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Abstract 

 
In this paper, we present an analysis of air travel choice behaviour in the San Francisco Bay 

area. The analysis extends existing work by considering the simultaneous choice by 

passengers of a departure airport, an airline, and an access mode. The analysis shows that 

several factors, most notably flight frequency and in-vehicle access time, have a significant 

overall impact on the attractiveness of an airport, airline and access mode combination, while 

factors such as fare and aircraft size have a significant effect only in some of the population 

subgroups. The analysis highlights the need to use separate models for resident and non-

resident travellers, and to segment the population by journey purpose. The analysis also shows 

that important gains can be made through the inclusion of airport-inertia variables, and 

through using a nonlinear specification for the marginal returns of increases in flight 

frequency. In terms of model structure, the results suggest that the use of the different possible 

two-level Nested Logit models leads to modest, yet significant gains in model fit over the 

corresponding Multinomial Logit models, which already exhibit very high levels of prediction 

performance. 

 

Keywords: airport choice, airline choice, multi airport regions, discrete choice, nested logit 
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1 Introduction 

The analysis of air travellers’ choices of airports is an important component in long term 

transport strategies in many metropolitan areas that are served by more than one airport. A 

wide range of policy measures potentially affect airport choice, including expansion of airport 

capacity in multi airport regions, improved access service to an airport, changes to an airport’s 

parking cost structure, and the introduction of faster check in procedures at an airport. In turn, 

the outcome of travellers’ airport choice decisions will affect the commercial success of the 

single airports, the financial viability of auxiliary and complementary businesses, and the 

congestion in the local transportation network. 

Studies of air travel choice have become increasingly popular over recent years. While 

most have used very basic models to analyse the choice of departure airport, several studies 

have employed advanced model structures allowing for correlation between different 

alternatives (e.g. airports). Recently, it has also been shown that significant gains in model 

performance can be obtained by accommodating the fact that passenger behaviour varies not 

only deterministically across different groups of travellers (e.g. business/leisure), but also 

randomly within individual groups of travellers (Hess and Polak 2005).  

However, a passenger’s choice of airport will in general be closely related to a number of 

other dimensions of travel behaviour, especially the choice of airline and airport access mode 

and the nature of the interactions between, and substitution patterns within and across these 

choice dimensions is not clear a priori. While some studies have recognised this issue, the 

majority of published work at best looks at only two of these choice dimensions, and uses 

some form of simplification along the third dimension (c.f. Section 2). Another problem with 

many existing studies is the use of over-aggregated data for the air transport and ground 
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transportation level-of-service information. These deficiencies in the existing body of work are 

the main motivation for the present research effort. 

The main aim and contribution of this paper is to formulate a model for the combined 

choice of airport, airline and access mode for passengers departing from the San Francisco 

Bay (SF-bay) area, and to investigate the prevalence of correlation along these three choice 

dimensions. Furthermore, the study aims to determine whether there are differences across 

groups of travellers in the substitution patterns across airport, airline and access mode 

alternatives. 

In common with most previous studies, our analysis looks only at departing passengers, 

due to the lack of data on arriving and connecting passengers. However, by including visiting 

as well as resident passengers, the analysis indirectly also looks at the choice of arrival airport, 

given that for the latter group of travellers, data is collected at the return leg stage, for which 

the departure airport is in fact the arrival airport from the outbound flight (excluding the 

possibility of an open jaw ticket). An additional reason for excluding connecting passengers is 

that their choice set does not generally contain multiple airports located in the same 

metropolitan area, and the analysis of the choice between connecting airports spread across 

multiple multi airport regions is beyond the scope of the present paper.  

The remainder of this article is organised as follows. In the next section, we present a 

brief overview of existing work in the area of air travel choice behaviour. In the third section, 

we discuss the various datasets used, while in Section 4, we present the models used in the 

analysis. The results of the analysis are presented in Section 5, and model validation is carried 

out in Section 6. 
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2 Literature review 

In this section, we give a brief review of the existing body of work in the area of air 

travel choice behaviour modelling; for other reviews on this topic, see for example Basar & 

Bhat (2004), Pels et al. (2003) and Hess and Polak (2005). 

One of the first studies of airport choice was conducted by Skinner (1976), who uses a 

Multinomial Logit (MNL) model for airport choice in the Baltimore-Washington DC area, and 

identifies flight frequency and ground accessibility as the main determining factors, with 

travellers being more sensitive to the latter. In a more recent study using a MNL model, 

Windle & Dresner (1995) repeat the earlier results, and also reveal a significant inertia effect; 

the more often a traveller has used a certain airport in the past, the more likely he/she is to 

choose the same airport again. 

The SF-bay area has been used in several case studies of airport choice, mainly thanks to 

the availability of very good data. An early example is that of Harvey (1987), who uses a 

MNL model, and finds access time and flight frequency to be significant for both leisure and 

business travellers, with lower values of time for leisure travellers. More recently, Pels et al. 

(2001) have conducted an analysis in this area using a Nested Logit (NL) model to look at the 

combined choice of airport and airline. The results indicate that both business and leisure 

travellers have a nested choice process in which airline choice is nested within the choice of 

airport (notwithstanding considerations of airline brand loyalty). In a later study, Pels et al. 

(2003) again make use of the NL model structure, this time in the joint analysis of airport and 

access mode choice, revealing high sensitivity to access time, especially for business 

travellers. In another study of airport choice in this area, Basar & Bhat (2004) propose the use 

of a two-level modelling structure in which the actual airport choice process is preceded by a 
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choice set generation stage, thus acknowledging the fact that some travellers only consider a 

subset of the available airports. The results suggest that flight frequency is the most important 

aspect in choice set composition, while access time is the dominating factor in the actual 

choice of airport. Finally, Hess and Polak (2005) have recently used the SF-bay area data in a 

study that aims to show the prevalence of random taste heterogeneity in a population of air 

travellers; the results show that, while a major part of the variation in tastes can be accounted 

for through a segmentation of the population, a remaining part of variation, namely with 

regards to the sensitivity to access time, is purely random. 

There have also been a number of studies of airport choice in the United Kingdom. 

Ashford & Bencheman (1987), who use a MNL model for airport choice at five airports in 

England, find that access time and flight frequency are significant factors, with flight fares 

only having an impact for domestic passengers and for international leisure. In a study of 

passenger route choice in central England, Ndoh et al. (1990) find that the NL model 

outperforms the MNL model. Thompson & Caves (1993) use a MNL model to forecast the 

market share for a new airport in North England; access time, flight frequency and aircraft size 

are found to be significant, with access time being most important for travellers living close to 

the airport and frequency being more important for travellers living further afield. Finally, in a 

MNL analysis of the distribution of passengers between airports in the Midlands, Brooke et al. 

(1994) find flight frequency to be the most important factor.  

In other studies, Ozoka & Ashford (1989) use a MNL model to forecast the effects of 

adding a third airport to a multi airport region in Nigeria; the results show access time to be 

very significant, making the choice of location and the provision of good ground access 

facilities important determinants in the planning process. Innes & Doucet (1990) use a binary 
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logit model for airport choice in Canada to show that, ceteris paribus, travellers prefer jet 

services to turboprop flights. Furuichi & Koppelman (1994) use a NL model for departure and 

destination airport choice in Japan, showing significant effects by access time, access journey 

cost and flight frequency. Finally, Veldhuis et al. (1999) develop the comprehensive 

Integrated Airport Competition Model, showing that passenger behaviour is represented most 

appropriately by a NL choice process that models the choice of main mode above the 

combined choice of airport and air route, and finally the choice of access mode at the chosen 

airport.  

This brief review has shown that although there exists a large body of work on the 

modelling of airport choice in multi airport regions, most studies use rather basic modelling 

techniques, with a heavy emphasis on the MNL model. Furthermore, to the authors’ 

knowledge, none of the existing studies explicitly deals with the three-dimensional nature of 

the choice process (airport, airline and access mode), with the possible exception of the work 

by Veldhuis et al. (1999), which, by being applied to the Amsterdam region, cannot be seen as 

a multi airport study per se. 

3 Data 

The SF-Bay area is served by three major airports, San Francisco International (SFO) 

being the busiest, with, in 1995 (the study year), some 15 million emplaned passengers, ahead 

of Oakland International (OAK), with 7.7 million passengers, and San Jose Municipal (SJC), 

with 4.2 million passengers. Forecasts by MTC (2000) predict significant increases in traffic; 

these will inevitably lead to capacity problems, and different expansion schemes are already 

under consideration (RAPC 2000), making the area an ideal candidate for a study of airport 

choice. In this section, we give a description of the various datasets used in our analysis. 
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3.1 Air passenger survey data 

Data on passengers’ choice behaviour were obtained from the 1995 Airline Passenger 

Survey conducted by the Metropolitan Transport Commission (MTC) in August and October 

1995 (MTC 1995). This contained information on over 21,000 departing air travellers. The 

number of passengers interviewed at the three main airports is not entirely representative of 

the real world traffic at the airports; indeed, SJC is over-sampled, while OAK is 

undersampled. This needs to be taken into account in the modelling approach, as described in 

Section 4. 

It was decided to use only destinations that could be reached by direct flight from all 

three airports, on every day of the week, leading to 14 destinations. After extensive data 

cleaning, a final sample of 5,091 observations was obtained. The resulting dataset, which is 

summarised in Table 1, was split into two parts, a dataset used in the actual analysis (4,582 

observations), and a 10% sample retained for later validation of the models (509 

observations). 

Special care is required in the case of destinations that are themselves located in multi 

airport regions. In this case, the choices of departure airport and destination airport are 

generally closely related, and it is not clear from the outset which of the two choices is more 

important. This applies specifically in the case of non-resident passengers, where, under 

normal circumstances, this airport constitutes the origin of their trip. It is in this case crucial to 

guarantee that an explicit choice of airport was made in the SF-bay area. 

Destinations from two such multi airport regions, namely the wider Los Angeles (LA) 

area, as well as Chicago’s O’Hare (ORD) airport, were included in the present analysis. The 

decision to include airports from the LA area was motivated by the frequency of these 
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destinations in the survey data. During the period of observation, daily flights were available 

between each of the three SF-Bay area airports and each of the five airports in the wider LA 

region. As there was relatively high frequency on all routes, passengers can be expected to 

make a specific choice of airport in the SF-Bay area, independently of the choice of airport in 

the LA area. The inclusion of ORD on the other hand was motivated by the comparatively 

very low frequency of direct flights to Chicago’s alternative airport; Midway (MDW). A 

comparison of the results produced in two small scale separate analyses that included and then 

excluded these destinations, revealed no major differences, suggesting that the inclusion of 

these airports has no ill effects on the subsequent analysis.  

3.2 Air travel level-of-service data 

Air travel level-of-service data were obtained from BACK Aviation Solutions
1. The 

dataset contains daily information for each operator serving the selected routes in August and 

October 1995, thus making the data more detailed than that of many previous studies that have 

relied on the use of weekly or even monthly data. Eight airlines were used in the analysis, and 

these are hereafter referred to as airlines A1 to A8. Besides the frequencies for the different 

operators, the dataset contains information on flight times and the type of aircraft used. 

Additionally, information is available on the average fares paid on a given route operated by a 

given airline. This clearly involves a great deal of aggregation, as no distinction is made 

between the fares for the different classes of travel. Furthermore, the fact that no data is 

available on the availability of different ticket classes at the time of booking leads to an 

assumption of similar selling speed on all routes. These assumptions are a common 

requirement in studies of air travel choice behaviour based on revealed preference passenger 

                                                 
1 Back Aviation Solutions, 6000 Lake Forrest Drive, Suite 580, Atlanta, GA  30328, www.backaviation.com 
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survey data, and are at least a contributing factor in the problems of retrieving a significant 

effect of air fares in many such studies. Finally, the dataset was complemented by information 

on on-time performance2. 

3.3 Ground access level-of-service data 

As was the case for the air transport level-of-service data, the information on the chosen 

access mode contained in the passenger survey data needs to be complemented by data on the 

unchosen access options at the chosen airport as well as at the different unchosen airports. For 

the present analysis, ground access level-of-service information was obtained from the MTC 

in the form of origin-destination travel time and cost matrices for the 1,099 travel area zones 

(TAZ) used for the SF-Bay area.  

The dataset contains information on travel distance, travel time and tolls for car travel, 

under peak and off-peak conditions, and for varying car occupancy (which has an effect on 

tolls and the use of car pool lanes). Similarly, the dataset contains information on access time, 

wait time, travel time, egress time and fares for public transport journeys. Corresponding data 

for other modes, such as taxi, limousine and special airport bus services, were calculated 

separately, based on current prices and the changes in the Consumer Price Index for California 

from August and October 1995 to September 2003. Due to complications with the treatment of 

rental charges, parking costs and marginal car running costs, a common car alternative was 

used, where the only cost is that of any toll incurred. This led to six remaining access modes; 

car, public transport (transit), scheduled airport bus services, door-to-door services, taxi and 

limousine. It was assumed that taxi and limousine services are available for each origin, while 

the availability of door-to-door and scheduled services depends on the distance to the airports. 

                                                 
2 Available from the Bureau of Transport Statistics, via www.bts.gov/programs/oai/airline_ontime_statistics 
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The availability of public transport was obtained from the MTC OD matrices, and, in the 

absence of appropriate information on the availability of the car mode, it had to be assumed 

that car is always available. 

3.4 Data assembly and choice set construction 

In the data used in model calibration, each respondent is observed to choose a triplet of 

alternatives, one in each of the three dimensions of choice. The triplet of alternatives for a 

given respondent forms the dependent variable for that observation in the models. The final 

sample contains data on 3 departure airports, 8 airlines, and 6 access modes, leading to 144 

distinct triplets of alternatives. Given the three-dimensional choice set, any given alternative 

shares the attributes of 73 other alternatives along a single dimension of choice, and shares the 

attributes of 14 alternatives along two such dimensions. For each observation, data on the 

attributes and availability of the sub-alternatives along each dimension was appended to the 

survey data, taking into account the ground level origin of a traveller, the season (August vs 

October), the choice of destination, and the day of week and time of day (peak vs off-peak). 

4 Modelling methodology 

4.1 Discrete choice models 

The analysis described in this paper makes use of two types of discrete choice model 

belonging to the family of Generalised Extreme Value (GEV) models, namely MNL and NL. 

The main difference between these two model structures comes in the assumptions made with 

regards to the error structure; here, the MNL model assumes uncorrelated errors, while the NL 

model allows for varying levels of correlation between the error-terms of the utility functions 

of the different alternatives. In the present context, this can be exploited to allow for 
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correlation between two alternatives sharing a common airport, or a common airline, or a 

common access mode. This in turn leads to higher substitution patterns between these 

alternatives. In a NL model, alternatives that have non-zero correlation are grouped together in 

a nest m, where this nest m has an associated logsum (nesting) parameter , which measures 

the degree of independence between alternatives in the respective nest, with higher  

meaning more independence and hence lower correlation between the unobserved components 

of utility of the alternatives contained in the nest. The correlation is given by , such that 

a value of 1 for all structural parameters leads to the MNL model. For a more detailed 

discussion of discrete choice models, see Train (2003). 

mȜ

mȜ

21 mλ−

4.2 Sampling weights 

Aircraft occupancy data was used to calculate the total traffic on the different routes used 

in the analysis, for each of the carriers. From this, relative weights were assigned to each 

airport-airline pair. A similar process was used to calculate corresponding weights for the 

sample data used in the present analysis. The individual pairs of weights were then used to 

calculate multiplicative weights that could be used in the analysis, where the weight for a 

given airport-airline pair was given by dividing the actual population weight by the sample 

weight for this pair. This process was repeated for each observation used in the analysis, with 

separate weights calculated for separate sub-samples. In the estimation process, each term in 

the log-likelihood function was then multiplied by the appropriate weight for the chosen 

alternative. 
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4.3 Segmentation by purpose and residency status 

An important question arises with respect to how to acknowledge the differences that 

exist between residents and visitors, and between travellers with different trip purposes. 

Results by Hess and Polak (2005) on the same data show that there exist significant 

differences along both dimensions, with the differences across trip purposes being generally 

more significant than those between residents and visitors. Following extensive diagnostic 

testing, separate models were used for residents and for visitors, with additional divisions into 

business travellers, holiday travellers, and travellers visiting friends and family (VFR), leading 

to a total of six distinct segments.  

5 Modelling analysis 

In this section, we describe the results of the modelling analysis. This is divided into 

three main parts. We first present a discussion of the utility functions used in the analysis. We 

then describe the results from the MNL models, and finally summarise the findings from the 

NL modelling analyses. 

5.1 Utility functions 

Overall, the final specifications developed for the various models are very similar, 

although there are some differences, notably in the inclusion of air fare and access cost 

coefficients, and in the segmentation of travellers by income. For every model, attempts were 

made to include coefficients showing travellers’ sensitivity to various attributes of the airports, 

airlines and access modes. These included factors such as flight frequency, flight time (block 

time, which indirectly takes into account airport congestion) and air fare, as well as access 

time (in-vehicle), walk time to access mode (e.g. to public transport station), wait time for 

access mode, and access cost, while we also explored the influence of aircraft type (jet vs 

 13



turboprop). Both linear and various non-linear specifications of the different explanatory 

variables were tested, where the best results were obtained with the use of a logarithmic 

transform; this however only led to an improvement in model fit when applied to flight 

frequency, whereas non-linear specifications of flight time, in-vehicle time, access walk time, 

wait time and fare led to unsatisfactory results. Also, some potentially important influences, 

such as carrier loyalty, could not be explored, due to lack of data. Similarly, it was not 

possible to identify a significant direct effect of the on-time performance of airlines or airports 

on the respective choice probabilities. Attempts were made to segment the population by 

income, where three income groups were defined, segmenting the population into low income 

(<$21,000 per annum), medium income (between $21,000 and $44,000 per annum) and high 

income (above $44,000 per annum).  

A further specification issue that was explored was the inclusion of airport inertia 

variables in the utility functions, as discussed by Windle & Dresner (1995). In the present 

analysis, we had information on the number of flights a given traveller took from each of the 

three SF-bay airports in the past twelve months. For each one of the three airports, a 

coefficient in the utility function was thus associated with the inertia variable for that airport, 

where, to account for cross effects, coefficients in a given airport’s utility function were also 

associated with the inertia variables of the remaining two airports. After normalisation, this led 

to the use of three airport specific inertia coefficients and three cross coefficients (SJC and 

OAK on SFO, and SFO on SJC). The inclusion of these variables did in each case, as 

expected, lead to dramatic improvements in log-likelihood (LL), where the gains were even 

more significant when using a log-transform, such that this approach was adopted. It should of 

course be noted that the inclusion of these coefficients could lead to problems with 

endogeneity, as the values of the past choice indicators may be closely correlated with the 
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other explanatory variables and with unobservables. The dependence on past choices would 

also make this approach inapplicable in the case where the model was used for forecasting. 

However, this is not the main purpose of the present analysis; furthermore, in each one of the 

models used, the values of the remaining coefficients remained largely unaffected, suggesting 

that the inclusion of these inertia terms did not introduce major bias. 

5.2 MNL models 

In the following paragraphs, we describe the findings of the analysis fitting MNL models 

to the six separate estimation datasets. The results of the various models are summarised in 

Table 2 for residents and Table 3 for visitors.  

5.2.1 Business trips by residents 

The estimation dataset contains information on 1,098 business trips by residents. The 

estimation process revealed significant effects of walk access time, access cost, in-vehicle 

access time, flight time and frequency. Also, a negative impact on utility is associated with 

turboprop planes. The initial estimation revealed an effect of air fare, however, this effect was 

of the wrong sign (positive) for medium and high income traveller, while the effect for low 

income travellers was negative, but not significant. As these results are counterintuitive, it was 

decided to drop these coefficients from the model. The fact that no significant negative effect 

of fare could be identified can be partly explained by the poor quality of the (highly aggregate) 

fare data, but could also signal indifference to fare increases on the part of business travellers, 

at least in 1995. Finally, increases in flight frequency lead to increases in utility, where the 

logarithmic transform ensures decreasing marginal returns. 

It was possible to segment the sensitivity to walk time and access cost by income, 

although, given very low differences between the estimates in the low and medium income 
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group, only two coefficients were retained, one for people earning less than $44,000 per 

annum, and one for the remaining travellers. The results show lower sensitivity to cost for 

people with higher income, along with higher sensitivity to increases in walk time.  

In terms of the airport inertia variables, the estimates show positive direct effects for all 

three airports, with positive cross-effects of past usage of SJC and OAK on the utility of SFO, 

and a positive (but not significant) cross-effect of past usage of SFO on the utility of SJC.  

5.2.2 Business trips by visitors 

The estimation dataset contains information on 1,057 business trips by visitors. Just as 

for resident business travellers, the initial modelling estimates showed a positive (but 

insignificant) effect of fare for high and medium income business travellers, while the effect 

for low income travellers was negative, but not significant. Again, fare was thus excluded 

from the models. In-vehicle access time and access cost are again significant, and negative, 

with increasing sensitivity to in-vehicle access time with higher income (only two groups 

could be used) and lower sensitivity to cost with higher income (two groups only). Whereas it 

was not possible to estimate a significant effect of wait time for resident business travellers, a 

significant negative effect could be identified for their non-resident counterparts. However, the 

estimate for flight time was no longer significant (but still negative), and it was not possible to 

include an effect of equipment type, as flights using turboprop planes were never chosen. 

Also, with this model, no effect could be associated with access walk time, while flight 

frequency again has a positive effect. Finally, unlike in the model for resident business 

travellers, the inertia cross-effect of past flights at OAK has a negative effect on the utility of 

SFO, while the cross-effect of past flights at SJC on the utility of SFO is now insignificant, 

while there is a positive cross-effect of SFO acting on the utility of SJC. 
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5.2.3 Holiday trips by residents 

The model estimated on the 831 observations for residents’ holiday trips suggests a lower 

utility for flights using turboprop aircraft, negative impacts by access cost and in-vehicle time, 

and a positive effect of flight frequency. All inertia coefficients are positive, though the cross-

effect of past flights at SFO on the utility of SJC is not significant. Finally, for this group of 

travellers, a negative effect could be identified for fare (although of lower statistical 

significance) while no effect could be associated with flight time and access walk time. No 

significant gains could be made through segmenting the population by income for any of the 

coefficients.  

5.2.4 Holiday trips by visitors 

For the 534 visitors on holiday trips, no significant effect of fare could be identified, and 

the effect of access cost, although of the correct sign, is not significant at the 95% level. In-

vehicle time has a significant negative effect, as has flight time, while increases in frequency 

lead to increases in utility. Finally, the aircraft type coefficient had to be excluded from the 

model (never chosen), while no effect could be identified for wait time, and segmentations by 

income did not lead to any gains in model fit.  

5.2.5 VFR trips by residents 

The estimates for the model fitted to the sample of 641 residents on VFR trips show 

significant negative effects of access cost, in-vehicle time and flight fare, along with positive 

effects of flight frequency. The inertia cross-effect estimates are not significant, equipment 

size could not be included and no effects could be identified for walk time, wait time and 

flight time, while segmentations by income led to a loss of information in the model. 
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5.2.6 VRF trips by visitors 

The final subsample used in the estimation of the MNL models contains information on 

421 VFR trips by visitors. The results show negative impacts of fare in the medium and low 

income classes (with higher sensitivity in the low income class), while the effect for high 

earners was insignificant and was dropped from the model. In-vehicle time and flight time 

have a negative effect, with a positive effect for frequency increases. Again, the inertia cross-

effect estimates are insignificant, while no effect could be associated with access walk time, 

wait time, and access cost, and the turboprop coefficient had to be excluded. 

5.2.7 Comparison 

The discussions in Sections 5.2.1 to 5.2.6 have revealed that there are important 

differences across the six segments in the optimal specification of utility. The common point 

across all the segments is that a logarithmic specification is always preferable to a linear 

specification in the case of the frequency and inertia coefficients. Significant effects of flight 

fare could only be identified for resident holiday and VFR travellers, as well as for visiting 

VFR travellers, where there are also differences across income groups in fare sensitivity. In 

terms of model fit, the models for residents perform better than those for visitors for business 

and holiday trips, while the opposite is the case for VFR trips. Finally, it is of interest to 

compare the substantive results across models. Given the potential differences in scale, such 

comparisons should only be made in the form of ratios in parameters. As fare is only used in 

three of the models, it was decided to give preference to the trade-off between flight frequency 

and in-vehicle time. The coefficient estimated for in-vehicle time ȕAT gives the marginal 

change in utility resulting from an increase in in-vehicle time by one minute. The 

corresponding estimate for flight frequency gives the change in utility associated with an 
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increase in the logarithm of frequency by one unit, such that, with a base frequency of f flights, 

and coefficient estimate ȕFT, the change in utility is equal to ȕFT(ln(f+1)-ln(f)). The trade-off 

between increases in flight frequency and increases in access in-vehicle time is thus given by 

ȕFT (ln(f+1)-ln(f)) / ȕAT . The results show a higher willingness to accept increases in access 

time for residents (values of ȕFT / ȕAT equal to 25.28, 22.3 and 29.47 minutes per additional 

flight for business, holiday and VFR trips respectively) than for visitors (values of 15.93 and 

26.32 minutes respectively for high and low income business travellers, and 14.01 and 10.38 

minutes respectively for holiday and VFR trips). The differences are especially significant in 

the case of VFR trips, where the relative value of frequency increases is at its highest for 

residents, while it is at its lowest for visitors. 

5.3 NL models 

Several important issues arise in the specification of NL models. The analysis looks at 

the combined choice of airport, airline and access mode. While heightened correlation is 

generally expected between the different flight options at a given airport, it must equally well 

be assumed that there is heightened correlation between the different flights operated by a 

given carrier, and also between two alternatives sharing the same access mode. As such, there 

is potentially a need to nest by airport, airline, and access mode. However, a four-level NL 

model (root, plus three additional levels of nesting) would not be appropriate as the lower 

level of nesting would be obsolete, given that each nest would contain just a single elementary 

alternative (e.g. after the choice of airport and airline, there is only one remaining alternative 

for each access mode). This thus means that at best, a three-level structure can be used, 

discarding one of the three possible nesting levels. This leads to six possible tree structures, 

when one notes that a tree structure with airport above airline is not equivalent to a tree 
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structure with airline above airport. The use of each of these six three-level structures was 

attempted, however, none of them led to satisfactory results. This suggests that a multi-level 

structure is not applicable with the current data and specification of alternatives. Thus, in this 

paper, we are restricted to two-level structures, where the interest now lies in a comparison of 

the performance of the three possible structures (i.e., nesting either by airport, or airline, or 

access mode). In this section, we describe the results obtained with each of these approaches. 

Due to space constraints, only a very limited part of the results is reproduced here; the optimal 

utility function specifications of the various models were however essentially identical to 

those of the corresponding MNL models, although the use of a nesting structure occasionally 

led to a drop in significance of individual coefficients.  

5.3.1 Nesting by airport 

The first set of models nest the alternatives by airport, leading to 48 alternatives per nest 

(8 airlines and 6 access modes). The results are summarised in Table 4, with t-statistics for the 

structural parameters given in brackets (calculated with respect to unity). For comparison, the 

table again gives the final log-likelihood of the corresponding MNL models. The results show 

that, for every single model, the structural parameter of the nest containing the SFO 

alternatives had to be constrained to a value of 1, as it would otherwise have exceeded this 

value, becoming inconsistent with utility maximisation. This suggests that there is no 

heightened correlation between the different alternatives available from SFO. All else being 

equal, passengers are not more likely to shift to another alternative at SFO than they are to 

shift to an alternative at another airport.  

Except for the case of visitors on VFR trips, where the structural parameter for OAK had 

to be constrained to 1, the estimates for the structural parameters of the other two airports are 

 20



always below 1. There are differences across models in the values of the structural parameters, 

and also in the relative values of the structural parameters for the SJC and OAK nests 

(although λSJC is generally lower than λOAK), suggesting important differences between the 

different groups of travellers. In terms of model fit, the use of the NL models leads to a 

significant increase in log-likelihood, except in the case of visitors on VFR trips, where the 

log-likelihood is virtually identical to that of the MNL model, as is the NL model itself, given 

that the SFO and OAK structural parameters are equal to 1, while the structural parameter for 

SJC is very close to 1. Except for VFR trips, the improvements in model fit are more 

important for visitors than for residents, and the lower structural parameters for visitors on 

business and holiday (only for SJC) trips suggest a lower substitution effect between airports 

(i.e. higher correlation for alternatives sharing an airport) than is the case for residents.  

5.3.2 Nesting by airline 

The lack of information on frequent flier programme membership means that there 

should be some correlation in the unobserved part of utility between different alternatives that 

share the same airline. As such, it is of interest to attempt to use a nesting structure that uses a 

single nest for each airline, leading to 8 nests, with 18 alternatives each. The results of this 

analysis are summarised in Table 5.  

In the models using nesting by airline, a comparatively high number of structural 

parameters had to be constrained to a value of 1. Nevertheless, except for the model for visitor 

VFR trips, the use of this structure resulted in significant increases in log-likelihood over the 

corresponding MNL models. Also, the great variability in the values of the structural 

parameters for given airlines across the different models suggests significant differences in the 

cross-elasticities in the different models. The exact analysis of these cross-elasticities is 
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beyond the scope of the present paper (given the very high number of elementary alternatives); 

however, the results in Table 5 could suggest that the models are able to pick up some effect 

of correlation between alternatives associated with given airlines. It can also be noted that 

airlines A5 and A8 on average have lower structural parameters than the other airlines. This 

could at least be partly related to the fact that these two carriers run a budget airline scheme; 

this sets them apart from other alternatives, potentially explaining the correlation, especially in 

the absence of an appropriate treatment of the cost structure in the models. 

5.3.3 Nesting by access mode 

The results of this analysis are summarised in Table 6. In many regards, nesting by 

access mode proved to be the most promising approach. Except for the model for business 

trips by visitors (for whom the car and rental car market shares are generally lower than for 

other groups), the structural parameter for car is always very low, illustrating travellers’ strong 

allegiance to car as an access mode. A comparably constant low structural parameter is 

observed for the taxi nest, while the structural parameter for the scheduled nest especially 

varies widely across models. Unlike in the models using nesting by airport and airline, the 

present nesting approach leads to universal significant increases in log-likelihood, including 

the model for VFR trips by visitors. Also, in total, only three of the structural parameters had 

to be constrained to a value of 1. Nevertheless, it should be noted that three of the structural 

parameters reported in Table 6 are not statistically different from 1. Setting these parameters 

to 1 however either led to a significant drop in log-likelihood or did not lead to significantly 

changed values of the other structural parameters and coefficients. Finally, it should be noted 

that, for holiday trips by visitors, the structural parameters of the car, door to door and taxi 

nests were constrained to have the same value, given that the initial estimates were almost 
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indistinguishable. This led to a drop in the log-likelihood by a mere 0.028 points. Overall, the 

results from this section show that important gains can be made by using a structure that nests 

alternatives by access mode, suggesting that a number of attributes that could not be included 

in the utility functions lead to heightened correlation between alternatives sharing the same 

mode. 

5.3.4 Summary of NL results 

The analysis has shown that some gains in model fit can be obtained by using a nesting 

structure, although these gains are often not as significant as expected. This could be due to 

two very distinct reasons. Nested Logit models differ from the MNL model in that they 

accommodate correlation between the unobserved components of utility. The first explanation 

interprets the similarity in the performances of the two models as an endorsement of the MNL 

models. This would mean that the (observed) utility specification used captures almost all of 

the correlation in utility across alternatives, reducing the scope of the NL model to capture any 

correlation patterns in the remaining unobserved part of utility. An alternative explanation is 

based on the reasoning that the specific nesting structures used are little better than the MNL 

model in capturing the true structure of the underlying correlations in the unobserved 

component of utility. The same conclusion would extend to the multiple-level NL structures 

initially explored. It is not clear from the empirical results alone which of these potential 

explanations is most appropriate. Perhaps the most promising direction for future research is to 

explore the applicability of more flexible structures such as a cross-nested form. If these also 

prove to offer little empirical advantage over the MNL then clearly this would reinforce 

confidence in the MNL structure (and conversely if a cross-nested structure is empirically 
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superior). However, the findings are in each case clearly specific to the data and utility 

specification used in the present analysis. 

Although the gains in model fit were not as important as expected, several conclusions 

can be drawn from the analysis discussed above. First, there seem to be important differences 

across population groups in the values of the structural parameters. Secondly, the results 

indicate differences in performance between the three nesting structures across the six datasets 

used. As such, the models nesting by access mode lead to the biggest gains in model fit for the 

three datasets with resident travellers, while for visitors this is only the case for VFR trips, 

with nesting by airport leading to the biggest gains in model fit for business and holiday trips. 

Finally, nesting by airline never leads to the biggest improvements in model fit. 

6 Model validation 

Model validation consisted of using the estimated models in conjunction with the 

validation sub-sample of 519 observations (not used in model estimation) in order to test the 

ability of the models to correctly recover the observed choices and market shares for the 

various airports, airlines and access modes.  

The validation approach produces, for every observation, a choice probability for each of 

the 144 elementary alternatives, where this choice probability is adjusted using the weights 

employed during estimation. From this, the average probability of correct prediction for the 

actual choice in the validation sample can be calculated. Aside from this probability of the 

choice of the actual triplet of airport, airline and access mode, it is also of interest to look at 

the probability of correct prediction of the choice for just the airport, just the airline, and just 

the access mode. These probabilities can be obtained through summing the probabilities of the 

single elementary alternatives falling into the given group. Given the high number of 
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elementary alternatives used in the models, the choice probability estimated for the actual 

chosen alternative will not necessarily be very high (although the relative probability should 

be); the use of these aggregated choice probabilities is thus a more accurate measure of model 

performance. Additionally, the choice probabilities for the individual elementary alternatives 

were used to calculate the weighted predicted market shares for individual airports, airlines 

and access modes, which could then be compared to the actual shares of these alternatives in 

the validation sample, using the root-mean-squared error (RMSE) between the observed and 

predicted shares (in percentage points) for the different composite alternatives. 

The results of this analysis are summarised in Table 7. The first observation that can be 

made from this table is the surprisingly high probability of correct prediction of the actual 

chosen alternative. Indeed, even in the poorest fitting model (holiday trips by visitors), the 

probability of correct prediction is close to 30%, which is very high when one takes into 

account the extent of the choice set. In terms of the correct prediction of airport choice, the 

probabilities range from 68.51% to as high as 85.39%. This compares very well to results in 

other studies, and the rates obtained in some of the models in fact exceed those obtained in 

many previous studies. The performance in terms of the choice of access mode is also very 

good, although generally slightly poorer than the performance in the case of airport choice, 

which can at least be partly explained by data problems in terms of the availability of the car 

mode, and lack of information on parking behaviour. The performance of the models in 

predicting the correct choice of airline is poorer than that for the choice of airport and access 

mode; however the values still always exceed 50%, despite the extensive choice set of eight 

airlines, and the lack of information on airline allegiance. Again, superior performance could 

be expected if better data were available, notably with regards to fare structures and frequent 

flyer programmes. The comparatively poor performance of the models for holiday trips 
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(especially by visiting travellers, see also Section 5.2.4) can possibly partly be explained by 

the fact that at least some of the travellers on such holiday trips have purchased a package 

holiday (or special flight deal); for such deals, the choice process is potentially influenced by 

factors that were not directly measurable and could thus not be included in the models. 

In terms of a comparison between the NL and MNL models, the results show that in 

general, the NL models perform slightly better than the corresponding MNL models. Even 

more so than was the case for the differences in model fit described in Section 5, these 

differences are however far less significant than expected. This can again be seen as a 

reflection of the good performance of the MNL models, or the inability of the NL models to 

recover meaningful underlying correlation patterns in the unobserved utility components. 

Given the high correct prediction probability, the former reasoning however seems more 

likely. Overall, the best performance seems to be given by the models using nesting by access 

mode, while nesting by airport leads to good results especially for visitors on business and 

holiday trips (reflected in the good model fits reported in Section 5). However, the differences 

in performance between the individual structures are very low, and it is not directly clear what 

measure of error should be associated with these probabilities, such that no certain conclusions 

can be drawn. Nevertheless, it is interesting to note that, while the models using nesting by 

access mode regularly outperform the other models in the correct prediction of the choice of 

airport and airline, this form of nesting never leads to the best results in terms of the correct 

prediction of mode choice. Indeed, the best performance is in this case always obtained by the 

model using nesting by airport. Finally, even though the NL models do thus not lead to very 

important gains in model fit or prediction performance, they should be preferred, given their 

more intuitively correct behaviour in terms of the substitution patterns between alternatives. 

This comes despite a slight increase in the cost of estimation for these structures, which is 
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however nowhere nearly as severe as when comparing closed form models to mixture 

structures such as Mixed Logit.  

In terms of the models’ ability to recover the sample shares of the different composite 

alternatives, the performance is again very good, with the poorest performance being a RMSE 

of a mere 5.65 percentage points. With regards to a comparison between the performance of 

the MNL and NL models, the results on average show very similar performance, with the only 

major outlier being the poor performance in terms of airport shares by the NL model using 

nesting by mode in the model for VFR trips by residents. 

In summary, the results show very good prediction performance for the different models, 

where the performance is comparable, and occasionally even better than the performance 

obtained during a comparable application run on the actual data used during estimation 

(detailed results available on request). This suggests that the models have not been overfitted 

on the estimation data. In a direct comparison with the previous analysis conducted by Hess 

and Polak (2005), the models presented in the present paper on average lead to a better correct 

prediction rate (with a corresponding rate of around 72% in the previous study), showing that 

important gains can be made by using disaggregate level-of-service information for air travel 

(i.e. avoiding the use of measures of overall service at an airport), and by explicitly modelling 

the choice of airline and access mode. 

Conclusions 

In this paper, we have presented a detailed analysis of the joint choices of departure 

airport, airline and access mode for passengers departing from the San Francisco Bay area. 

The analysis has shown that several factors, most notably flight frequency and in-vehicle 

access time have a significant overall impact on the appeal of a given airport, while factors 
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such as fare and aircraft size have a visible impact only for some of the population subgroups. 

Here, it should be noted that, except for passengers on very flexible tickets, frequency is not 

taken into account directly by the respondents, but captures a host of effects, including 

visibility, capacity, and schedule delay (under the assumption of a relatively even spread of 

departure times). 

Our study has highlighted the need to use separate models for resident and non-resident 

travellers, and has also shown the benefit of using individual models for different journey 

purposes. From a utility specification perspective, the research has shown that important gains 

in model fit can be obtained through the use of a non-linear specification of flight frequency, 

and for some journey purposes, through a segmentation of the population into different income 

classes. Finally, the inclusion of airport inertia variables led to very significant improvements 

in model fit across all population segments. 

In terms of model structure, the analysis has shown that statistically significant gains in 

model fit can be obtained through the use of a Nested Logit model, although these 

improvements are less significant than expected and do not in general translate into important 

advantages in terms of model prediction performance. The modest extent of the gains in 

performance is at least partly due to the inability to fit a model allowing for correlation along 

multiple dimensions through using a more complicated nesting structure. As it is however 

clearly desirable to simultaneously account for the correlations in unobserved utility 

components along these three dimensions, the use of a cross-nesting structure is an important 

avenue for further research. Here, the upper level would contain a nest for each of the 17 

composite alternatives, and each elementary alternative would belong to exactly one nest in 

each group (one airport, one airline and one access mode). By using separate structural 
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parameters, such a model would be able to show the relative level of correlation between the 

unobserved utility components along each of the three dimensions. Independently of this, the 

paper has clearly shown the benefit of explicitly modelling the three separate choice 

dimensions of airport, airline and access mode.  
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TABLE 1: Destinations used in the analysis (number of respondents) 
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SFO1 55 65 36 57 199 35 89 140 128 1 258 213 42 37 1,355 
SJC2 167 71 91 163 367 111 58 106 133 156 248 169 61 247 2,148 Departure 

Airport  
OAK3 211 9 25 68 381 135 1 101 51 39 139 208 43 177 1,588 

Total  433 145 152 288 947 281 148 347 312 196 645 590 146 461 5,091 

1. SFO = San Francisco International   

2. SJC = San Jose Municipal   

3. OAK = Oakland International   
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TABLE 2: MNL results for residents (selected coefficients) 
 

  Business Holiday VFR 
  estimate t-test estimate t-test estimate t-test 

Access cost ($)   -0.0208 -2.21 -0.0223 -2.29 

Access cost ($), inc. >$44,000 p.a. -0.0244 -2.86     

Access cost ($), inc. <$44,000 p.a. -0.0358 -4.17     

Access in-vehicle time (min) -0.0522 -12.13 -0.0594 -12.94 -0.0490 -9.43 

Walk time (min), inc. >$44,000 p.a. -0.1531 -2.97     

Walk time (min), inc. <$44,000 p.a. -0.1139 -2.47     

Fare ($)   -0.0131 -1.90 -0.0267 -3.03 

Flight time (min) -0.0471 -2.37     

Flight frequency (log of frequency) 1.3183 10.77 1.3235 9.35 1.4447 7.87 

Turboprop (dummy) -2.5296 -3.20 -4.2294 -2.70   

OAK on OAK 1.9993 9.44 2.1024 5.09 2.2919 5.24 

SFO on SFO 1.1829 9.62 1.1887 7.89 2.0488 8.83 

SJC on SJC 1.9641 8.49 2.5909 5.04 3.1690 5.87 

OAK on SFO 0.6619 3.37 0.8328 1.98 0.4413 1.02 

SJC on SFO 0.7845 3.68 1.4302 2.71 0.5574 1.10 
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SFO on SJC 0.1731 1.07 0.1618 0.79 0.0292 0.09 
  

      

Observations 1,098 831 641 

Log-likelihood -1551.62 -1384.81 -1050.84 

ρ 2 0.5934 0.5198 0.5157 
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 TABLE 3: MNL results for visitors (selected coefficients) 

 

 

  Business Holiday VFR 
  estimate t-test estimate t-test estimate t-test 

Access cost ($)   -0.0145 -1.66   

Access cost ($), inc. >$44,000 p.a. -0.0219 -2.55     

Access cost ($), inc. <$44,000 p.a. -0.0286 -3.94     

Access in-vehicle time (min)   -0.0769 -13.22 -0.0698 -11.06 

In-vehicle time (min), inc. >$22,000 p.a. -0.0820 -14.43     

In-vehicle time (min), inc. <$22,000 p.a. -0.0496 -7.18     

Wait time (min) -0.2507 -3.28     

Fare ($), inc. <$21,000 p.a.      -0.0501 -3.55 

Fare ($), inc. [$21,000,$44,000] p.a.      -0.0267 -1.95 

Flight time (min) -0.0293 -1.39 -0.0908 -3.42 -0.1522 -5.12 

Flight frequency (log of frequency) 1.3066 11.34 1.0783 7.51 0.7244 4.41 

OAK on OAK 1.1881 6.57 1.2529 2.90 1.3899 2.96 

SFO on SFO 1.9324 9.39 0.7514 3.97 1.0991 3.35 

SJC on SJC 1.3973 6.10 2.0564 4.42 2.2569 4.17 

OAK on SFO -0.7172 -3.36 -0.4741 -0.99 0.1887 0.35 

SJC on SFO 0.0075 0.03 0.8318 1.86 -0.1219 -0.17 
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SFO on SJC 0.5032 2.38 -0.1084 -0.34 0.1809 0.42 
 

   

   

Observations 1,057 534 421 

Log-likelihood -1517.68 -1018.24 -621.81 

ρ 2 0.4477 0.387 0.5236 
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TABLE 4: NL results for nesting by airport (t-statistics calculated with respect to 1) 
 

 Business Holiday VFR 
 Resident Visitor Resident Visitor Resident Visitor 
       

MNL LL -1551.62 -1517.68 -1384.81 -1018.25 -1050.84 -621.81 
NL LL -1545.14 -1487.71 -1372.19 -999.51 -1039.67 -621.62 
NL ρ 2 0.5951 0.4586 0.5242 0.3983 0.5208 0.5237 

       

λSFO 1.00 1.00 1.00 1.00 1.00 1.00 
λSJC 0.7829 (4.02) 0.5259 (10.64) 0.7627 (4.08) 0.4399 (8.79) 0.6708 (5.5) 0.9333 (0.63) 
λOAK 0.8925 (1.64) 0.7178 (3.7) 0.7258 (4.61) 0.7373 (2.24) 0.7828 (3) 1.00 
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TABLE 5: NL results for nesting by airline (t-statistics calculated with respect to 1) 
 

 Business Holiday VFR 
 Resident Visitor Resident Visitor Resident Visitor 
       

MNL LL -1551.62 -1517.68 -1384.81 -1018.25 -1050.84 -621.81 
NL LL -1536.66 -1507.62 -1371.21 -1003.93 -1034.07 -620.24 
NL ρ 2 0.5974 0.4514 0.5245 0.3956 0.5234 0.5248 

       

λA1 0.9499 (0.25) 0.9617 (0.14) 0.9237 (0.32) 0.6989 (1.34) 1.00 1.00 
λ A2 0.6108 (4.59) 0.9822 (0.16) 0.7841 (1.05) 0.6249 (4.62) 0.8663 (1.47) 0.8606 (1.17) 

λ A3 1.00 0.8895 (0.36) 1.00 0.7697 (1.17) 0.8617 (0.43) 0.8549 (0.61) 
λ A4 1.00 0.6538 (2.22) 1.00 0.7237 (1.07) 1.00 0.6762 (1.25) 

λ A5 0.7433 (3.35) 0.6317 (2.22) 0.7379 (2.66) 0.3917 (4.97) 0.6344 (3.92) 1.00 
λ A6 1.00 1.00 0.9967 (0.03) 0.6761 (2.44) 1.00 0.7935 (2.13) 
λ A7 1.00 1.00 1.00 1.00 1.00 1.00 

λ A8 0.8389 (0.9) 0.7921 (1.13) 0.7240 (3.28) 0.5298 (7.01) 0.6664 (1.35) 0.8399 (0.71) 
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TABLE 6: NL results for nesting by access mode (t-statistics calculated with respect to 1) 

 

 

 Business Holiday VFR 
 Resident Visitor Resident Visitor Resident Visitor 
       

MNL LL -1551.62 -1517.68 -1384.81 -1018.25 -1050.84 -621.81 
NL LL -1520.42 -1508.79 -1351.18 -1004.26 -1007.20 -603.07 
NL ρ 2 0.6016 0.4510 0.5315 0.3954 0.5358 0.5379 

       

λcar 0.1793 (15.6) 0.4531 (7.4) 0.1252 (20.9) 0.1632 (11.8) 0.1325 (21.6) 0.0871 (22.0) 
λscheduled 0.1919 (10.5) 0.6378 (1.2) 0.1763 (8.9) 0.1455 (7.6) 0.0455 (39.9) 0.7961 (0.3) 
λtransit 0.3118 (5.3) 0.2473 (4.6) 0.3023 (5.1) 0.3299 (2.6) 1.00 0.0180 (49.1) 

λdoor-2-door 0.2929 (6.3) 0.4988 (1.6) 0.1796 (12.3) 0.1632 (11.8) 0.1792 (9.2) 0.1192 (12.6) 
λtaxi 0.1283 (19.7) 0.3805 (7.2) 0.0901 (29.3) 0.1632 (11.8) 0.1731 (10.5) 0.0543 (27.9) 

λlimousine 1.00 0.3636 (4.6) 0.2211 (5.6) 0.2475 (3.9) 0.3094 (5.1) 1.00 
       

 
 
 

 37



TABLE 7: Model validation using control sample 
 

  
Average probability of correct prediction  

Recovery of weighted sample shares 
(RMSE in percentage points) 

Segment Model structure 
Elementary 
alternative Airport 

Access 
mode Airline  Airport 

Access 
mode Airline 

          

MNL 47.13% 84.04% 84.04% 60.68%  4.22% 2.26% 4.18% 

NL nesting by airport 48.02% 83.69% 85.22% 61.06%  4.34% 1.80% 4.12% 

NL nesting by airline 47.90% 84.18% 84.92% 60.30%  4.02% 1.94% 4.21% 

R
es

id
en

t 
bu

si
ne

ss
 

NL nesting by mode 48.41% 85.39% 83.76% 61.33%  3.16% 2.41% 3.87% 
          

MNL 34.33% 70.69% 70.18% 55.39%  3.02% 2.32% 2.30% 

NL nesting by airport 36.19% 70.69% 72.39% 55.90%  3.10% 2.39% 2.46% 

NL nesting by airline 35.00% 71.21% 71.08% 55.27%  3.09% 2.26% 2.27% V
is

ito
r 

bu
si

ne
ss

 

NL nesting by mode 34.65% 71.11% 70.25% 55.49%  2.83% 2.37% 2.19% 
          

MNL 30.56% 69.58% 67.72% 54.93%  1.90% 2.88% 3.64% 

NL nesting by airport 31.39% 69.16% 68.91% 55.03%  1.84% 3.48% 3.55% 

NL nesting by airline 31.82% 70.24% 68.64% 54.79%  1.99% 3.16% 3.64% 

R
es

id
en

t 
ho

lid
ay

 

NL nesting by mode 31.38% 70.98% 67.29% 55.46%  2.22% 2.66% 3.60% 
          

MNL 27.21% 69.53% 63.22% 53.31%  3.51% 2.89% 5.65% 

NL nesting by airport 28.97% 68.51% 66.41% 54.34%  3.19% 2.97% 5.19% 

NL nesting by airline 27.78% 68.61% 64.24% 51.60%  3.62% 2.95% 5.60% V
is

ito
r 

ho
lid

ay
 

NL nesting by mode 27.78% 72.41% 62.11% 53.49%  3.51% 3.05% 5.65% 
          

MNL 36.58% 80.83% 66.47% 60.26%  0.83% 2.27% 1.50% 

NL nesting by airport 36.74% 80.07% 67.50% 60.08%  0.99% 2.44% 1.61% 

NL nesting by airline 36.50% 80.36% 67.26% 59.41%  0.51% 2.37% 1.58% 

R
es

id
en

t 
V

F
R

 

NL nesting by mode 39.60% 84.97% 66.16% 61.36%  2.46% 2.38% 1.25% 
          

MNL 36.83% 73.20% 77.08% 60.97%  3.07% 5.39% 4.30% 

NL nesting by airport 36.81% 73.13% 77.25% 60.73%  3.09% 5.45% 4.33% 

NL nesting by airline 36.93% 73.26% 76.96% 60.52%  3.19% 5.38% 4.29% 

V
is

ito
r 

V
F

R
 

NL nesting by mode 37.83% 74.46% 76.98% 61.04%  3.08% 5.19% 4.11% 
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