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Abstract

Modellers are increasingly relying on the use of continuous random co-
efficients models, such as Mixed Logit, for the representation of variations
in tastes across individuals. In this paper, we provide an in-depth compar-
ison of the performance of the Mixed Logit model with that of its far less
commonly used discrete mixture counterpart, making use of a combination
of real and simulated datasets. The results not only show significant com-
putational advantages for the discrete mixture approach, but also highlight
greater flexibility, and show that, across a host of scenarios, the discrete
mixture models are able to offer comparable or indeed superior model per-
formance.
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1 Introduction and context

Allowing for variations in behaviour across decision makers is one of the most
fundamental principles in discrete choice modelling, given that the assumption of
a purely homogeneous population cannot in general be seen to be valid.

The typical way of allowing for such variation is through a deterministic ap-
proach, linking the taste heterogeneity to variations in socio-demographic factors
such as income or trip purpose. While appealing from the point of view of inter-
pretation (and especially for forecasting), it is often not possible to represent all
variations in tastes in a deterministic fashion, for reasons of data quality, but also
due to inherent randomness in choice behaviour. For this reason, random coef-
ficient structures, such as the Mixed Multinomial Logit (MMNL) model, which
allow for random variations in behaviour across respondents, have an important
advantage in terms of flexibility. In general, such models have the disadvantage
that their choice probabilities take on the form of integrals that do not possess
a closed form solution, such that numerical processes, typically simulation, are
required during estimation and application of the models. This greatly limited
the use of these structures for many years after their initial developments. Over
recent years, gains in computer speed and the efficiency of simulation based esti-
mation processes (see for example Hess et al. 2006) have however led to increased
interest in the MMNL model in particular, by researchers and, to a lesser degree,
also practitioners.

Despite the improvements in estimation capability, the cost of using the
MMNL model remains high. While this might be acceptable in many cases,
another important issue remains, namely the choice of distribution to be used for
representing the random variations in tastes across respondents. Here, there is a
major risk of producing misleading results when making an inappropriate choice
of distribution, as discussed by Hess et al. (2005).

In this paper, we explore an alternative approach, based on the idea of replac-
ing the continuous distribution functions by discrete distributions, spreading the
mass among several discrete values. Mathematically, the model structure of a dis-
crete mixture (DM) model is a special case of a latent class model (cf. Kamakura
and Russell, 1989; Chintagunta et al., 1991), assigning different coefficient values
to different parts of the population of respondents, a concept discussed in the
field of transport studies for example by Greene and Hensher (2003) and Lee
et al. (2003). Latent class approaches make use of two sub-models, one for class
allocation, and one for within class choice. The former models the probability of
an individual being assigned to a specific class as a function of attributes of the
respondent and possibly of the alternatives in the choice set. The within class
model is then used to compute the class-specific choice probabilities for the dif-
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ferent alternatives, conditional on the tastes within that class. The actual choice
probability for individual n and alternative i is given by a sum of the class-specific
choice probabilities, weighted by the class allocation choice probabilities for that
specific individual.

The latent class approach is appealing from the point of view that it allows for
differences in sensitivities across population groups, where the group allocation
can be related to socio-demographic characteristics. However, in practice, it may
not always be possible to explain group allocation with the help of a probabilistic
model relating the outcome to observed variables. This situation is similar to the
case where taste heterogeneity cannot be explained deterministically, leading to
a requirement for using random coefficients models. As such, in this paper, we
explore the use of models in which the class allocation probabilities are indepen-
dent of explanatory variables, and are simply given by constants that are to be
estimated during model calibration. As such, the resulting model exploits the
class membership concept in the context of random coefficients models, with a
limited set of possible values for the coefficients.

Thus far, there have seemingly been only two main applications of this ap-
proach in the area of transport research, by Gopinath (1995), in the context of
mode choice for freight shippers, and by Dong and Koppelman (2003), who made
use of discrete mixtures of MNL models in the analysis of mode choice for work
trips in New York, referring to the resulting model as the “Mass Point Mixed
Logit model”. Although the properties of DM models have been discussed by
several other authors (e.g. Wedel et al., 1999), the model structure does not seem
to have received widespread exposure or application, despite its many appealing
characteristics. Given this observation, part of the aim of this paper is to re-
explore the potential advantages of DM models, with the hope of encouraging
their more widespread use. Additionally, the paper aims to offer a systematic
comparison of the performance of discrete and continuous mixture models across
a host of situations, making use of simulated data.

The remainder of this paper is organised as follows. The next section sets out
the theory behind DM models. Section 3 presents a case study using real data,
while Section 4 uses four different simulated datasets in a systematic compari-
son of discrete and continuous mixture models. Finally, Section 5 presents the
conclusions of the paper.

2 Methodology

Let xin be a vector defining the attributes of alternative i as faced by respondent
n, and let β be a vector defining the tastes of the decision maker, where, in
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purely deterministic models, β is constant across respondents. Furthermore, let
xn be a vector grouping together the individual vectors xjn across the alternatives
contained in the choice set of respondent n. We can then define Pn (i | xn, Cn, β)
to give the choice probability of alternative i for individual n, with a choice set
Cn, conditional on the observed vector xn, and for given values for the vector of
parameters β(to be estimated).

In a discrete mixture context, the number of possible values for the taste
coefficients β is finite. Here, we divide the set of parameters β into two sets;
β̄ represents a part of β containing deterministic parameters, while β̂ is a set
of K random parameters that have a discrete distribution. Within this set, the
parameter β̂k has mk mass points β̂

j
k, j = 1, . . . ,mk, each of them associated with

a probability π
j
k, where we impose the conditions that1

0 ≤ π
j
k ≤ 1, k = 1, . . . ,K; j = 1, . . . ,mk, (1)

and
mk∑

j=1

π
j
k = 1, k = 1, . . . ,K. (2)

For each realisation β̂
j1
1

, . . . , β̂
jK

K of β̂, the choice probability is given by

Pn

(
i | xn, Cn, β = 〈β̄, β̂

j1
1

, . . . , β̂
jK

K 〉
)

, (3)

where the deterministic part of β̄ stays constant across realisations of the vector
β̂.

The unconditional choice probability for alternative i and decision maker n

can now be written straightforwardly as a mixture over the discrete distributions
of the various elements contained in β̂ as:

Pn

(
i | xn, Cn, β̄, β̂, π

)

=

m1∑

j1=1

· · ·

mK∑

jK=1

Pn

(
i | xn, Cn, β = 〈β̄, β̂

j1
1

, . . . , β̂
jK

K 〉
)

π
j1
1

· . . . · πjK

K , (4)

where β̄, β̂ and π (π = 〈π1
1
, . . . , πm1

1
, . . . , π1

K , . . . , π
mK

K 〉) are vectors of parameters
to be estimated in a regular maximum likelihood estimation procedure. An obvi-
ous advantage of this approach is that, if the model (3) used inside the mixture
has a closed form, then so does the DM itself.

1These constraints can be avoided by setting πi = eαi
P

J
j=1

e
αj , where αj with j = 1, . . . , J

are estimated without constraints. While avoiding the need for constraints, this formulation
becomes highly non-linear and difficult to handle in estimation.
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In this paper, we focus on the simple case where the underlying choice model
is of MNL form; however, the form given in equation (4) is appropriate for any
underlying model (e.g. Nested Logit). The approach can easily be extended
to the case of combined discrete and continuous random taste heterogeneity, by
partitioning β into three parts; the above defined parts β̄ and β̂, and an additional
part β̃, whose elements follow continuous distributions2. This however leads to a
requirement to use simulation, as with all continuous mixture models.

Finally, a treatment of repeated choice observations analogous to the standard
continuous mixture treatment, with tastes varying across individuals, but not
across observations for the same individual, is made possible by replacing the
conditional choice probabilities for individual observations in equation (4) by
probabilities for sequences of choices, and by using the resulting DM term inside
the log-likelihood function.

Several issues arise in the estimation of DM models. Firstly, the non-concavity
of the log likelihood function does not allow the identification of a global maxi-
mum, even for discrete mixtures of MNL. Given the potential presence of a high
number of local maxima, performing several estimations from various starting
points is advisable. Also, it is good practice to use starting values other than 0 or
1 for the π

j
k parameters. Secondly, constrained maximum likelihood must be used

to account for constraints (1) and (2). Thirdly, clustering of mass points (for ex-
ample around the mode of the true distribution) is a frequent phenomenon with
DM models, and the use of additional bounds on the mass points can be useful,
based on the definition of (potentially mutually exclusive) a priori intervals for
the individual mass points. In this context, a heuristic is needed to determine the
optimal number of support points in actual applications. Some of these issues
have caused problems in past applications of DM models, see for example Dong
and Koppelman (2003). Given these problems in past research, the results of our
analysis should ideally be reconfirmed in future work.

For the purpose of this analysis, the model was coded into BIOGEME (Bier-
laire, 2003), where various constraints on the parameters can be imposed to
address the issues described above. This also allows modellers to test the validity
of specific assumptions, such as a mass at zero for the VTTS, a concept discussed
for example by Cirillo and Axhausen (2006).

2This approach can then also be used to include error components for correlation or het-
eroscedasticity.
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3 VTTS case study

In this section, we present the findings of an analysis making use of real world
data. We first give a brief description of the data in Section 3.1, before looking
at model specification in Section 3.2. The estimation results are presented in
Section 3.3.

3.1 Data

The study presented here makes use of Stated Preference (SP) data collected as
part of a recent value of time study undertaken in Denmark (Burge and Rohr,
2004). Specifically, we make use of data describing a binary choice process for
car travellers, with alternatives described only in terms of travel cost and travel
time. This may be seen as a simple design for a SP survey. However, this is now
a standard SP format for VTTS studies in Europe (e.g. Mackie et al., 2003). In
any case, the design of the survey should have no direct impact on the comparison
between DM and MMNL models in this analysis.

Each respondent was presented with 9 choice situations, including one with
a dominating alternative. After eliminating the observations with a dominating
alternative, as well as additional data cleaning (removing non-traders and re-
spondents who did not choose the dominating alternative3), a sample of 13,386
observations from 1,723 respondents was obtained. This equates to 3,037 obser-
vations from 392 commuters, 1,081 observations from 142 respondents travelling
for education purposes, 1,767 observations from 230 people on shopping trips,
3,155 observations from 404 people travelling to visit friends or relatives, 1,752
observations from 224 general leisure travellers and 2,594 observations from 331
respondents travelling for other purposes.

To allow us to gauge the stability of the results, multiple random subsamples
of around 80% of the original sample size were generated for each of the above
listed six purpose segments4.

3.2 Model specification

The models used in this paper were estimated in log-WTP (willingness to pay)
space, avoiding the effect of heterogenous scale (cf. Fosgerau and Bierlaire, 2006),

3The dominating alternative was both cheaper and faster. Respondents observed to choose
the slower and more expensive alternative were deemed not to have correctly understood the
survey, and were removed from the analysis. The number of non-traders in the data was fairly
low, but their removal was in line with previous studies using the same data (cf. Fosgerau, 2006).

4The selection was performed at the individual-specific level, rather than the observation-
specific level.
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while allowing us to represent random variations in the VTTS without the issue
of calculating the VTTS on the basis of separate randomly distributed coefficients
for travel time and travel cost. This was found to be the best specification for
this dataset by Fosgerau (2006).

Details of the specification are given by Fosgerau (2006). In summary, we
let Ti and Ci define the time and cost attributes of alternative i, and rearrange
the data such that T1 > T2 and C1 < C2, i.e., the first alternative is slower but
cheaper than the second alternative. By further setting αLV = ln (V TTS), we
get the following utility functions:

U1 = λ ln

(
−

∆C

∆T

)
+ ε1 (5)

and

U2 = λ αLV + ε2, (6)

where ∆C = C1 − C2 and ∆T = T1 − T2, while ε1 and ε2 give the usual type I
iid extreme value terms. The scale λ is estimated in addition to αLV , and, with
travel costs given in Danish Krona (DKK) and travel times given in minutes, the
actual VTTS in DKK per hour is obtained by 60 · exp (αLV ). The specification
set out above can now be used in a standard discrete choice framework, with
either a fixed estimate for αLV , or with random variation across respondents.

3.3 Model results

During the analysis, four different types of model were estimated on the data; a
simple MNL model, a MMNL model using a Normal distribution, and two DM
specifications, one with two support points, DM(2), and one with three support
points, DM(3)5. In the MMNL and DM models, the repeated choice nature of
the data was taken into account by specifying the likelihood function with the
integration (respectively summation in the DM models) outside the product over
replications for the same respondent.

Each of these models was estimated across the six population segments, with
10 different random subsamples for each segment. Given this wealth of results,
we presented detailed results only for a single subsample for shopping trips (Sec-
tion 3.3.1), and give summary results for the remaining five population segments
(Section 3.3.2). It should be said that, across segments and models, the results
were very stable across subsamples, where a similar observation was also made
with slightly smaller subsamples, allowing for smaller overlap.

5Models with more than three support points collapsed back to the more basic specifications.
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3.3.1 Detailed results for shopping trips

The results for the various models estimated on the data for shopping trips are
summarised in Table 1. Several differences arise across models in the presentation
of the results. As such, for the MNL model, only αLV and λ are estimated. For
the MMNL model, αLV follows a Normal distribution, with mean αLV,µ and
standard deviation αLV,σ. For the two DM models, the value of αLV is spread
across several support points αLV,k with associated probabilities 0 ≤ πk ≤ 1, such

that
∑K

k=1
πk = 1, with K = 2 and K = 3 in DM(2) and DM(3) respectively.

The table also shows the calculated VTTS. For the MNL model, the mean
VTTS is simply obtained through 60 · exp (αLV ). However, for the three mixture
models, the non-linearity in the exponential means that a different approach is
required. With αLV ∼ N (µα, σα) in the MMNL model, the actual VTTS follows

a log-normal distribution with mean µV TTS = exp
(
µα + σ2

α

2

)
and standard devi-

ation σV TTS = µ
√

exp (σ2
α) − 1. Both µV TTS and σV TTS can then be multiplied

by 60 to obtain hourly values. For the DM models, a slightly different approach
was used. As such, with K support points αLV,k and associated probabilities πk,
a sequence of draws was generated that contained πk ·N points with a value equal
to exp (αLV,k), with k = 1, . . . ,K. The sample mean and standard deviation from
this sequence were then used as estimates of the mean and standard deviation
for the actual VTTS. For the results presented here, the value of N was set to
100, 000, beyond which no visible differences were observed for σV TTS . Finally,
along with the results for individual subsamples, the table also shows some overall
measures, namely the average of the adjusted ρ2 measure, the average estimation
time, and the average for µV TTS and σV TTS (together with a standard deviation
of this mean across subsamples).

The first observation that can be made from Table 1 is that all three mixture
models offer significant improvements in model fit over the base MNL model.
Given the structural differences between the continuous and discrete mixture
models, the comparison between these models is carried out using the adjusted
ρ2 measure rather than the log-likelihood function. Here, we can see that DM(2)
offers the best performance, ahead of DM(3) and the MMNL model. While the
model with three support points obtains slightly better model fit than the model
with two support points, the gains are not large enough to be significant when
taking into account the additional cost in terms of the number of parameters. In
other words, the model with three support points is not able to retrieve signifi-
cant amounts of additional heterogeneity when compared to the model with two
support points. This can partly be seen as a reflection of the success of the model
with two support points, but is also an illustration of the difficulties of estimating
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Model MNL MMNL DM(2) DM(3)
Final LL -880.96 -849.65 -845.40 -844.60

adj. ρ2 0.1036 0.13433 0.136613 0.135399
Estimation time (s) 1 75 1 3

est. -1.1100 -1.0800 - -αLV,µ
asy. t-ratio -14.20 -11.30 - -

est. - 0.8950 - -αLV,σ
asy. t-ratio - 8.75 - -

est. - - 0.5410 0.7770αLV,1
asy. t-ratio - - 1.89 2.26

est. - - 0.2130 0.1560π1
asy. t-ratio (i) - - 3.73 2.69

est. - - -1.4700 -1.7800αLV,2
asy. t-ratio - - -13.40 -5.40

est. - - 0.7870 0.4550π2
asy. t-ratio (i) - - 13.80 1.53

est. - - - -0.9100αLV,3
asy. t-ratio - - - -2.09

est. - - - 0.3890π3
asy. t-ratio (i) - - - 1.35

est. 0.8380 1.0300 1.0100 1.0300λ
asy. t-ratio 11.50 12.10 12.30 12.10

Mean VTTS (DKK/hour) 19.77 30.41 32.81 34.29
VTTS standard deviation - 33.70 36.55 41.86

Table 1: Estimation results on Danish shopping data

models with more than two support points, as alluded to in Section 2.
The next observation relates to the much lower estimation cost for the DM(2)

model, with an average estimation time of one second, compared to seventy-five
with the MMNL model. This much lower estimation cost would give the DM
models a significant advantage in the case of larger datasets, where the absolute
estimation times would be more substantial. Furthermore, the estimation time
for the MMNL model was in this case kept low through the use of only 250 Halton
draws in the estimation.

In terms of substantive results, the mean VTTS measures obtained by the
three mixture models are significantly higher than the point estimate obtained
with the MNL model. This is at least partly a result of the asymmetrical distri-
bution of the VTTS in the mixture models. While there are also some differences
between the three mixture models in the estimates for µV TTS , these are much
smaller than the difference when compared to the MNL estimates. Finally, the
estimate for σV TTS is much higher in the DM(3) model, while the estimate for
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Commuters Education Leisure Other Visit
adj. ρ2: 0.1017 0.1282 0.1102 0.0888 0.1007

estimation time (s): 1 1 1 1 1
M

N
L

Mean VTTS (DKK/hour): 29.08 29.32 26.40 22.73 23.82
adj. ρ2: 0.1263 0.1599 0.1395 0.1127 0.1294

estimation time (s): 131 51 74 107 127
Mean VTTS (DKK/hour): 39.51 37.28 37.62 34.76 35.83

M
M

N
L

Std.dev. VTTS 35.90 29.24 38.43 39.85 39.61
adj. ρ2: 0.1291 0.1609 0.1433 0.1156 0.1337

estimation time (s): 2 1 1 2 2
Mean VTTS (DKK/hour): 39.78 36.96 37.03 34.43 37.36

D
M

(2
)

Std.dev. VTTS 30.50 24.01 28.03 29.17 36.28
adj. ρ2: 0.1279 0.1576 0.1412 0.1142 0.1326

estimation time (s): 4 1 2 3 4
Mean VTTS (DKK/hour): 39.78 37.04 37.03 34.43 37.18

D
M

(3
)

Std.dev. VTTS 30.50 24.36 28.03 29.17 36.16

Table 2: Summary of results for commuters, education trips, leisure trips, other
purposes and visits

the DM(2) model and the MMNL model are very similar.

3.3.2 Other results

Table 2 summarises the results for the various models estimated on the remaining
five purpose segments. The results are very similar to those obtained on the
data for shopping trips. As such, all three mixture models outperfom the MNL
model, where the best performance is consistently obtained by the DM(2) model.
Again, the DM(3) model is not able to retrieve significant levels of additional
taste heterogeneity to warrant the estimation of two additional parameters. In
fact, the estimates for µV TTS and σV TTS are almost universally equivalent across
the two models6. As in the case of shopping trips, the advantages of the DM
models in terms of estimation time are again very significant, across all five
purpose segments. Finally, while there are almost no differences in the estimates
for µV TTS between the three different mixture models (where the estimates are
again significantly higher than those for the MNL models), the estimates for
σV TTS are now lower in the DM models, something that was not the case in the
shopping segment.

6It is worth noting that, with the exception of the education segment, the adjusted ρ2 measure
is higher for the DM(3) model than for the MMNL model.
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4 Simulated data case studies

The application presented in Section 3 has shown the potential advantages of
using a discrete mixture approach. However, it is clearly impossible to generalise
these results, which could well be specific to the data at hand. For this, a sys-
tematic comparison between discrete and continuous mixture models is required;
this is the topic of this section, which presents the findings of four case studies
making use of simulated data.

In each of the four case studies, the generation of the data is based on the
Danish VOT data used in the case study described in Section 3. Specifically,
we use 10, 776 observations from 1, 347 respondents, and generate choices based
on the attributes used in the original survey data. For each of the four different
true models, ten sets of choices are generated for each observation, allowing us
to gauge the stability of results across different samples. With the exception of
the first case study, where the MMNL model had slightly higher variation across
samples, the results were relatively stable, such that we only present results for
the first subsample in each case7.

Unlike in the case study described in Section 3, we now work in preference
space, with separate coefficients for travel time and travel cost. In each case,
the travel cost coefficient is kept fixed while some random distribution is used
for the travel time coefficient, with distributions chosen so as to give realistic
ranges for the VTTS distribution. Finally, the data generation was in each case
carried out under the assumption of constant tastes across replications for the
same individual, and the same approach was later used in model estimation.

In the first two case studies, the true model is a discrete mixture, while in the
final two case studies, the true model is a continuous mixture. This allows us to
gauge the relative difficulties of the two types of model in dealing with data for
which the other model type is more appropriate.

Before proceeding to the discussion of the results, it should be noted that
all MMNL models presented here make use of a Normal distribution. Attempts
to use alternative continuous distribution functions, such as Johnson’s SB, did
not lead to consistent results on the data used here. While the findings from
this analysis are thus limited to a comparison between a discrete mixture and
a normal mixture, it should be remembered that the vast majority of MMNL
studies make use specifically of this Normal distribution, such that the results
are still relevant.

7Detailed results are available from the first author on request.
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MNL MMNL DM(2)A DM(2)B

Final LL -4565.42 -4122.22 -4007.05 -4007.05
par. 2 4 8 5

adj. ρ2 0.3885 0.4476 0.4625 0.4629
est.time (s) 2 234 17 6

est. asy.t-rat. est. asy.t-rat. est. asy.t-rat. est. asy.t-rat.
βT -0.4081 -36.16 - - - - - -

βT,µ - - -0.6409 -36.28 - - - -
βT,σ - - 0.1553 10.31 - - - -
βT,1 - - - - -0.5050 -40.99 -0.5050 -40.99
πT,1 - - - - 0.7258 50.22 0.7258 50.22
βT,2 - - - - -1.0231 -40.81 -1.0231 -40.81
πT,2 - - - - 0.2742 18.97 0.2742 18.97

βC -0.6424 -34.09 - - - - -1.0083 -42.20
βC,µ - - -1.0613 -36.64 - - - -
βC,σ - - 0.2071 9.66 - - - -
βC,1 - - - - -1.0083 -12.20 - -
πC,1 - - - - 0.3035 0.00 - -
βC,2 - - - - -1.0083 -24.03 - -
πC,2 - - - - 0.6965 0.00 - -

µV TTS 38.11 37.81 38.50 38.50
σV TTS - 12.75 13.75 13.75

Table 3: Estimation results for first simulated dataset

4.1 Case study 1: discrete mixture with two support points

The first case study makes use of data generated with the help of a discrete
mixture model with two mass points for βT , at −1 and −0.5, with probabilities
of 0.25 and 0.75 respectively. The travel cost coefficient is fixed at a value of
−1, such that we obtain a mean VTTS of 37.5 DKK per hour with a standard
deviation of 13.33 DKK per hour.

Table 3 presents detailed results for the first of the ten subsamples generated
for this case study. In addition to a basic MNL model, we estimated a MMNL
model using a Normal distribution and a discrete mixture model with two support
points on this dataset8. In both cases, we allowed for random variations in βC

as well as βT . Consistent with the true model, no variations were observed for
βC in the discrete mixture model, labelled DM(2)A, such that a second model,
DM(2)B, was estimated, in which βC was kept fixed.

In a comparison between the three remaining models, MNL, MMNL and
DM(2)B, we observe that the discrete mixture model outperforms the continuous
mixture model, which in turn outperforms the MNL model. In terms of estima-

8No further gains in model performance were obtained by allowing for more than two support
points.
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Figure 1: Cumulative distribution function for βT for first simulated dataset

tion time, DM(2)B has clear advantages over the MMNL model, and the higher
estimation cost when compared to MNL is well justified on the basis of the im-
provements in model performance. All three models offer very good performance
in retrieving the mean VTTS, while the two mixture models additionally offer
good performance in the estimation of the standard deviation.

A final point deserves some special attention. As mentioned above, we initially
allowed for random variation in βC as well as βT . The estimation of the first
discrete mixture model, DM(2)A, offered no evidence of such heterogeneity, such
that the model was replaced by DM(2)B. However, for the continuous mixture
model, MMNL, we retrieved significant heterogeneity for βC as well as for βT ,
despite the fact that βC was kept fixed in the generation of the data. This offers
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clear evidence of confounding; by being unable to retrieve the correct patterns
of heterogeneity for βT , the MMNL model explains part of the remaining error
in the model through heterogeneity in βC . As such, while the model is able to
correctly retrieve the mean and standard deviation of the VTTS, it does so by
incorrectly indicating a variation across respondents in the sensitivity to changes
in travel cost.

The findings from Table 3 are confirmed by a graphical analysis of the shape
for the distribution of βT in Figure 1, where this comparison is made possible by
the fact that the mean estimate for βC is essentially equal to −1 in all models.

4.2 Case study 2: discrete mixture with three support points

In the second case study, the true model is again a discrete mixture of a MNL
model, where this time, three support points are used for βT , at −1, −0.7 and
−0.4, with probabilities of 0.3, 0.35 and 0.35. This leads to a true mean VTTS
of 41.1 DKK per hour, with a standard deviation of 14.48 DKK per hour. Four
different models were estimated on these data; along with the usual MNL and
MMNL models, we estimated a DM with two support points, and a DM with three
support points9. Again, the DM models were estimated with two different spec-
ifications, using a randomly distributed βC coefficient in DM(2)A and DM(3)A,
and a fixed βC coefficient in DM(2)B and DM(3)B. The detailed results for the
first sample are presented in Table 4.

The results show major improvements for the MMNL and various DM models
when compared to the MNL model. All six models perform very well in terms
of retrieving the mean VTTS, while the five mixture models also obtain a good
approximation to the true standard deviation of the VTTS. We now look in more
detail at the differences between the various mixture models. As was the case in
the case study discussed in Section 4.1, the MMNL model again falsely recovers
some random variation for βC , where the level of variation is however much lower
than was the case in the first case study. When only allowing for two support
points, the DM models also retrieve significant variation for βC , as reflected in
the drop in model fit observed from DM(2)A to DM(2)B when constraining βC to
a fixed value. This is no longer the case when using three support points. Finally,
as was the case in Section 4.1, the DM models again have a significant advantage
over the MMNL model in terms of estimation cost.

Figure 2 shows the cumulative distribution functions for βT in the MMNL
model, as well as in DM(2)A and DM(3)B. The advantages of the DM models
are again very obvious, especially in the case of the model with three support

9No further gains could be made by using more than three support points.
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MNL MMNL DM(2)A DM(2)B DM(3)A DM(3)B

Final LL -4721.69 -4155.65 -4126.23 -4227.43 -4120.96 -4120.99
par. 2 4 8 5 12 7

adj. ρ2 0.3676 0.4431 0.4465 0.4334 0.4467 0.4473
est.time (s) 1 346 16 6 151 13

est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat
βT -0.3925 -33.72 - - - - - - - - - -

βT,µ - - -0.6817 -34.78 - - - - - - - -
βT,σ - - 0.2423 25.15 - - - - - - - -
βT,1 - - - - -0.8561 -36.56 -0.4005 -36.62 -0.3930 -29.72 -0.7015 -34.17
πT,1 - - - - 0.6210 27.38 0.5028 27.72 0.3185 14.88 0.4069 14.02
βT,2 - - - - -0.4221 -28.99 -0.8084 -39.33 -0.7031 -32.76 -0.3927 -29.84
πT,2 - - - - 0.3790 16.71 0.4972 27.41 0.4093 13.50 0.3187 14.89
βT,3 - - - - - - - - -1.0262 -32.13 -1.0234 -34.26
πT,3 - - - - - - - - 0.2723 10.94 0.2744 11.64

βC -0.5732 -33.39 - - - - -0.8783 -40.98 - - -1.0084 -39.31
βC,µ - - -0.9965 -37.48 - - - - - - - -
βC,σ - - 0.0591 4.51 - - - - - - - -
βC,1 - - - - -1.2023 -35.79 - - -1.0015 -23.66 - -
πC,1 - - - - 0.5357 13.28 - - 0.8114 0.69 - -
βC,2 - - - - -0.8469 -33.57 - - -1.0454 -6.67 - -
πC,2 - - - - 0.4643 11.51 - - 0.1886 0.16 - -
βC,3 - - - - - - - - -1.2583 0.00 - -
πC,3 - - - - - - - - 0.0000 0.00 - -

µV TTS 41.08 41.18 41.22 41.25 41.18 41.09
σV TTS - 14.86 14.68 13.94 14.41 14.44

Table 4: Estimation results for second simulated dataset
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Figure 2: Cumulative distribution function for βT for second simulated dataset

points.

4.3 Case study 3: Normal mixture

For the third case study, a MMNL model with a normally distributed travel time
coefficient was chosen as the true model. Specifically, βC is still fixed to a value
of −1, while βT now follows a Normal distribution with mean of −0.8 and a
standard deviation of 0.3, leading to a mean VTTS of 48 DKK/hour, with a
standard deviation of 18 DKK.

The results for the first subsample of the third simulated dataset are sum-
marised in Table 5. A slightly different strategy was employed in the model
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MNL MMNLA MMNLB DM(5)A DM(5)B DM(6)A DM(6)B

Final LL -4742.06 -3912.57 -3913.9 -3910.2 -3913.54 -3908.43 -3908.61
par. 2 4 3 14 11 16 13

adj. ρ2 0.3649 0.4756 0.4756 0.4746 0.4746 0.4746 0.4750
est.time (s) 1 341 233 143 41 141 59

est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat
βT -0.4008 -32.11 - - - - - - - - - - - -

βT,µ - - -0.8359 -36.67 -0.8329 -36.69 - - - - - - - -
βT,σ - - 0.3134 25.27 0.3113 25.03 - - - - - - - -
βT,1 - - - - - - -0.1343 -1.99 -0.1867 -4.82 -0.0859 -1.55 -0.1293 -1.88
πT,1 - - - - - - 0.0372 2.34 0.0566 3.82 0.0245 2.55 0.0362 2.32
βT,2 - - - - - - -0.4585 -13.87 -0.5071 -17.37 -0.3621 -8.79 -0.4449 -14.26
πT,2 - - - - - - 0.1838 6.55 0.2326 9.14 0.0742 1.90 0.1710 6.66
βT,3 - - - - - - -0.7021 -22.49 -0.7904 -28.13 -0.7102 -20.65 -0.6800 -24.56
πT,3 - - - - - - 0.2231 3.96 0.3529 9.63 0.2026 3.28 0.2247 4.71
βT,4 - - - - - - -1.1872 -29.66 -1.1208 -26.75 -0.9006 -19.61 -0.8830 -20.63
πT,4 - - - - - - 0.2905 7.70 0.3296 9.67 0.2653 5.11 0.2597 5.79
βT,5 - - - - - - -0.8964 -19.79 -1.6253 -20.78 -0.5177 -10.19 -1.1502 -29.93
πT,5 - - - - - - 0.2654 5.25 0.0283 2.85 0.1441 3.01 0.2818 7.47
βT,6 - - - - - - - - - - -1.1902 -29.58 -1.6423 -21.24
πT,6 - - - - - - - - - - 0.2893 7.61 0.0267 3.10

βC -0.4999 -30.13 - - -1.0267 -38.53 - - -1.0135 -37.67 - - -1.0213 -37.66
βC,µ - - -1.0254 -38.58 - - - - - - - - - -
βC,σ - - 0.0080 0.47 - - - - - - - - - -
βC,1 - - - - - - -0.7467 -18.57 - - -0.7485 -18.50 - -
πC,1 - - - - - - 0.0862 2.67 - - 0.0861 2.68 - -
βC,2 - - - - - - -1.0545 -34.46 - - -1.0569 -34.41 - -
πC,2 - - - - - - 0.9138 28.31 - - 0.9139 28.42 - -

µV TTS 48.10 48.93 48.68 48.96 48.72 48.77 48.81
σV TTS - 18.34 18.20 18.08 18.15 18.15 18.15

Table 5: Estimation results for third simulated dataset
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estimation in this case study. From the experience of the first two case studies,
it had to be assumed that some of the distribution of βT would erroneously be
picked up as heterogeneity in βC . This would apply especially in the discrete mix-
ture models with a low number of support points. As such, alongside the MNL
model, two different MMNL models were estimated, one with βC kept fixed, and
one with a randomly distributed βC . In the discrete mixture models, 2 support
points were used for βC , while the number of support points for βT was gradually
increased up to the point where no heterogeneity was retrieved for βC , i.e. the
random taste heterogeneity in the data is captured correctly by βT on its own.
It was found that this point was reached between five and six support points for
βT . No further gains in model performance could be obtained by increasing the
number of support points for βT any further, independently of the treatment of
βC .

Again, all the different models offer good performance in retrieving the true
mean value of the VTTS, while the various mixture models additionally offer
a good approximation to the true standard deviation. The six mixture models
offer significant improvements in model performance when compared to the MNL
model. As in the other examples, the DM models again have computational
advantages over the MNL model. Given the results from the other case studies,
it is of interest to look at the issue of confounding between the heterogeneity for
βT and βC . In the MMNL model and the DM model with six support points,
the reductions in model fit resulting from using a fixed βC coefficient are not
significant. With only five support points, the drop in model fit is slightly more
visible (DM(5)A vs DM(5)B), yet still not significant when taking into account
the cost of estimating three additional parameters. However, in earlier models,
using fewer than five support points for βT , this was not the case, and there were
significant amounts of confounding10.

Finally, it is of interest to look at the specific patterns of heterogeneity re-
trieved by the discrete mixture models, where we focus on MMNLB, DM(5)A

and DM(6)B. Here, it can be seen from Figure 3 that the two DM models offer
a very good approximation to the Normal distribution.

4.4 Case study 4: Mixture of two Normals

For the fourth case study, a more complex mixture was used. As such, the true
distribution is now a mixture of two Normal distributions, where βT = π1 βT1

+
π2 βT2

, with π1 = π2 = 0.5, and with βT1
∼ N(−0.8, 0.2) and βT2

∼ N(−0.3, 0.1).
The cost coefficient βC was again kept fixed at −1. With this, we obtain a

10Detailed results available on request.
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Figure 3: Cumulative distribution function for βT for third simulated dataset

true mean VTTS of 33 DKK/hour, with a standard deviation of 17.76 DKK.
In model estimation, the strategy from the third case study was again adopted,
gradually increasing the number of support points for βT in the DM models, while
maintaining the number of support points for βC fixed at 2. Again, the issue of
confounding largely disappeared when using five or more support points.

The results for the first subsample are presented in Table 6. Along with the
MNL model, two MMNL models were estimated, where MMNLA and MMNLB

again differ by using a randomly distributed and fixed βC coefficient respectively.
Although the standard deviation for βC is significantly different from zero in
model MMNLA, it is very small compared to the mean value, such that it is no
surprise that the effect of using a fixed coefficient is very small, with very similar

18



MNL MMNLA MMNLB DM(5)A DM(5)B DM(6)A DM(6)B

Final LL -5296.84 -4405.54 -4406.11 -4359.07 -4363.23 -4359.03 -4363.23
par. 2 4 3 14 11 16 13

adj. ρ2 0.2906 0.4096 0.4097 0.4145 0.4144 0.4143 0.4141
est.time (s) 7 341 213 197 33 174 75

est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat est. asy.t-rat
βT -0.2153 -27.80 - - - - - - - - - - - -

βT,µ - - -0.5115 -30.23 -0.5155 -30.62 - - - - - - - -
βT,σ - - 0.2930 29.23 0.2954 29.82 - - - - - - - -
βT,1 - - - - - - -0.0844 -1.33 -0.0787 -1.27 -0.0855 -1.36 -0.0787 -1.27
πT,1 - - - - - - 0.0377 1.42 0.0363 1.47 0.0385 1.41 0.0363 1.47
βT,2 - - - - - - -0.2831 -7.90 -0.2713 -16.19 -0.2835 -7.01 -0.2713 -16.19
πT,2 - - - - - - 0.3461 0.98 0.3761 6.32 0.3395 0.77 0.3761 6.32
βT,3 - - - - - - -0.9833 -20.76 -0.3788 -11.94 -0.3216 -3.95 -0.3788 -11.94
πT,3 - - - - - - 0.1900 4.71 0.0921 1.46 0.1102 0.25 0.0921 1.46
βT,4 - - - - - - -0.3253 -4.58 -0.6543 -28.15 -0.7247 -9.82 -0.4676 0.00
πT,4 - - - - - - 0.1047 0.29 0.2848 10.16 0.0749 0.33 0.0000 0.00
βT,5 - - - - - - -0.6690 -20.61 -0.9546 -30.00 -0.6555 -11.72 -0.6543 -28.15
πT,5 - - - - - - 0.3215 8.36 0.2107 8.94 0.2508 1.13 0.2848 10.16
βT,6 - - - - - - - - - - -0.9842 -21.79 -0.9546 -30.00
πT,6 - - - - - - - - - - 0.1860 4.77 0.2107 8.94

βC -0.4194 -31.89 - - -0.9721 -37.89 - - -0.9737 -37.40 - - -0.9737 -37.40
βC,µ - - -0.9718 -38.17 - - - - - - - - - -
βC,σ - - 0.0352 1.97 - - - - - - - - - -
βC,1 - - - - - - -1.0781 -22.66 - - -0.8725 -15.68 - -
πC,1 - - - - - - 0.5965 4.03 - - 0.3572 1.70 - -
βC,2 - - - - - - -0.8801 -20.83 - - -1.0662 -18.58 - -
πC,2 - - - - - - 0.4035 2.73 - - 0.6428 3.06 - -

µV TTS 30.80 31.60 31.82 32.60 32.49 32.64 32.49
σV TTS - 18.15 18.23 17.39 17.10 17.38 17.10

Table 6: Estimation results for fourth simulated dataset
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model performance for MMNLB. In the DM models, we experience a very small,
and insignificant drop in model fit when constraining βC to a single value. Here,
two further observations can be made. In model DM(5)A, the difference between
βC,1 and βC,2 is not significant beyond the 48% level of confidence, while, in
model DM(6)A, it is not significant beyond the 50% level of difference. It can
also be seen that, on average, when moving from DM(5)A to DM(5)B and from
DM(6)A to DM(6)B, the standard errors associated with the various πT,k param-
eters decrease. Finally, model DM(6)B can be seen to reduce to model DM(5)B;
the additional support point, as well as its associated probability, are not sig-
nificantly different from zero. All seven models again offer good performance in
the retrieval of the true mean VTTS, where the six mixture models also perform
well for the standard deviation. The DM models maintain their advantages in
terms of estimation cost, where these are naturally smaller than before given the
higher number of parameters. In terms of model performance, the MMNL models
clearly outperform the MNL model, while the various DM models have a small
advantage over the MMNL models.

When looking at the retrieval of the true shape for the distribution of βT , it
can be seen that the MMNL models using a single Normal distribution produce a
mean that is the weighted average of the mean of the two Normal distributions.
The DM models on the other hand do recover the multi-modality of the true
distribution11. These findings are reflected in the shape of the distributions for
βT in Figure 4, where the DM models (DM(5)A and DM(6)B) are better able to
account for the multi-modality of the true distribution.

In closing, it should be noted that, in this example, the uni-modal MMNL
model still manages to retrieve the true mean and standard deviation of the
multi-modal true distribution of the VTTS. This can be explained by the fact
that the probabilities for the two Normal distributions were set evenly to 0.5,
where the difference in the standard deviation for βT1

and βT2
was also rather

small. Different patterns could be expected in a more asymmetrical scenario.

5 Summary and Conclusions

With the availability of powerful computers and estimation tools, researchers
and practitioners are increasingly making use of continuous mixture structures,
such as Mixed Logit, in the representation of random taste heterogeneity across
respondents. Despite the gains in estimation power, the cost of using such mixture
models remains high, especially in large scale studies. Furthermore, several issues

11It should be noted that, in the retained DM model, DM(5)B , two of the probabilities for
support points, πT,1 and πT,3, are only significant at the 85% level of confidence.
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Figure 4: Cumulative distribution function for βT for fourth simulated dataset

arise due to the models’ reliance on specific distribution functions, whose shape
is not necessarily consistent with that of the true, unobserved distribution.

In this paper, we have discussed an alternative approach for the representa-
tion of random taste heterogeneity, making use of discrete mixtures instead of
continuous mixtures. Although several issues can also arise in the estimation of
such models, they have the advantage of a closed form solution, and can hence be
estimated and applied without relying on simulation processes. Furthermore, the
models are free from a priori assumptions as to the shape of the true distribution.

The paper presents several case studies offering an in-depth comparison of the
two modelling approaches, making use of real data as well as four separate simu-
lated datasets. The results of these analyses clearly show the major advantage of
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the discrete mixture approach in terms of estimation cost. They also show that,
across scenarios, the discrete mixture models are able to attain similar or indeed
better performance than their continuous counterparts. Finally, they are better
able to deal with complicated true distributions, such as the presence of multiple
modes.

Although further comparisons between the two modelling approaches are
required, the results from this paper do suggest that discrete mixture models
present a viable alternative, partly thanks to their lower cost in estimation and
application, but also due to the absence of a priori shape assumptions, which is of
great interest in the context of recent discussions of the issue of the specification
of continuous heterogeneity by Hess et al. (2005).
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