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ABSTRACT

Speed Limit Enforcement Cameras (SLEC) have beepénation in Great Britain since 1991. However, there

is still considerable dispute regarding their effectiveness in reducing acGitestThe aim of this research was

to analyse the effects of SLECs on accident rates imb@dgeshire, UK, using timseries data collected over

an 11 year period. A time series analysis of the accitbatrevealed the presence of both trend and seasonality
components. A method was developed to remove theeice of these two components from the data and
compare mean accident levels before and after installaf the camera. The method was also constructed in
such a way that it would be able to distinguish between the actual effects of the camera installation and the
effects of regression to mean. The initial investigation into the effects of SLECs showed an average decrease
over sites in the monthly accidentdreency by around 18%, a more detailedlgsis suggested that the best
approximation of the effect of the introduction of BEE is a decrease in injurgccidents by 31.26%, thus

giving clear evidence that SLE@s indeed contribute ta significant decrease in accident numbers.
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1. INTRODUCTION

One of the most controversial recent road safety inimv&in the UK has been the introduction of speed limit
enforcement cameras (SLECs). These were introduc&89th as a means of assisting in the enforcement of
speed limits, especially on rural r@adViotorists recordetly the cameras as exceeding the posted speed limit
incur a fine. Although SLECs were populgith highway authorities, they @sometimes criticised by motoring
organisations and the public, who see themm egvert means of raising revenue (1).

Initially the number of cameras was limited due to the high cost of installation, which had to be met in
full by the highway authorities. Hower, a cost benefit analysis unddn in 1996 (2) concluded that, if
consideration is given to the full benefits to sociengluding the health service, SLECs generate benefits
equivalent to roughly 5 times their cost in the first year of operation alone.

Following this report, in 1998, the UK Government decided to allow local police forces to use the fine
income from speed and red light cameras to fuddit@nal camera installations. The scheme was first
introduced in April 2000 in eight police force areas known as partnerships. Certain criteria were set out for a site
to be eligible for a camera in this “hypothecationheme. There is also a requirement that the authority
monitors the effects of the camera on speed and accidents. For a cameuadd bethis scheme it has to be
installed at an accident blackspot. T8tated aim of the camera installatiaego reduce accident rates, not to
punish drivers. To this end, camera locations are widely publicised, the camera housing is painted bright yellow
and signing of cameras is provided within a radius of 1km of the camera locations.

A recent study (3) of the first yeaf operation of the new scheme conducted by thédgpgartment for
Transport (DFT) concluded that SLECs reduced collisiat accident blackspdty 35% and the number of
persons killed and seriously injur@dSI) by 47% with corresponding redumtis in the wider partnership area
of 6% and 18% respectively. However, this research was largely descriptive and did not attempt to explicitly
identify the potential impacts of trend, seasonal andrd#wtors and consequently there remains considerable
controversy regarding both the existence and the magnitude of the effects of SLECs.

2. OBJECTIVES, DATA SOURCESAND PRELIMINARY ANALYSIS

2.1 Study Objectives

The aim of this study was to investigate the effects of the introduction of SLECs in one particular shire county of
the UK (Cambridgeshire), and to compdinese effects to the results produbgdhe DFT research. A particular
concern was to control for seasonal and trend effect§giveh the selection criteria of sites) for the possible
effects of regression to mean. The research was carried out in collaboration with Cambridgeshire County
Council and the Cambridgeshire Safety Canfkaenership (Cambridgeshire Constabulary).

2.2 Data Sources

The main data set used in the anialg®ntains information on the 31,042 injuaccidents that were recorded in
Cambridgeshire during the period from 1990 to 2001, willktailed listing for every single accident. This data

is collected by police officers completj a ‘Stats 19’ form at the scenetbé accident. Accidents are classified

into three degrees of severity (slighérious and fatal injury) and the database also contains information on time
and date, the accident site location areldite reference number (a site ingmlly defined as a stretch of road

with a length of 1000 meters). The site reference number enables a division of the data into two classes, non-
camera sites and camera sites. The reliability of the information contained in the Stats 19 data is increased by
adjustment for under-reporting through comparison with other data sources, like hospital records for example.
The number of camera sites used in this analysis was 43, this is significantly higher than the number used in
most previous studies.

Speed survey data was made available by Cagpshire Police. This included results from speed
surveys at camera sites before and after the instailafi the camera, as well as some limited data on speed
surveys in the surrounding areas during the same time periods.

This research looked at the numbéinjury accidents rather thanethotal number of accidents or the
number of injuries (except where othéw/stated), thus treating an accideith one fatality in the same way as
an accident with two or more fatalities and also igmpmon-injury accidents. Thimakes the division of the
data into three main categories (and hence also the modelling) more straightforward and arguably is a more
appropriate way of representing the data than a meéttadreats multiple fatalities as multiple fatal accidents.

This is also the method used by Cambridgesbaenty Council in its analysis of accident data.
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2.3 Preliminary Analysis

A preliminary analysis of the dafeom speed surveys at camera sites teeBind after the installation of the
camera showed a significant decreasavierage vehicle speedwsll as in the percentage of vehicles exceeding
the posted speed limit, the percentage of vehiclesesling the camera threshold and the 85%tile of vehicle
speeds. These results are consistettt thie hypothesis that the SLECs associated with a reduction of speed
and hence, given the well established link between spegdoad safety, a reductionaccident incidence and
severity, but do not allow us to discriminate between the effects of the §iE&s and such factors as trend
and seasonality.

In addition to the decreases in speg¢the camera sites, the prelimyanalysis alsol®owed that there
were similar, but less significant decreases in speed in the surrounding areas. Speed in the rest of the network
however seems to have stayed approximately constdhis Hiad not been the case it would have meant that the
decreases observed at camera sites and in their neigbbdurere not necessarily linkéo the installation of
the camera, but could have been linked to the overall changes.

The initial analysis also showehe strong influence of seasonalidy accident data, calling for extra
care in the analysis, something that been ignored in virtually all prior research projects.

3. MODELLING OF ACCIDENT DATA

3.1ARIMA/SARIMA Model

To better understand the time dependent components attident data, a time series model was fitted to the
combined data set of all injury adeints from all locations, meaning that distinction could be made between
accidents of different injury severisieThe reason for this decision was telatively low monthly frequency of
fatal injury accidents at single accident sites, leading to a lotnofora variation. The use of the combined
accident data gave a very stable time series, wathdtiand seasonality factors that were relatively easy to
estimate. Experiments using different weights for difiedevels of severity produced inconsistent modelling
results, equal weights were thus used for the differgmistpf accidents.

A number of time series approaches were cosgamcluding ARIMA (autoregressive, integrative,
moving average) and SARIMA (seasonal autoregressivegriative, moving average) processes, as well as
exponential smoothing and the Holt-Winters methods. ARIMA/SARIMA models emerged as the preferred
approach. Not only does ARIMA/SARIMA tend to outperform the Holt-Winters method in the precision of its
seasonal indices, but it is also a better tool for foteagsthis becomes importain the validation process.
Figure 1 shows a plot of the mai injury accident numbers for @dridgeshire from 1990 to 2000, summing
over the three degrees of severity. The data for the2@fdr had only become available after the initial analysis
had been completed and was used mainly for model validation by compagogsis to observations.

The implementation of the ARIMA/SARIMAnodel proceeds as follows. We defing}{to be a time
series, whereZ; is the observation at time and define a;, (error term) to be a white noise process,

a ~ N(0,6%) . The backward shift operatds is defined such thaBth =Z;_, and the difference operatot

is defined so that, -1-BK.
As a tool for identifying a suitable model, the ACF (auto-correlation function) and PACF (partial auto-
correlation function) for the combinedcident data were plotieat different degrees dlifferencing (figure 2).
The plots in the first row of the figure show the ACF and PACF before differencing the data. The ACF follows a
cosine curve and fails to die out, suggesting thasheaild difference at least once non-seasonally. The results
of the differencing are clearly visible in the two plots in the secomd However, the ACF is still significant
mainly at multiples of the seasonal period (12 montwggesting we should try diffencing seasonally as well
as non-seasonally. The plots in the final row show an ACF that is significant at lags 1, 12 and 13 (and less

importantly at lags 26 and 27). This is consistent with the ACF of the nigdel(1-6B)(1- @Blz)at , which

has significant autocorrelations at lags 1, 12 and 13. The PACF is not consistent with any low order SARIMA
model (applying the Principle of Parsimony weuld usually look for an initial model wittp+q< 2). Our

initial model will thus be SARIMA (0,1,1)x(0,1 %)
The data has been differenced non-seasonalelisis seasonally, we have thus applednd vV ,to

the data, and i¥\{ is our model at time t, we get:
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FromW = (1-6B)(1- ®Blz)at (by definition of theSARIMA (0,1,1)x(0,1,1), model), we get:

vV, ,Zt = (L-6B)(L- ©B1)q
- B)1- B9z, = 1-0B)1- ©B1?)a
L-4 =492t 4 13- 08 1 -0 15+0 05 ;3
Zt =2y 1+ 212~ %13+ —0a 1~ 5p+00a; 33

Here 6 and ® are the only two parameters to be estimateeke is no need to include a constant in
this model. Indeed the mean after differencing will generally be sufficiently close to zero to make any constant
insignificant.

This model renders the following values for the paeters, with standard errors shown in brackets:
6=0.8273(0.0508) andd® =0.8708(0.0707). The mean absolute percentage error (MAPE) for this model is
8.14284, showing an average deviation of the fits ftben observations by 8.14%. Attempts were made to
overfit the model by adding one of the possible exi@eameters. None of the models resulting from this
procedure leads to an improvement in the fit. The final model will thus be the SARIMA (0,1,1)%0,1,1)

3.2 Residual Analysis

A detailed residual analysis was carried out on the fits of the model, beginning with an analysis of the residual
plots that are shown in figure 3.

The first plot checks for autocorrelation of theideial errors. The resulfall within the acceptable
region of no more than one significant observation in every 20 (aside from the ACF at lag 0, which is 1 by
definition). The quantile-quantile (QQ) plot shows that the residuals are approximately normally distriet
greater spread in the top end showat e residuals are right skewed, tisidikely to have been caused by
outliers which are months with a higher than expectedoeummf accidents. The time sesiplot of the residuals
shows that, except for some outliersgytican be regarded as being royghthite noise (where the outlier for
February 1996 accounts for most of gkewedness observed in the second phetre were 218 accidents in that
month, the mean number for February is 185). Although the histogram also shows that the data is right skewed,
it can be assumed that the residuals are normally distributed.

The Box-Ljung statistic is defined as:

K rkz
QK)=n(n+2) > ——,

k=1n-k

wherer, is the autocorrelation of the errors at lag k, Bnd the number of lags used, which should be

around ¥ of the sample size, in this case 33. If the model has been correctly specifiQ{Nmem\%:K as

n— o,

The calculation of the Box-Ljung statistic showed that that none of the autocorrelations is significantly
different from zero, the autocorrelation at lag 20 lies outside the limits, but, coming at such a high lag, this
outlier can be disregarded.

3.3 Model Validation by Forecasting

The next step was concerned with model validation, vbampared the forecastooduced by the model to the
actual observations. This process showed the forecasts produced by timodel are very accurate, the MAPE
for the forecasts for the year 2001 is 7.8648, thus eweerlthan the MAPE compag fits to observations in
the fitting period (1990-2000).

4. ANALYSISOF THE EFFECTS OF REGRESSION TO MEAN

This section looks at the role of regression to mean in the analysis of time specific data. Regression to mean, the
statistical phenomenon of a time series returning to its hesah can partially or fully explain the fluctuations
in the level of a time series and should thus @@ given some consideration in the analysis.
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4.1 Regression to Mean in the Context of Accident Data Analysis

In the context of this analysis the notion of regressiomean means that if we ayge a higher than expected
number of accidents in one month, it is likely that teservation for the next month will be closer to the
expected level. Hence, if such an outlying observation results in the installation of a SLEC at the specific site, a
drop in accident numbers in the montbowing the installation is a likely ent as the level of the time series
returns to its mean. This drop may thus not be due to the installation of the camera but rather to regression to
mean.

4.2 Existing M ethods of Detection

There are numerous methods that can be used to detect the effects of regression to mean and to see whether a
certain change in the level of a time series is due to an intervention, or simply due to regression to mean. The
best-known method is probably the extended version of the empirical Bayes model (4), which is however
inapplicable in this case #isere is insufficient data testimate the true underlying accident rate needed for this
method to work.

An approach that is simpler to apply for single sites was described by Adit@g%). This method
uses accident data from sites similar to the treatts over the same period, and calculates the biggest
explainable regression to mean effect for the treated site for a one-year period. This method does not take into
account seasonality and trend, but &sdks at annual data, the effects skidog almost completely independent
of seasonality. This method was usedtfe individual camera sites and thfeets were averaged over all sites.
Although it was sometimes very difficult to find sites similar to the camera site under investigation, the method
still produced a result, namely a maximum possibleesgon to mean effect of 9.69%. The mean change
observed over a one-year period idexrease by around 19% in injury accident frequency. This reduction in
frequency can thus not be fully explained by regressione@an. However, due to the limitations of the data set,
a new method had to be developed to further analysénfluence of regression to mean on the changes in
accident numbers at camera sites.

4.3 New Method

The nature of the phenomenon means that regressioream can only really be observed over a long time
horizon. Similarly, we can also only disregard the effects of regression to mean by considering a time series over
a longer time period.

One way to do this is to consider the mean level of the data before the intervention, in this case the
installation of the camera, and to compare this to the mean level of the data following the intervention. These
should ideally be long term prior and posterior mean levels, but the length of the prior interval especially is
important as this will provide us with a stable estimate of the natural mean level of the time series. However, this
approach does not take into account variation in tha daused by time specific effects, mainly trend and
seasonality. This method should thusused on a data set from which these effects have been removed. The
method used to do this will be intratkd in the section concerned withetkstimation of the effects of the
SLECs.

In order to apply this idea we need to assume (B} we have sufficient prior and posterior data to
enable us to produce good estimates of the correspolmtiggerm means and thdf2) after controlling for
trend and seasonality, there are no additional external factors acting on the data.

Figure 4 illustrates three possible sgeos. The plots show a long (inite) horizon time series plot of
the data, with an intervention at some point in time (roughly in the middle of the series), and the prior and
posterior mean levels. In the first two plots, the intetion takes place at the peakthe pulse in the data,
whereas in the third plot thetarvention takes place at an araitly chosen point in time.

In the first plot, the data returns to the level it was at before the pulse in the data. The (long term) mean
levels before and after the intervention are exactly equal, meaning that in this case there is no support for the
hypothesis that the decreas@li to the intervention.

In the second plot, the data decreases to a level below the stable level before the intervention. The (long
term) prior and posterior mean levels are clearly differand in this case, the decrease can thus not be fully
explained by the effects of regression to mean. Roughly we could assume that the decrease of the data to the old
stable state is due to regression to mean and thatditioaal decrease is due to the effects of the intervention.

The final plot shows the situation where we obserdecrease after an intertiem, where the level of
the data prior to the intervention was constant. In this case the decrease of the mean level cannot be explained by
regression to mean. Indeed, assuming an infinite time horizon, the data prior to the intervention was in a stable
state and the time series reaches a new stable state after the intervention.

In each case, the difference between the prior anénqmslong term mean provides a suitable estimate
of the effect of the intervention, nettbfe effect of regression to the mean.



Hess & Polak 6

It will not always be possible torfil appropriate long term mean levbisdirect analysis of the data.
However, if we assume that trenadaseasonality account for almost all o thariation in the data, the removal
of the effects of these components will give us estimatéiseo§table levels of the time series before and after
the intervention. These stable levels can then be asedtimators of the long term mean levels. Special care
should still be taken to guarantee that the prior antepos periods are longneugh (at least 12 months of
data).

5.ESTIMATING THE EFFECTSOF THE CAMERA INSTALLATION

The aim of this section is to analythe effects that the installation of SCs has on the safety record at camera
sites and in the surrounding areas. This section putsig@dhe knowledge we have acquired about the data in
the first half of the project, especially the characteristics of the underlying time series.

It was recognised at an early stage that it would not be possible to use any SARIMA based intervention
analysis methods on the accident data for single casitery where the average number of accidents per site
over a twelve year period (1990-2001)snlass than 40 accidents, thus lesnth (0.28) accident per month.
The models fitted in section 3 looked at the total doedbaccident count for Camtgeshire, some 3000 injury
accidents per year, the total count over all camiéza was an average annual number of around 140 accidents
per year. Clearly there was no way to fit an ARIMAFRSMA model for single camera sites, as there would
have been too much fluctuation in the data to fit @fulsmodel. The same problem applied to the data set
combining accidents over all camera sitdnother method had to be found.

5.1 Requirements of new method

The new method had to meet the following requirements. It should:

e look at monthly accident datandeed, when using annual data, it wolsddvery difficult to specify the start
of the effects after introduction

e use sufficiently large data sets to be able to discard random variation

e be able to distinguish between the effects of the SLEC and other effects like seasonality and trend.

The first two points contradict eaddther, since in the present cext it is not possible to identify
monthly data that are large enough to discard random variation. The solution to this problem is to combine the
single sites into a group of sites, however, due to diffénstallation dates, time-shifting has to be used to make
the dates coincide, and any time specific effects will thus have to be removed beforehand.

5.2 Detrending and Deseasonalising

Apart from an irregular component, the two main companehthe accident data are seasonality and trend. It

was recognised straightawtat smoothing could ndie used to remove seasonality and trend from the data as
this could introduce artificial cycles as well as put us at risk of loosing some of the information contained in the
data. Also, the new method should be reversible, suchafteatthe analysis, one should be able to apply the
inverse transformation to the data ane fibrecasts so as to detck to the original datand obtain forecasts that

reflect the trend and seasonality observed in the original data. Two assumptions were made in the calculation of
the seasonality and trend indices:

e The seasonal indices are assumed to be constant from year to year, however, as they are multiplicative
indices, the variation for years with higher data will be more important.

e The trend is assumed to be a constant decreaaecident numbers. This is a strong assumption as it
ignores changes in trend over the 12 years of observation, but this is the only way to include a trend
component in forecasting, and the assumption is alsifigdsby the fact that as the decrease in the total
number of accidents from 1990 to 2001 is only around 2%gffket of trend (and also random fluctuation)
is not as important as are for example the effects of seasonality.

An analysis using a combination of Holt-Winters and SARIMA modelling was carried out to calculate
12
the (multiplicative) seasonal indices, (s1,..,12), Wich:si =12. This analysis showed that the months with
i=1
the highest accident frequencies anmeudaly, November and December, thasth the smallest frequencies are
February, April and May. The analysis showedeardase in deseasonalised accident frequency from January
1990 to Dec 2001 by 2.2% (0.015% per montloynd by estimating the trend from 1991 to 2001 and
backforecasting for the year 1990, thelusion of which woud have biased the results (see figure 1, 1990 was
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the wettest year in England and Wales since 1872). We, le¢ ¥he trend level at timieand Y, be the initial

trend level, and we sep, ::((4.
1

Then, by assuming trend to be linear and nornmagifiy setting the trend for January 1990 to 1, the
trend effect can be transformed into a multiplicative effect.

The data at time poiitX; can now be detrended and deseasonalised, by:
— Xj i . o
Xj =————— where MODE is the remainder of the d|V|S|oE, andsy =s;,.

S i Pi
MOD12

n
X
If we now subtract from eac[?(i the mean of the detrended and deseasonalisedld_:agea,— , Where
n

n is the length of the data set, we get a series with mean equal to zero. This process will be referred to as
differencing.

The resulting time series is, except for some out{gensl notably the year 1990¢ry similar to a white
noise process, something that can be established by a runs test on the data, which shows a probabitify of 0.5
the data being purely random, which is quite high considering the inclusion of the year 1990, with its clear
decreasing trend (still present even after applying this procedure).

Figure 5 shows the effects of this procedure, on the fits of the model and on the actual data. The effects
on the fits will necessarily produceflat line at zero, as the coeffaits were calculated from the model
producing these very fits.

If the behaviour of the data for a specific site is similar to the overall behaviour of the data for all sites,
the resulting series (after detrendinigseasonalising and diffei@ng) should be very similar to a white noise
process. Slight deviations from this do not necessamdgmthat the series is difémt from other sites, some
marginal difference may be explained the fact that the indices have not explained all the variation in the
original data and that the original models did not give a perfect fit to the data.

5.3 Time-Shifting

Time-shifting is used when combining data from single camera sites into one group. After detrending and
deseasonalising the data, it could be assumed that any components other than the effect of the camera
installation and a remaining irregular component had beswved from the data. This meant that the data for
the single camera sites could be grouped together into one single data set by shifting the data so that the
installation dates coincided. The shifting process did however involve the loss of some prior data for sites that
were commissioned late and some posterior data far thite were commissioned early. This was necessary as
the grouped data could only cover a period of time whdata was available from all sites in the group, but
obviously the prior and posterior periods for sites wifferent installation dates are of different lengths.

A plot of the grouped and time-shifted data was then produced to check whether any decrease in the
accident data was visible after imuction of the cameras. However, {asterior period wanow very short
(length equal to the length of the posterior period for the last camera to be installed), so that although the plot
showed an apparent decrease, sother method had to be developed.

5.4 Calculation of Effects

5.4.1 Change in Total Detrended and Deseasonalised Accident Numbers

The change in the mean level of monthly prior gudterior detrended and s#msonalised (DD) accident
frequency data was calculated for each camera site. didsese changes showaddecrease in the monthly
mean level of accidents. In order to compute the oveifaltteacross all sites, the prior and posterior long-term
mean accident frequency levels were initially simplynmed across all sites and the difference of these two
totals was calculated. This resultén an estimate of a reduction injury accident frguency by 31.26%.
Although most individual sites showeeductions in accident frequency, thi@portionate changat individual
sites showed considerable variatranging from -100% to +336% (whereethite with the 336% increase was a
site with a very low accident frequency of only around 1dmstti per year prior to the installation of the SLEC,
which was installed not because of atcident blackspot but becausepefrsistent speeding offences). The
average proportionate effect across all sites was -15.17%WBR6 confidence interval (truncated at -100%) of
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[-100%,97%], which, although very wide, does suggest that the effect at specific sites is more likely to be a
decrease than an increase.

5.4.2 Changes for Individual Stes and Weighting Strategies

One problem with simply averaging effects across different sites is that equal weight is given to all sites.
However, the data for the sites with longeperiods of posterior runs and/or higher
average monthly accidents levels will in general be meliable. To illustrate thigffect, the estimate of the
effect derived from averaging acrodksites (i.e., -15.17%) was used tadoast the effects at each one of the

43 camera sites. By comparing theses 'forecasts' teffdnas actually observed on the single sites, the sum of
squared errors (SSE) was calculated for the forecastabbwites. This was found to be equal to 714.44, with a
total sum of squares (TSS) of 3298, and was espetigly for some of the sitesith the most credibility
(relatively high prior monthly data levels and long posteperiods). Clearly more weight had to be given to
these sites. A number of approaches were used to develop weights.

An initial set of weights were found by multiplyinhe prior monthly accident DD data level with the
length of the posterior period. From this, the weighted average was calculated, giving an estimated reduction in
accident numbers by 22.74%dsdard deviation of 61.11). The usetlis coefficient reduced the SSE from
714.44 t0 599.67. The prior data level was deemed to be important than the duration of the posterior period
(sites with high data were not very prone to randontdhigon, making the conclusions more reliable, even over
a shorter posterior period). An attempt to use ther pnienthly accident DD datavel for the weights resulted
in an estimated reduction by 30.54% (standard tiewieof 60.38), and the SSE was reduced to 552.06.
Finally, a least squares method was used to find the coefficients that minimized the SSE, which was essentially
equivalent to reducing the squared error for the sites with the highest credibility. This gave a mean effect of
-31.79% (this method did not provide a standard eramd,reduced the SSE only marginally further to 551.14.

This iterative process has thus decreased the SSE from 714.44 to 551.14.
Clearly this final coefficient explainthe overall effect far better than thienple average taken earlier on. This
estimate is also very close to thitial estimate of -31.26% found in thmalculation of the change in total
detrended and deseasonalised actidambers, thus increasing confidence in that earlier result.

The above discussion shows that sites with higherlidiéiga levels should bewgn more weight in the
calculation of coefficients lfe weighted mean coefficient explaine thverall changes far better than the simple
average over all sites). An explanation for the differen¢evdsn the different estimators is that of the ratio of
means versus mean of ratios issue. The initial estimate of -31.26% derives from taking the ratio of two totals,
namely the change in the total monthly DD accidemiint over all sites following the installation of the
cameras. Basic algebra shows that this is equivalent to the ratio of the two means (prior and posterior DD). The
second estimate of -15.17% is found by taking the mean of ratios, namely the average of the changes on
individual sites. The difference between the two estimategvitable, when the units over which the averaging
is being done are of significantly different size.

By weighting sites according to prior DD means ia #iveraging of change®#ding to the estimate of
—30.54%), this difference is simply cancelled out, hence the similarity between the two estimates (-31.26% and
—30.54%). The mean of ratios versus ratio of means issegsentially a question of alternative estimators of
change or effect. The relative size of the two estiims will depend amongst othehings on the correlation
structure in the data (e.qg., if bigger sites have bigger improvements, then ratio of means will always be bigger
than mean of ratios, which is the situation we have here).

The results from the SSE analysis which produced an estimate veryteclib® ratio of means estimate
suggest that we should prefer this method to the meaatios approach. The factatreliability of the data
comes into play in this calculation, and the fact that the data from larger sites is deemed more reliable gives
additional support to this decision. Indeed, the ratio of means approach does, by looking at the ratio of the
averages over all sites (rather than the average of the ratios over all sites) indirectly assign different weights to
sites with different levels of data (as higher values play a bigger role in the calculation of a mean). This
minimizes the bias introduced by theelusion in the calculation of dafeom sites with relatively low accident
frequency and resulting high randonudiuation. The final estimate of the reduction in detrended and
deseasonalised average monthly injury accidantbers will thus be a decrease by 31.26%.

6. COMPARISON WITH OTHER RESEARCH RESULTS

The principal studies against which comparisons caméee are the cost benefit analysis undertaken for the
DFT in 1996 (2) and the more recent assessment ofrdieyéiar of operation of the new SLEC regime, also
carried out for the DFT (3). One ofelproblems in comparing the resultsioé current analysis to these earlier
results is that little or no consideration was given to seasonality and trend in the earlier work.
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The cost benefit study showed that across all sites, SLECs decreased casualties by an average 28%. The
analysis of the effects on the new sjtevhich, unlike some older sites, weselected only because of their long-
term accident record, showed areeage decrease in collisions by 3586mpared to 28% on the old camera
sites. More importantly the number of KSI accidents feasd to have decreased by 47% (3). The total number
of injury accidents has decreased by some 32%. Tfiggees are broadly consistent with the estimates
presented in section 5.

7. CONCLUSIONSAND RECOMMENDATIONS

The research has shown that, after removing the effects of seasonality and trend, and independent of the
influence of regression to the meargrhis a significant reduction in theeam level of monthly injury accident
frequency following the installation of a SLEC. The analysis has shown that the actual effects observed on the
camera sites in Cambridgeshire are best explainaetrieguction in the detrendethd deseasonalised monthly
accident mean level by around 31%, ggyiclear evidence thatdhinstallation of a SLEC does indeed have a
positive effect on the accident rates at the camera site.
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Figurel1l: Monthly injury accident data for Cambridgeshire - 1990 to 2000
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