of the true
distribution. The M(MOD) is able to concentrate more of the mass near
the three mass points of the true distribution but again at the cost of larger
confidence bands. In other words, the M(MOD) is able to estimate the true
distribution with smaller bias but larger variance.

The log-likelihoods fits obtained by M(MOD) and M(FB) are best, but not
much better than M(SB) and M(U).

LN data: For the data generated by a Lognormal distribution, we find in Figure
5 that the two advanced distributions along with the M(SB) are able to
recover the lognormal shape quite well. This is quite remarkable, since it
implies that a true continuous distribution can be recovered even though it
is quite different from the Normal distribution which is used as a base. This
should be important in applied work where a priori information about the
shape of the true distribution is not available. The M(SB) is even able to
find the lower bound on the true distribution. These models produce much
better log-likelihoods than the simpler models based on normal, triangular
and uniform distributions.

N data: For the data generated with a standard Normal distribution we expect
the M(N), M(MOD) and M(FB) to do well, since they nest the true model.
Also the M(SB) should do well by letting the range of the distribution
be large. This is confirmed by the results in Figure 6. In fact, even the
Triangular distribution is able to reproduce the shape of the Normal dis-
tribution quite closely. Like before, it seems that the estimated CDF from
the M(MOD) has somewhat higher variance than M(FB).

The log-likelihoods are close with only the M(U) doing noticeably worse
than the rest. The M(MOD) and M(FB) nest the true distribution and
given the small differences in the estimated log-likelihoods, it would be al-
most always possible to accept the null hypothesis that the true distribution
is in fact Normal, which is reassuring.

NM data: The Normal with an added mass at 0 is a difficult distribution to
approximate, even though the M(MOD) does nest this when one variance
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is set to zero such that the distribution becomes degenerate.

While all the estimated models are able to indicate the location and range
of the true distribution, it is only the M(MOD) that is able to provide a hint
about the point mass (Figure 7). The cost is, however, that the M(MOD)
again seems to have a higher variance.

In terms of log-likelihoods, the M(MOD) and the M(FB) achieve similar
fits, while the M(SB) is somewhat poorer and the remaining are further
behind.

2N data: For the data generated by a mixture of two Normals, the MOD model
M(MOD) obtains the best model fit. This is as expected since the model
is the same as the data generating process. The M(FB) and the M(SB) are
however very close. As Figure 8 shows, the M(MOD) and also the M(FB)
are both able to reproduce the main features of the true 2N distribution.
Again, the M(MOD) seems to have higher variance.

U data: For the final dataset, generated with a Uniform distribution, the per-
formance of the various models is very similar. From Figure 9, we note
that the M(MOD) again has somewhat higher variance than the M(FB)
distribution. In terms of log-likelihood, all models are quite similar.

4 Experiment on real data

For our analysis on real world data, we make use of data collected as part of a
recent VTTS study in Switzerland (cf. Abay and Axhausen, 2001). Specifically,
we look at a public transport route choice experiment, with 3, 501 observations
collected from 389 respondents. The two alternatives are described in terms of
travel time (TT), travel cost (TC), headway (HW) and interchanges (CH). With
this, the utility function for alternative 1 is given by:

U1 = δ1 + βTTTT1 + βTCTC1 + βHWHW1 + βCHCH1, (5)

with a corresponding formulation for alternative 2, except for the absence of a
constant.

A number of different models were estimated on this data. We first estimated
a MNL model, followed by MMNL models making use of Normal, Uniform, sym-
metrical Triangular and SB independent distributions for each coefficient. All
MMNL models were estimated on the basis of variations in tastes across re-
spondents but constant tastes across observations for the same respondent. In
addition, a number of MOD and FB formulations were estimated. For the MOD
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models, no further improvements could be obtained beyond the use of two points
in the mixture, partly due to problems with degeneracy. On the other hand, using
the FB approach, models were estimated with up to 6 SNP terms for each taste
coefficient. There was no indication that it would not be possible to estimate
models with even more SNP terms.

We first look at the achieved likelihoods of the various estimated structures,
with a summary given in Table 2. As expected, all mixture models offer signifi-
cant improvements in model fit over the MNL model, highlighting the presence
of significant levels of taste heterogeneity relative to the linear specification of
indirect utility. Here, for the more basic specifications, the performance with the
Normal, Uniform and symmetrical Triangular distributions is very similar, with
better performance being obtained with the more flexible SB distribution.

Moving on to the MOD and FB models, we can see that, while MOD2 obtains
a better log-likelihood than the model using the SB distribution, the additional
parameters mean that in terms of adjusted ρ2, the performance of the two mod-
els is virtually identical. For the FB models, the adjusted ρ2 is always below
that of the MOD2 model and the SB model, but there is a gradual and signifi-
cant improvement in model fit as we increase the number of terms in the series
expansions.

We proceed with a graphical analysis of the implied distributions resulting
from the various models. As we are looking at the shapes of the estimated distri-
butions this is much more informative than looking at the estimated parameters.
Here, Figure 10 shows the CDF for βTT in the various models, with Figure 11
looking at βTC, Figure 12 looking at βHW and Figure 13 looking at βCH. In each
case, the presentation of the FB results is limited to FB3, FB5 and FB6.

For βTT, we observe strong similarities between FB3 and the Normal distribu-
tion, while FB5 and the very similar FB6 are clearly different. The SB distribution
degenerates to a mass point distribution, while the MOD2 distribution only be-
comes degenerate for one mass point. The findings for βTC are quite similar,
although this time, the SB distribution only becomes degenerate for one mass
point, along with MOD2. For βHW, MOD2 reduces to a Normal distribution,
with FB5 and FB6 showing some differences. Finally, for βCH, MOD2 becomes
degenerate for one point, while the SB distribution again turns into a mass point
distribution. What we are observing seems to be that the SB and the MOD risk
becoming degenerate in ranges where the true density places a lot of mass, even
if it is unlikely to be point masses. The FB approach does not have this problem.

While the results demonstrate that the advanced approaches are practical
and reveal information about the data that would otherwise have been hard to
discern, the results are somewhat worrying from a different perspective. All four
parameter distributions seem to have two modes and it is hard to accept that
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this is a true feature of the distribution of preferences in the population. There is
a possibility that a distribution of a coefficient may indeed have multiple modes
in a sample population in the case where there exists some segmentation of this
population that is not accounted for in the model. However, for the number of
modes to be exactly two11 across all four coefficients seems most unlikely. We
can think of two potential explanations. The first potential explanation is that
the effect is an artefact of the stated preference design. If this is true, then we are
in effect measuring the design and not only the preferences which are the object
of interest. It would then be prudent to seek to improve the design. The other
potential explanation is that we are seeing a reference point effect (De Borger
and Fosgerau, 2008), whereby the size of a parameter is influenced by whether
the attribute being valued is larger or smaller than some reference. In any case,
it is a real advantage of the flexible approaches that they allow such issues to
be discovered. The potential problems here would have been invisible with the
standard approaches.

For completeness, the estimated parameters are presented in Table 3 for the
standard models and the MOD2 while Table 4 presents the estimates for the FB
models. Here, δ1 is constant; the p1 parameters are used as fixed parameters in
MNL, the mean in Normal, boundary to one side for Uniform and Triangular
(this turns out to be the right hand boundary), the mean of underlying Normal
in SB and the mean of the first Normal in MOD2. The p2 parameters are used
as standard deviations for the Normal, interval width for the Uniform and Tri-
angular, standard deviation of the underlying Normal for SB and std.dev. of the
first Normal for MOD2. The p3 parameters give the left boundary for the SB and
the mean for the second Normal in MOD2. Finally, the p4 parameters give the
interval width for the SB and the std.dev. for the second Normal in MOD2 and
the π parameters give the mass for the first Normal in MOD2. In the FB results
presented in Table 4, the δ, β(p1) and β(p2) parameters are the same as in the
Normal model in Table 3. The β(FB) parameters are the terms in the series
expansions of the distributions for each coefficient.

On the estimated parameters we note in particular the low standard deviations
(p2 and p4 parameters) for the MOD2 model, corresponding to almost point
masses. On the FB models we note that most of the terms in the series expansion
are quite significant in t-tests, with the exception of the last FB6 model.

11While the SB and MOD2 models are restricted to two modes, models FB3 to FB6 allow for
more than two modes.
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5 Conclusions

This paper has reported the findings of a systematic study using Monte Carlo
experiments aimed at comparing the performance of various methods in retrieving
random taste heterogeneity in a discrete choice context. Specifically, the analysis
has compared the performance of four commonly used continuous distribution
functions, the Normal, symmetrical Triangular, Uniform and Johnson SB, to that
of two more advanced approaches discussed in this paper. The first of these two
approaches, the FB approach, improves on the flexibility of a base distribution
by adding in a series approximation using here Legendre polynomials, where the
Normal distribution was chosen as the base. The second approach, the MOD
approach, uses a discrete mixture of continuous distributions, where again, in the
present study, the base distributions are all Normal.

The simulation study compared the performance of the six resulting models
across seven separate case studies, making use of different assumptions for the
true distribution of the single random parameter in the model. In each case study,
fifty random versions of the data were generated to allow us to gauge the stability
of the various approaches. We find as expected that the ability to reproduce
an underlying true distribution depends on the number of parameters in the
estimated distribution. The most flexible distributions are able to approximate
a variety of different shapes and they result in higher log-likelihoods. Good
performance was also obtained by the models using the Johnson SB distribution.
The latter has, however, the drawback that it cannot be made more flexible. So
even though the Johnson SB distribution may do well in a particular application
it is not possible to assess whether it does well enough. In contrast, one may
just increase the number of parameters in the two flexible approaches and use a
likelihood ratio test to decide when the number of parameters is sufficient.

The performance of the two-parameter distributions is poor in comparison.
Even though this could be expected, we consider it illuminating to illustrate how
these distributions fail and compare this to the application of more flexible dis-
tributions. Many past applications of the Mixed Logit model have relied on such
two-parameter distributions. On the other hand, the two advanced approaches
discussed in this paper seem to perform very well across all the cases studied here,
suggesting that they can approximate well a variety of distributions, ranging from
the most trivial (Uniform) to more complex multi-modal distributions.

In the present simulation study, the MOD approach has a slight advantage
over the FB approach in terms of model fit. This finding is conditional on the
selection of true distributions that we have chosen to investigate. The selection
includes a number of cases with point masses which the FB approach cannot
accommodate. On the other hand, it seems that the MOD estimates of the CDF
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have somewhat higher variance than the FB estimates.
For non-smooth distributions, the MOD approach has the ability to become

degenerate and have a point mass. The FB approach does not allow for point
masses. This may be viewed as an advantage of the MOD approach if one believes
in mass-points, a concept that, in an applied discrete choice context, only really
makes sense for a mass-point at zero. However, this degeneracy is also a problem
for the ability of the estimator to approximate smooth distributions and the
estimator must be constrained in some way (cf. Coppejans, 2001). It may be
conjectured that the higher variance of the MOD approach is related to this
degeneracy problem.

In our application using the Swiss value of time data we have demonstrated
that the flexible approaches are practical for real data. We found that all four
coefficients tended to have bimodal distributions. This is something that deserves
an explanation and we have put forward two potential explanations. The contri-
bution of the flexible approaches that is relevant for the current paper is that they
were able to reveal these features of the data that the less flexible approaches did
not detect. The Johnson SB distribution and the MOD did have problems with
degeneracy and it was not computationally possible to increase the MOD beyond
MOD2. It is a possibility that this problem is related to weak identification of the
distributions in the data. The FB approach did not have problems of degeneracy
and there were no computational problems involved in increasing the number of
parameters in the series expansions.

The flexibility of either of the two approaches can be increased by estimating
additional parameters, in terms of additional terms in the series expansion in
the FB approach, or additional distributions in the MOD approach. Here, an
important advantage of the FB approach is that it is possible to add just one
parameter at a time, while, with the MOD approach, it is necessary to add
three parameters at the same time (location, variance and mass). Increasing the
number of parameters inevitably leads to increased estimation cost, and issues of
convergence to local maxima become more prominent.

Both approaches are not restricted to being based on the Normal distribution,
but can use any continuous distribution as the base. Both approaches are also
relatively easy to implement, where the FB approach has already been imple-
mented in BIOGEME (Bierlaire, 2003), and where estimation code for the MOD
approach is available from the second author on request.

It should also be noted that the potential of these approaches is not limited
solely to the estimation of models with flexible distributions. Indeed, as in the
present application to the Swiss value of time data, they can also be seen as a
diagnostic tool that can be used to get an idea of the shape of the true distri-
bution or to reveal what is in the data; this knowledge can then be used in the
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choice of an appropriate model. In one of the case studies in the simulation study
discussed in this paper, one would, for example, be able to reveal that the lognor-
mal distribution was an appropriate choice without imposing that distribution
initially.

In a direct comparison of the two advanced approaches discussed in this paper,
we can conclude that they are very similar in their ability to approximate smooth
distributions. In general there is no reason to suppose that one approach should
be better than the other, since both are able to approximate any distribution
arbitrarily well by increasing the number of parameters. Our application to real
data did however show that the MOD approach encountered some problems,
where these problems may however be related to the data and not the MOD
approach itself.

An important avenue for further research is the development and testing of
the two approaches in more complex scenarios, such as in the presence of multiple
random coefficients with potential correlation between them. This issue is related
to the issue of the degree of model complexity that data will allow. There is clearly
a limit in sight where normal-sized datasets will not allow us to identify all we
would like to know about heterogenous preferences.
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Data MNL M(N) M(SB) M(T) M(MOD) M(U) M(FB)
5th perc. -4707.76 -3708.26 -3565.42 -3697.21 -3565.34 -3644.74 -3579.57

mean -4643.54 -3642.45 -3497.32 -3633.74 -3497.10 -3583.83 -3515.96DM(2)
95th perc. -4575.35 -3567.01 -3428.72 -3558.48 -3428.74 -3510.46 -3444.96
5th perc. -4456.99 -3866.13 -3846.47 -3860.49 -3845.40 -3849.76 -3845.82

mean -4380.80 -3798.70 -3781.05 -3793.08 -3779.00 -3782.95 -3779.66DM(3)
95th perc. -4313.91 -3741.58 -3723.33 -3736.87 -3722.72 -3725.52 -3722.66
5th perc. -4263.78 -3860.01 -3781.90 -3874.35 -3782.62 -3897.44 -3784.43

mean -4165.97 -3792.01 -3713.90 -3805.26 -3716.43 -3827.84 -3718.88LN
95th perc. -4077.56 -3720.00 -3650.01 -3729.76 -3651.23 -3749.12 -3652.85
5th perc. -4555.32 -3821.56 -3821.31 -3822.62 -3821.56 -3834.73 -3820.58

mean -4495.58 -3767.88 -3767.63 -3768.38 -3766.50 -3778.44 -3766.68N
95th perc. -4444.89 -3713.47 -3713.51 -3714.31 -3712.40 -3722.20 -3712.29
5th perc. -4078.98 -3537.69 -3525.39 -3534.45 -3522.67 -3531.87 -3522.63

mean -3990.94 -3456.36 -3446.07 -3455.45 -3442.26 -3454.97 -3442.83NM
95th perc. -3904.82 -3370.11 -3363.78 -3368.02 -3361.03 -3370.84 -3360.67
5th perc. -4748.22 -3698.21 -3669.81 -3692.69 -3669.53 -3672.41 -3669.80

mean -4687.77 -3616.24 -3584.53 -3611.91 -3583.00 -3591.84 -3583.472N
95th perc. -4616.72 -3542.69 -3505.81 -3538.92 -3503.21 -3516.07 -3503.19
5th perc. -4170.72 -3936.54 -3935.41 -3937.16 -3935.38 -3939.82 -3935.76

mean -4088.26 -3855.56 -3850.91 -3853.54 -3850.60 -3851.85 -3850.78U
95th perc. -4025.88 -3778.32 -3776.16 -3776.89 -3775.04 -3776.54 -3775.61

Table 1: Model fit statistics across datasets and models
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Model Final LL par adj. ρ2

MNL -1667.97 5 0.3106
NORMAL -1466.73 9 0.3919

UNIFORM -1467.04 9 0.3918
TRIANGULAR -1466.75 9 0.3919

SB -1439.32 17 0.3999
MOD2 -1435.47 21 0.3999

FB1 -1463.6 13 0.3915
FB2 -1460.08 17 0.3913
FB3 -1443.29 21 0.3966
FB4 -1435.49 25 0.3982
FB5 -1429.29 29 0.3991
FB6 -1423.68 33 0.3997

Table 2: Model performance on Swiss route choice data
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Model MNL NORMAL UNIFORM TRIANGULAR SB MOD2

Final LL: -1,667.97 -1,466.73 -1,467.04 -1,466.75 -1,439.32 -1,435.47
adj. ρ2 0.3106 0.3919 0.3918 0.3919 0.3999 0.3999

par. 5 9 9 9 17 21

δ1 -0.0192 (-0.45) -0.0488 (-0.79) -0.0417 (-0.68) -0.0436 (-0.71) -0.0452 (-0.71) -0.0558 (-0.86)
βTT (p1) -0.0598 (-11.22) -0.1405 (-12.04) -0.0409 (-2.99) -0.0165 (-0.99) -0.2417 (-12.25) -0.2463 (-10.37)
βTC (p1) -0.132 (-7.01) -0.4484 (-8.59) 0.1301 (3.24) 0.499 (6.37) 0.7224 (2.77) -0.2124 (-8)

βHW (p1) -0.0376 (-19.31) -0.0642 (-13.71) 0.0042 (0.61) 0.0337 (3.18) 5.2499 (1.14) -0.679 (-2)
βCH (p1) -1.15 (-25.21) -2.11 (-15.94) 0.0584 (0.41) 0.9297 (4.07) 0.2986 (66.61) -2.6108 (-8.35)
βTT (p2) - 0.0548 (7.39) -0.2253 (-7.81) -0.2661 (-7.08) 0.011 (0.71) -0.0203 (-0.57)
βTC (p2) - -0.4264 (-9.01) -1.3133 (-8.99) -1.9888 (-9.12) -0.2181 (-1.53) 0.0041 (0.15)

βHW (p2) - -0.0401 (-7.47) -0.1359 (-7.5) -0.1947 (-7.67) -0.9541 (-1.98) -0.4684 (-2.11)
βCH (p2) - -1.2102 (-8.91) -4.4646 (-10.41) -6.1639 (-10.28) 0.0007 (0.18) -1.3447 (-6.02)
βTT (p3) - - - - -0.261 (-12) -0.0919 (-8.55)
βTC (p3) - - - - -1.8974 (-5.09) -1.1795 (-8.96)

βHW (p3) - - - - -10.789 (-0.23) -0.0589 (-11.29)
βCH (p3) - - - - -3.1556 (-14.14) -0.6568 (-1.98)
βTT (p4) - - - - 0.1685 (8.58) 0.0004 (0.03)
βTC (p4) - - - - 1.7052 (4.39) 0.587 (6.16)

βHW (p4) - - - - 10.78 (0.23) 0.0296 (4.53)
βCH (p4) - - - - 2.464 (10.94) 0.043 (0.09)
π1 (βTT ) - - - - - 0.4383 (5.37)
π1 (βTC) - - - - - 0.5883 (9.48)

π1 (βHW ) - - - - - 0.0715 (2.34)
π1 (βCH) - - - - - 0.8397 (8.66)

Table 3: Model estimation on Swiss route choice data (part 1, asy. t-ratios in brackets)
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FB1 FB2 FB3 FB4 FB5 FB6
-1463.6 -1460.08 -1443.29 -1435.49 -1429.29 -1423.68

0.391521353 0.391323554 0.396594069 0.398159976 0.399066554 0.399730005
13 17 21 25 29 33

δ1 -0.051 (-0.82) -0.0388 (-0.61) -0.0441 (-1.08) -0.041 (-1) -0.0362 (-0.88) -0.0414 (-0.66)
βTT (p1) -0.1671 (-7.8) -0.1343 (-8.7) -0.1448 (-0.34) -0.1447 (-0.33) -0.1386 (-0.3) -0.1447 (-12.43)
βTC (p1) -0.3709 (-8.65) -0.3693 (-8.64) -0.5261 (-3.59) -0.5187 (-3.21) -0.5121 (-3.02) -0.5097 (-11.43)

βHW (p1) -0.0588 (-5.02) -0.0593 (-6.49) -0.0021 (0) 0.0062 (0.01) 0.0068 (0.01) 0.0149 (1.43)
βCH (p1) -1.5041 (-5.37) -1.4773 (-6.38) -2.0936 (-73.2) -2.0604 (-68.61) -2.0324 (-67.69) -2.069 (-11.23)
βTT (p2) 0.0714 (6.32) 0.0682 (8.03) 0.1009 (0.42) 0.0983 (0.36) 0.1044 (0.42) 0.1078 (7.5)
βTC (p2) -0.4103 (-9.18) -0.4794 (-8.63) -0.6313 (-6.85) -0.6296 (-6.68) -0.6227 (-6.29) -0.6108 (-10.18)

βHW (p2) -0.043 (-7.76) -0.0579 (-5.74) -0.078 (-0.15) -0.0938 (-0.19) -0.091 (-0.18) -0.1072 (-6.61)
βCH (p2) -1.3728 (-8.44) -2.1955 (-7.47) -1.3169 (-51.61) -1.1934 (-36.59) -1.2595 (-42.68) -1.2923 (-7.9)

βTT (FB1) 0.1804 (1.26) -0.0884 (-0.88) -0.0551 (-1.3) -0.068 (-1.42) -0.3148 (-10.3) -0.2685 (-2.38)
βTT (FB2) 0.1095 (0.9) -0.3179 (-10) -0.2491 (-7.28) -0.4765 (-15.91) -0.4173 (-3.8)
βTT (FB3) -0.2346 (-7.85) -0.1306 (-3.71) -0.2235 (-8.1) -0.3013 (-2.62)
βTT (FB4) -0.1234 (-3.53) -0.0115 (-0.42) -0.0395 (-0.38)
βTT (FB5) 0.5322 (25.2) 0.5114 (3.44)
βTT (FB6) 0.1453 (1.52)
βTC (FB1) 0.1107 (1.62) 0.1455 (2.28) -1.2582 (-98.99) -1.2316 (-82.24) -1.7933 (-167.63) -0.9804 (-3.03)
βTC (FB2) -0.0905 (-1.18) -1.4785 (-100.24) -1.4101 (-82.01) -1.7686 (-157.62) -1.3941 (-4.96)
βTC (FB3) 0.465 (22.15) 0.3879 (17.55) 0.8431 (53.89) 0.2308 (1.07)
βTC (FB4) 0.1474 (7.02) 0.268 (16.79) -0.0117 (-0.07)
βTC (FB5) -0.3262 (-24.4) -0.0346 (-0.24)
βTC (FB6) 0.3543 (1.93)

βHW (FB1) 0.0936 (0.74) 0.101 (0.97) 0.8733 (30.43) 0.8376 (25.92) 0.8871 (27.94) 0.888 (7.76)
βHW (FB2) -0.2015 (-2.15) 0.0444 (1.1) 0.0096 (0.22) 0.059 (1.42) 0.0571 (0.64)
βHW (FB3) -0.4095 (-11.23) -0.4616 (-12.18) -0.4907 (-12.4) -0.5049 (-4.85)
βHW (FB4) -0.0878 (-2.03) -0.1158 (-2.72) -0.127 (-1.41)
βHW (FB5) 0.0126 (0.33) 0.1476 (1.47)
βHW (FB6) 0.1737 (1.87)
βCH (FB1) 0.2542 (2.36) 0.3062 (3.32) 0.0312 (0.45) 0.0549 (0.88) 0.0632 (0.93) 0.008 (0.12)
βCH (FB2) -0.2815 (-3.23) 0.0096 (0.21) 0.1855 (5.91) 0.0855 (2.07) -0.0482 (-0.52)
βCH (FB3) 0.0913 (2.26) -0.0308 (-0.97) 0.0512 (1.28) 0.0227 (0.28)
βCH (FB4) -0.4063 (-15.9) -0.2555 (-7.32) -0.2864 (-3.23)
βCH (FB5) 0.0043 (0.11) -0.1206 (-1.45)
βCH (FB6) -0.2296 (-2.81)

Table 4: Model estimation on Swiss route choice data (part 2, asy. t-ratios in brackets)
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Figure 1: CDF plots for various FB distributions

25



�� �� � � �

�
��

�
��

�
��

�� = ��	σ� = ��	�� = −��	σ� = ��


�

�
�
�

π� = �π� = ���π� = ��
π� = ���

�� �� � � �

�
��

�
��

�
��

�� = −��	σ� = ��
�	�� = ��	π� = ��


�

�
�
�

σ� = �σ� = ��
σ� = ���σ� = �

�� �� � � �

�
��

�
��

�
��

�� = −��	�� = ��	σ� = σ��	π� = ��


�

�
�
�

σ = ���
σ = ��

σ = ���
σ = ��


�� �� � � �
�
��

�
��

�
��

�� = −��	σ� = ��
�	σ� = ��
�	π� = ��


�

�
�
�

�� = ��� = ��� = ��� = −�

Figure 2: CDF plots for various mixtures of two Normal distributions

26



�� �� �� � � � �

�
��

�
��

�
��

������

α

	
(α
)

�� �� �� � � � �

�
��

�
��

�
��

��	
���

α

	
(α
)

�� �� �� � � � �

�
��

�
��

�
��

��	������

α

	
(α
)

�� �� �� � � � �

�
��

�
��

�
��

��

α

	
(α
)

�� �� �� � � � �

�
��

�
��

�
��

�	������
������������

α

	
(α
)

�� �� �� � � � �

�
��

�
��

�
��

��

α

	
(α
)
Figure 3: CDF plots for α in models estimated on DM(2) data
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Figure 4: CDF plots for α in models estimated on DM(3) data

28



�� �� � � � � �

�
��

�
��

�
��

������

α

	
(α
)

�� �� � � � � �

�
��

�
��

�
��

��	
���

α

	
(α
)

�� �� � � � � �

�
��

�
��

�
��

��	������

α

	
(α
)

�� �� � � � � �

�
��

�
��

�
��

��

α

	
(α
)

�� �� � � � � �

�
��

�
��

�
��

�	������
������������

α

	
(α
)

�� �� � � � � �

�
��

�
��

�
��

���

α

	
(α
)

Figure 5: CDF plots for α in models estimated on LN data
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Figure 6: CDF plots for α in models estimated on N data
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Figure 7: CDF plots for α in models estimated on NM data
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Figure 8: CDF plots for α in models estimated on 2N data
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Figure 9: CDF plots for α in models estimated on U data
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Figure 10: CDF plots for βTT in models estimated on Swiss route choice data
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Figure 11: CDF plots for βTC in models estimated on Swiss route choice data

34



����� ����� ���� ����

�
��

�
��

�
��

β�	
�
��

β�	

�
�

����� ����� ���� ����

�
��

�
��

�
��

β�	
�
��

β�	

�
�

����� ����� ���� ����

�
��

�
��

�
��

β�	
�
��

β�	

�
�

����� ����� ���� ����

�
��

�
��

�
��

�
��

�
��

β�	
�
���

β�	

�
�

����� ����� ���� ����

�
��

�
��

�
��

β�	
�
�����

β�	

�
�

����� ����� ���� ����

�
��

�
��

�
��

β�	
�
����

β�	

�
�

����� ����� ���� ����
�
��

�
��

�
��

β�	
�
����

β�	

�
�

����� ����� ���� ����

�
��

�
��

�
��

β�	
�
����

β�	

�
�

Figure 12: CDF plots for βHW in models estimated on Swiss route choice data
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Figure 13: CDF plots for βCH in models estimated on Swiss route choice data
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