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ABSTRACT

In this paper, we evaluate the performance of different simulation-bestedation techniques for Mixed Logit
modelling. We compare a quasi-Monte Carlo method (modified latin hypeseubgling) to a Monte Carlo algorithm
with dynamic accuracy. We also compare the classical BFGS line-search agproashregion methods, which have
proved to be an extremely powerful approach in nonlinear progragniNummerical tests are performed on two real
datasets; stated-preference parking-type data collected in the UK, and revealed prefet@nce mode-choice
collected as part of a German travel diary survey. Several criteria are used inltiiavaf the approximation
quality of the log-likelihood function and the accuracy of the resalts)g with the associated estimation runtime.
Results suggest that the trust-region approach outperforms the BFG&chpprad that Monte Carlo methods remain
competitive with quasi-Monte Carlo methods in high dimensionathlpms, especially when an adaptive optimisation
algorithm is employed.

1. INTRODUCTION

With the increased use of advanced discrete choice models in the field spottation, researchers face mounting
issues relating to the formulation, estimation and interpretation of the modelsyfignof discrete choice model that is
becoming increasingly popular is the Mixed Multinomial Logit (MMNL)odel (18,26), which allows for the
representation of random variations in tastes across decision-makers, coregladEsalternatives in the unobserved
part of utility, and heteroscedasticity in the error-terms. It also allowarfaxplicit treatment of the repeated choice
nature that is inherent to many of the more complex datasets used in ti@itspor

The fact that the MMNL choice-probabilities take the form of multi-dimensiamalgrals without a closed-form
solution leads to a requirement for numerical techniques, typically simyl@tiohe estimation and application of the
model. Despite major gains in computational power, this dependency on beemputation is still limiting the
applicability of the MMNL model.

Several approaches have been proposed with the aim of reducing the comglutagchead. These can be divided into
two main categories; changes to the actual estimation process, anéscharige techniques used in the simulation
processes. In this paper, we compare the gains in estimation pmrt&that can be obtained when using methods
from these two main streams of approaches. The first approach usdsnedeby Hess et al. (15) in the field of quasi-
Monte Carlo integration, while the second approach is based on an adaptite G&rlo algorithm that varies the
number of random draws used at a given iteration according torth#aton error and bias of the simulated log-
likelihood function, in combination with trust-region approaches (3.d0mpare the performance of the two methods
across two real datasets, using various criteria.

The remainder of this paper is organised as follow. Section 2 ret@aheory behind Mixed Logit models, while
estimation techniques are described in Section 3. Details on the datasets used are jmeSent&xh 4. Section 5
presents a discussion of the results, while Section 6 outlines the corelasibmakes some suggestions for future
research.

2. THEMIXED MULTINOMIAL LOGIT MODEL

In a random utility model, a decision-maker n is faced by a choice ahadtregnatives, characterised by a vectgot)
| random utility functions:
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divided into an observed part,,\and an unobserved past, The observed part of utility is a function of the tastes of
the decision-makes, and a vector xcontaining attributes of alternative i and socio-demographic characteristics of
decision-maker n (or interactions of the two), such thatgys,x,). Typically, a linearn-variables specification is
used, such that )* S'x,. Under the assumption of utility maximisation, the alternative with thlelst utility is
chosen. In the Multinomial Logit (MNL) model, the individual error-tergpsare assumed to be independently and
identically distributed extreme-value, leading to the well-known logit féarfar the choice probability of alternative i:
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In the MMNL model, the vector V itself contains random elements, andhbice probabilities are rewritten as:
I:)ni = _[ I::’ni (Vn bvn’ [3]
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where the elements in the vectoy 8an be rewritten as.¥g(fxn)+&,. This formulation can be exploited in two
mathematically identical, yet conceptually different ways. In the erropoaents formulation (c.f. 28), the additional
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vector &, contains a set of Normally-distributed error-components that can betosediuce correlation across
alternatives and/or heteroscedasticity in the unobserved parts of utilities tieradsoice-set. In the more regularly
used random-coefficients formulation (see for example 23), the additoror-term is exploited to introduce taste
heterogeneity in some of the coefficients across decision-makersthsughbecomes itself a random vector. Finally,
both approaches can be combined, to simultaneously allow for raadtarheterogeneity, inter-alternative correlation,
and heteroscedasticity. Although the applications presented in this paper aiecentrthe random-coefficients
formulation, the issues discussed, as well as the solutions presenteel aggotidd to both formulations.

In the random-coefficients formulatiof, is assumed to be distributed according/#t1¢), where @ is a vector of
parameters of the random distribution, giving for example the rexedustandard deviation of the individual elements in
p across decision-makers. The choice probabilities in the MMNL model are wew!lgy:
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For practical (numerical) reasons, the log-likelihood is generally useathwhith N decision-makers facing |
alternatives, is given by:

_ZN:id [5]
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where d,,; is a dummy variable that is set to 1 if decision-maker n is obsenawtse alternative i and 0 otherwise.

The standard approach used in estimation is to maximise the logdide@ldiven in [5] with regards t6, such that, at
the maximum likelihood estimataf, a necessary (but not sufficient) condition is:

V,LL(6")=0. (6]

The obtained solutiod is then said to be first-order critical. If moreover, the Hessian of thkelihood is negative
semi-definite, the solution is said to fulfil second-order necessaditmors. Finally, a negative definite Hessian is a
seconderder sufficient condition, ensuring that the solution is a strict logtinoim. If the log-likelihood is concave,
as is the case for the lineimvariables MNL model, first-order conditions are sufficient to ensure that thosois a
global solution. Unfortunately, if the utilities are nonlinear or ihixed-logit formulation is used, the log-likelihood is
non-concave, and special care as well as appropriate algorithms are requnesskeiarch of a solution.

Except in the case of a trivial distribution function fhrthe integrals representing the choice-probabilities [4] do not
have a closed-form solution, and require the use of approximatibniqees. Typically, the choice probabilitieg; P

(i=1,...,1) need to be replaced by the simulated choice probablfmeeﬁ],...,l), given by:

R
2 RBax)
P st
ni R

where the different values @f are independent draws frofi#| d), for a given value ob. The simulated log-likelihood
(SLL) is then given by:

SLL(0)=3 Y d,, (B, ), 8]

n=1 i=1

: [7]

with maximum simulated likelihood estimator (MSLE) denoteﬁby

It has been shown (16) that if R rises faster tth, maximum simulate likelihood (MSL) estimation is
asymptotically equivalent to maximum likelihood (ML) estimation (in a -firster critical sense). Almost-sure
convergence of the estimators is discussed by Bastin et al. (8xefibN and increasing N. The use of a fixed number
of draws R does inevitably induce simulation bias and variancetf2§)s however unavoidable due the absence of a
closed-form solution for the MMNL-integrals, but can be minimised loygus sufficiently high number of draws.



As an extension, we look at the treatment of repeated choice observatipitally, the tastes of a given decision-
maker are assumed to stay constant across choice-situations for thateespmarah that tastes vary across individuals,
but not across observations for the same individual. The probabilittas afdividual choices are then replaced by the
probabilities of the observed sequence of choices for each decision-méttei,, giving the alternative chosen by
decision-maker n in choice-situativfr=1, ...,7}), the probability of the choices made by decision-maker n, conditional
on g, is given by:

L-rr1n (ﬂ) = l—n[ I:)nim (ﬁn ! Xnint )’ [9]

with a corresponding unconditional probability:

L, = [La(B)f (B)dB. [10]
B

This leads to a new version of the log-likelihood function, given by:

LL(9)= iln(Ln), [11]

with a corresponding form for the simulated log-likelihood function.
3.ESTIMATION TECHNIQUES

While offering great gains in flexibility, the MMNL model does, as memiabove, have the disadvantage of yielding
choice probabilities that do not in general possess a closed-form solutien. tkough recent improvements in
computer performance have made the MMNL model a more widely-applicalbléotadiscrete choice analysis, the
estimation and application of the model can still be computationally very expemgiv this reason, considerable
efforts have gone into improving the efficiency of the actual estimatiocesses, with the aim of further reducing this
computational overhead. In this paper, we discuss two such approadass:random numbers and trust-region
methods. Our empirical analysis gives an illustration of the perfa®ngains that can be obtained relative to standard
Monte Carlo integration, and compares the performance of the two rmethpiictice.

3.1. Quasi-Monte Carlo integration

In standard Monte Carlo (MC) integration, the draws fifg#hd) used in equation [7] are based on transformations of
pseudo-random numbers, generated uniformly in the intervdl Byltheir nature, the inherent random distribution of
these draws across the area of integration leads to uneven coverag#ofonity), especially when a low number of
draws is used. This in turn leads to poor approximation inlaiion, which can lead to biased parameter estimates. As
the use of a very high number of draws is however oftgradctical and computationally very expensive, the use of
guasi-Monte Carlo (QMC) numbers can be a desirable alternative. By offenmage even spread of points across the
area of integration, these deterministically-designed number sequengaty usad to more stable simulation
performance, hence enabling the use of a lower number of dnatlescorresponding reductions in the computational
cost in the actual simulation process.

A large number of different types of quasi-random numberesemps have been proposed, especially in the field of
numerical and computational statistics. In the field of transportation, onlyypaeof sequence, the Halton sequence,
has found widespread application. While Halton sequences perform well idinoewnsion (c.f. 5,25), their cyclical
nature creates problems with high correlation and poor coverage indinigmsional applications. Two main
transformation methods have been proposed to circumvent these mob@ambled Halton draws (c.f. 6), which
permute the digits on the original elements of a multidimensional sequenteshuffled Halton sequences (c.f. 12),
which randomly permute the order of the original elements. Somg bfe also gone into using other quasi-Monte
Carlo methods, aiming to minimise some discrepancy measuraljuthe star-discrepancy measure); as an example,
Garrido (11) proposes the use of Sobol sequences, while Sandor an@#)dinstrate the performance of (t,m,s)-nets
in MMNL estimation. It should remain clear that “the success of QMC methods in practice is due to a clever choice of
point sets exploiting the features of the functions that are likely to beiseted, rather than to an unexplainable way
of breaking the ‘curse of dimensionality’ ” (17). Therefore, the actual applicability of a particular QMC approach
should always be carefully assessed, in particular with respect to themptotsolve, and more research into the use of
QMC in ML estimation is still needed.

In this paper we make use of the modified latin hypercube sanm(lihglS) approach proposed by Hess et al. (15).
Formally, a one-dimensional sequence of length N is obtained by setting
. j—1 .
¢(])=T+X, J=:L...,N, [12]



where X is a random number satisfyin@ < x<}{\|. Multi-dimensional sequences are simply constructed by

combination of randomly shuffled one-dimensional sequences (hismgting the correlation which would lead to
poor coverage), and by using a different shift x in each diimens

3.2. Trust-region methodswith variable numbers of draws

The maximisation of the log-likelihood function in equation [5] cansben as a generalisation of a classical class of
stochastic programming problems (2). A large number of diffeogntimisation algorithms can be used in the
maximisation of the SLL [8]. Researchers generally use Newton-RafBibttl, and BFGS line-search methods. The
BHHH approach can be much faster than other methods, but can ocdéadamhtd produce a solution; BFGS on the
other hand is usually seen as good compromise between efficiahcgharstness.

In this paper, we use basic trust-region (BTR) methods, whioh iawed to be one of the most powerful approaches
in nonlinear programming, and have received a lot of attention and deeitgpduring the last decade (see 10 for an
exhaustive review of these methods, with more than 300 refereimoes 1990). The main idea of a trust-region

algorithm involves the calculation, at iteration k (with current estirfigteof a trial point@) + Sy by approximately

maximising a modelmy of the objective function inside a trust region defined as

B, = {0'such thag — 6| < A, }, [13]

where Ay is called the trust-region radius. We will use a quadratic model:
m(s)=SLL?(g,)+s'V,SLLR(, )+ %sT H,s, [14]

where His a symmetric approximation of the HessiﬁerSLLR(Qk), and where we use the BFGS approximation in

the reported numerical experiments. The predicted and actual increases in thd ttaduebgective function are then
compared by computing the ratio

_ SLL¥(G, +s.)-SLLR(B,)
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If this ratio is greater than a certain threshold, set to 0.01 in oury tiestsial point becomes the new iterate, and the

trust-region radius is (possibly) enlarged. More preciselyy is greater than 0.75, we set the trust-region to be the
maximum betweent  and 2g, otherwise we setl , =0.54 . If the ratio is below the bound, the trial point is rejected

and the trust region is shrunk by a factor of 2, in ordeémirove the correspondence of the model with the true
objective function. We have followed Conn et al. (10) in our choitkeoparameters. Note however that during the last
iterations, the algorithm becomes insensitive to the trust-region radius, iter#ites are close to the solution.

(15]

A major advantage of the trust-region approach is that it can easi#yldyged to include a variable sample size
strategy, as proposed by Bastin et al. (3). The resulting algorithm will éreegtfto as basic trust-region with dynamic
accuracy (BTRDA), since the simulation error is a function ofntln@ber of draws. Such an approach is based on the
idea of generating a full set of draws prior to optimisation, toubnly use part of it during certain stages of the
optimisation process. This is motivated by the understanding thdirgh steps in an optimisation process are rough
steps in the general direction of the optimum, requiring a relatively lowek dé\precision in simulation. The full set
of draws is used during the last few iterations; this not onlyagiiees maximum simulation-precision at this stage of
the optimisation, but also means that the problem used at this stage aftitmisation is identical to that used in
methods not based on variable sample size strategies. Since the population sizmnstant, we can rely on
consistency results and expect good estimators, close to the true mdieiilnmod estimators, when R is sufficiently
large. We will however mainly use the bias and accuracy estimation to define what “sufficiently large” means, since,

for instance, just requiring R strictly greater the(N can lead to insufficiently large sample sizes, as we will see later.

A practical rule would for instance be to choose R such that the bias em@é@c estimation, averaged over the
individuals, are less than some usual tolerance.

We therefore need to know simulation bias and accuracy, which can be coepénéddws:
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and

respectively, wheres'rf(é’) is the variance oL, and & is the quantile of the Gaussian distribution at significance-

level 5. In practice, we sef to 0.9, and replacé. (#) and &>(6) by their corresponding statistical estimators (2).

Too small a value fow would imply unrealistic error estimation, while too large a value woutdlyce overly
conservative values, implying poor performance of the variabhplsasize strategy.

We now discuss the main ideas of the implemented strategy, with dethipscaris of convergence given by Bastin et
al. (4). At a given iteration k, usindR, draws per individual, we compute a candidate sample ein

[R,';m , Rmx] where R is the final sample size, arR:in is the minimum number of draws. If the ratig between
the increase in model fit and the estimated accuracy is greater than 1, Riétsghe minimum oﬂ_0.5 Rqax—‘ and the

size needed to obtain an accuracy equal to the model increase, dend®d Ibyhe improvement is smaller than the
precision, but greater than the ratio between the sample siz&&nde setR" to the minimum of!_0.5 Rnax—‘ and

Ty R®, on the grounds that an increase of the order of the estimated gosordd likely be reached in approximately
(rk—‘ iterations. Otherwise, we s@&®" to (0.5 Rnax—| as long asr, is greater than some threshold (set to 0.2 in our
applications), and tdR ., when this condition is not met. We then compute the simulated log-blelifunction with

R" draws per individual at the trial iterate. If the ratiois less than 0.01, we recompute the simulated log-likelihood
at g with R"if R, <R", in order to take account of variance difference, or, whgn> R", we compute a new

candidate sample sisz, corresponding to the size producing a bias equal to the predicted increassst and
R' =R’ if R" <R” <R_. The bias is indeed increasing in absolute value when the numhewef is decreased.

We then again compute the rafig with updated sample sizes. As a safeguard, we finally increase theuminim
sample size if the algorithm exhibits poor performance due to the vasaifoaccuracy and bias when varying the
sample size. The algorithm stops when the gradient norm is less taadafined tolerance, or a fraction of the
accuracy (0.2 in our tests), where we expect that no more significant eare¢he objective function will be achieved.

4. EMPIRICAL APPLICATION

We now describe the framework used to evaluate the performance dffférent algorithmic options, in terms of
nonlinear programming methods as well as drawings techniquesi@essndom or quasi-Monte Carlo draws). We first
describe the two datasets used in our experimentation.

4.1. Data

To illustrate the differences in performance between the various methiddNL models were estimated on two
datasets; a stated preference (SP) dataset for parking-type choice collected in the UndecthKamgl a revealed
preference (RP) travel-diary dataset collected in Germany. The two datasets arefipwdscribed.

The first dataset used in the analysis contains the results of anv8l leaking into the choice of parking type in the
West Midlands region of the United Kingdom (22). Three separate sun&ysaenducted in the central business
districts of Birmingham and Coventry, as well as in the suburban &&uatton Coldfield, in 1989. Respondents were
selected at street-level with the help of certain screening criteria and (ebtasHey were presented with up to nine
hypothetical choice situations involving their revealed parking-typejgaleith two possible alternative parking-
options. The five types of parking used in the survey werednesireet, chargedn-street, charged-off-street, multi-
storey car parking, and illegal parking, where the design enshaédlégal parking was included as an alternative in
eachchoice situation. Four attributes were used in the description of the data;taneefs the parking area), search
time (for a parking space), egress time (walking time to final destinatimhparking cost (set to zero for the fie-



street alternative). Finally, for the illegal parking option, the cost attrivatereplaced by the expected fine, given by
the product of the probability of receiving a ticket with the levelrad turrently in use. The final sample contains 1335
responses, from 298 respondents, grouped into two purpose gnargsand leisure). The dataset was recently used by
Hess and Polak (14) in an MMNL analysis, revealing significant randoma teterogeneity for the majority of
variables used in the survey.

The Mobidrive dataset was collected in 1999 in two cities of Germany (Kalsaod Halle-Salle), from 160
households and 360 individuals, where each individual was obseuvied dix continuous weeks. For details on data
collection techniques and on the descriptive results, see (1). In thetpaaaéysis, only the dataset for Karlsruhe is
used; appropriate data on the levels of service (LOS) for the used andeabaltasnatives were added separately. The
days recorded were structured according to the framework propgdgidat and Singh (7) and extended by Cirillo and
Toint (9). All trips are grouped into tours, and the populatiodiveled into workers (commuters and education) and
non-workers. For each worker, the daily chain is divided intoning, commute andevenng patterns. For non-
workers, we define the main activity as the longestafidteme activity recorded, where the daily activity chains are
represented in relation to this pivotal activity and organised into n@rpiincipal and evening patterns. With this
definition, a total of 5,795 tours were identified, performed by ib88/iduals belonging to 66 households, with an
average daily number of 1.72 tours per individual.

4.2. Comparison framewor k

The open-source estimating software AMLET (Another Mixed Logit Estimalool) was used for the estimation of all
models discussed in this paper (c.f. http://mwww.grt.be/amlet). Tdgramn allows for classical BFGS line search, but
also comprises code for Basic Trust-Region and Basic Trust-Regibrdywiamic accuracy estimation. In order to as
much as possible limit the timing differences between the threethlgs due to the implementation, all algorithms
were rewritten directly in the core of AMLET, by taking accounttled standard recommendations of the existing
literature. For the BTR, we have followed the guidelines proposed by &ain(10), while for the BFGS line search,
we have observed the suggestions given by Nocedal and Wrigha(2Dhave taken inspiration from the package L-
BFGS-B (29). In particular, we have implemented the efficient More-Thuamesearch (19), which is currently
considered as the best line-search technique. It is worth noting at ititish@ao the trust-region approach is simpler to
implement efficiently than is the case for the line-search method.

Experiments were conducted on a Pentium IV 3.20Ghz, with 2GB wifonye under Linux. The reported times are the
CPU runtimes used during the optimisation process, as given byEAMIt the end of estimation. While the three
algorithmic options have been tested with Monte Carlo draws, wehaddltHS approach only with BTR, which we
observed to deliver significant speed gains by comparison to the BFGséireh, similar to previous experiments on
synthetic data (3). As error estimation is not directly available with thiel $approach, we were however restricted to
using the fixed sample size strategy. Unless otherwise stated, the giaititsgfor estimation were obtained by setting
all model parameters to 0.1.

5.RESULTSAND DISCUSSION

In this section, we report the estimation results and the evaluation ofipattation and optimisation techniques
described in the previous part of the paper. In particular, the perfornmaticators used are:

— Bias, RMSE and Standard Deviation, as share of the standard error of ttiatadsestimate;

— Estimated accuracy and bias of the log-likelihood (available only for Monte @athods);

— Computational time.

The computation of the bias and the root-mean-squared-error (RMSEelettie stimated value and these “true”
values of the parameters aims at testing the ability of the draws to recover the “true” parameters. In order to account for

the shape of the log-likelihood function, the RMSE values were exuressa proportion of the standard error of the
true parameters (c.f. 15). For the parking-type choice model, thearameters were calculated on the basis of 10 runs
using 100,000 pseudo-random draws per individual, and thesvaleiee averaged over those runs (where the standard
errors are given as the square-root of the average of the squarsyl &g was found to be sufficient to yield stable
parameter values, where the estimated simulation bias and accuracy, aveeaded mdividuals, were of the order of
-5.10° and 110° respectively. In the Mobidrive dataset, we estimated the true parameters bygrimenimodel ten
times with 10,000 pseudo-random draws per individual, whengt@ger number of draws was not possible due to
memory limitations and the large number of observations. The tablesthgvstatistics averaged over parameters;
parameter-specific results are available from the first author on request.

Ten independent runs were performed in order to produce the penfmwrimalicators, and the same random draw sets
(for each predefined sample size) were used when comparing BFGSaBITRBTRDA algorithmsThe stopping
criterion for BFGS and BTR was set tol@vhile we stopped the BTRDA algorithm when the gradient was lessithan
fraction of the estimated accuracy, as explained in Section 3. Reported estimated Istan@dard deviations are also



expressed in terms of percentages of the optimal log-likelihood vasegyen in Tables 1 and 3, by indicating the
percentages in brackets, next to the canonical values.

5.1 Parking choice model

In the parking-type choice model (Table 1), we estimated 9 paramdtersich one is fixed and the remaining 8 are
randomly distributed. A Normal distribution was used for all four idiedtialternative specific constants (ASC); the
highly significant standard deviations for these coefficients showxteateof taste variation, at least partly reflecting
the differences in terms of respondents’ attitudes towards the different types of parking. In terms of sensitivity to time,
there is significant taste variation only for search and egress timeisigléach fixed coefficient for access time, and
lognormally distributed coefficients for search and egress times. A daoghalistribution was also used for the cost
coefficient, while, due to problems with an overestimated standard deviation ughen the lognormal, a normal
distribution had to be used for the expected fine coefficient. Althoughdties imply a probability of ~0.7% of a
positive coefficient, this risk is necessary in this case, as very peolts were obtained with all of the alternative
distributions. A more exhaustive description of this model and thengdsr the actual specification can be found in
Hess and Polak (14).

Bias, RMSE and standard deviations (Table 2) are surprisingly highef@®FGS line search and 1000 pseudo-random
draws, when we compare them to those obtained with the trustir@gpoaches. During our tests, the BFGS method
failed to converge with two sets of draws, and we had to choosetiagstaoint close to the solution in order to
guarantee convergence. Moreover, two other runs converged téedarisolution, with a final gradient norm of less
than 10°. This can be explained by the fact that the candidate points produded the early iterations can become
quite large, leading to convergence difficulties in later runs. We argue thardilem comes from the non-concavity
and the flatness of the objective function. A good preconditioning gériitdem could help to improve the behaviour
of the method, but such techniques have not yet been investigatedesteur

The pseudo-random draws perform surprisingly well when comparéde MLHS draws, since bias, RMSE and
standard deviations are comparable when using 1000 draws. It isrecatling that the dimensionality of the problem
is quite high (8 random parameters), and in such cases, it has desadgbserved that standard Monte Carlo methods
are again competitive with quasi-Monte Carlo techniques (15). In terms of tatiopal time, the BTRDA algorithm
clearly outperforms any other methods, and the choice of the égistarmethodology also leads to important savings.
Even if the BTR algorithm is often reported to be faster than the BF@Ssdiarch techniques in nonlinear
programming, the time reduction factor, of approximately twatilsimpressive. This suggests that the trust-region
approach is more adapted to deal with the shape of the log-likelihnotibfu This is coherent with theoretical results
(27), while the practical differences between trust-region and lineksgéactiniques are usually less or even not
appreciable.

We finally note that the proposed model is quite difficult to estimate, as reflectEable 2, which illustrates large
variations between estimates over the 10 runs. Therefore, moréhauhd probably be used to adequately compare the
different methods. Estimation of the accuracy and bias of the log-likelibptimal values, currently only available
with standard Monte Carlo draws, also suggests that we can face estidiffitolties since significant noise is present
in the objective, even with 10,000 draws. In particular, their mearesader individual are quite high compared to the
usual values used in classical stopping criteria. Note that this information is adreaithble with one simulation,
while the other presented criteria can only be obtained by repeating the isimptatess over a sufficient number of
runs.

5.2 Mobidrive mode choice model

In the Mobidrive mode choice model (Table 3), we estimated 21 paramefewhich four are specified as being
normally distributed, namely those associated with time, cost, suravel time and time budget. This specification
leads to positive value of travel time coefficients for about 10% of thelggapu It is not clear whether these results
are caused by the use of the normal distribution, or are actually rebgaled data. The latter poiof-view is taken

by Cirillo and Axhausen (8), based on the observation that other isptoifs, such as ones using a lognormal
distribution for both time and cost and accounting for correlation aithose parameters, did not improve the fit of the
model and produced very doubtful value of travel time savings eteal. (13) however stress that such negative values
of time are not consistent with economic theory, and should beaseanmesult or poor distributional assumptions, or
data impurities. The discussion of this topic is beyond the scope pfdkent paper, and the normal distribution was
used primarily because it performed well numerically.

Tables 3 and 4 show that the model is very robust, and simulatise is low, even with a small number of draws.
This is due in part to the dataset’s inherent properties and to the large number of individuals, but also to the model
specification and to the low number of random parameters. Thisralles that the number of draws needed to

8



efficiently estimate a model crucially depends of its characteristics, while the knowdédgmulation bias and
accuracy is again a valuable tool in the search of an optimal numbdeaves. In particular, mean estimated bias and
accuracy are small, close to the values usually used as stopping critettee Bame number of draws per individual,
we observe much lower simulation bias and accuracy estimates tlila@ parking choice models. This is in part
consistent with what we expected. The mean error per individual desreéth the population size, but the mean bias
only depends on the number of draws. Moreover, we observeithat000 draws per individual (a common choice),
the ratio between the simulation accuracy and the simulation bias isitatgerMobidrive dataset. We argue that this
mainly comes from the fact that we compare a cross-sectional expeviitierast panel data set. The integrand of the
unconditional choice probability in the panel case is indeed far more complicateth the cross-sectional case, which
could imply a need for a higher number of draws in ordebterve a similar precision and bias. This in turn suggests
that care is required when dealing with classical consistency theoremstiaulpathe required number of draws
depends more on the model formulation than on the number of indisidbservations. Preliminary experiments on
synthetic data have led to similar observations.

In this application, MLHS draws are competitive compared to standard Monteapartmaches, even with the BTRDA
technique. The use of 500 and 1000 MLHS draws give smaller bias, RMS&amaard deviation values than those
obtained with 2500 pseudo-random draws. This also leads to siifarmance as with 5000 pseudo-random draws in
terms of bias, and gives better RMSE and standard deviations. Wegain partially explain the differences in
performances across the two datasets by the low random diméitgionisich usually leads to an advantage for QMC
techniques. It should also be noted that the results obtained with 500, r120@0@0cdraws are quite similar for RMSE
and standard deviation (while the bias is smaller for 2000 draws thab@Gtbf 1000 draws). More research is needed
to determine the exact reasons for this observation.

Finally, we observe that trust-region techniques greatly outperform BR&Sdiarch, as in the previous example, and
that the choice of optimisation algorithm is a key component of #oyteeto reduce computational costs. This is
consistent with previous conclusions, obtained on synthetic data (3xdVhatage is nevertheless smaller than for the
parking study. This can probably be explained by a (mathematically)sgeeification of the model in the Mobidrive
study, leading to a better-conditioned log-likelihood, and therefore an fagidon to maximise.

6. CONCLUSIONS

In this paper, we have reviewed two techniques designed to lead totatiomal savings when estimating mixed logit
models. We have also discussed the general importance of the choice ofabiptimatgorithm in the estimation of
such model structures.

Our analysis indicates that quasi-Monte Carlo draws, such as MLHS, drawgroduce more accurate results than
standard Monte Carlo methods with a given number of draws. Thidiaveever not always be the case, especially for
complex models. This confirms that the form of the integrand ma$fect on the quality of the approximation obtained
with quasi-Monte Carlo draws. MLHS draws are nevertheless simplepterimant, and could easily be implemented in
a variety of estimation programs, while adaptive Monte Carlo techniquesramofe complicated to develop and

implement.

Our results also indicate that the trust-region framework is well adaptezh-concave models; it greatly outperforms
classical techniques such as the BFGS line search, and is more robust. Thausalgbtive variable sample size
strategy always leads to improvements over standard optimisatiosaapps, while giving more information to the
analyst, in terms of simulation bias as well as standard deviation. This lastatioseis consistent with previous
experiments on synthetic data. Further tests would however bd tsefssess the performances when using more
complicated models, for instance with highly non-linear utilities. The varsdneple size strategy presented in this
paper is indeed likely to be affected by the conditioning of the log-likatihsince it requires sufficiently large steps
during the optimisation process. Additionally, it should be notedtth&tyther increase the reliability of the results and
conclusions presented in this paper, a higher number of estimation rums différent draws) should be used,
especially for the more complex models.

In closing, we believe that simple quasi-Monte Carlo techniques reprseénteresting first step when dealing with
numerical efficiency questions, since important savings can often lvedhThis effort can however be quite useless
if a poor optimisation algorithm is used. More research is still needed to evaffiatent quasi-Monte Carlo
techniques for complex, high-dimensional problems. Finally, an iapioravenue for further research is the
combination of quasi-random approaches with variable sample size strategieter to benefit from the strengths of
both approaches.
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Table 1: Parking choice data set, estimation results (PCM)

MLHS BTRDA
Par ameter Distr. 2000 draws 20000 draws
| Es.  tsat. Est.  tdat.
m 30617 3.04 || -3.3018 2.92
ASC Charged on street (N) - 3.7468 276 | 3.9796 2.79
M 05339 0.96 | 0.4853 0.88
ASC Charged off street (N) G 22877 344 | 21467 3.09
. W 0.6742 1.04 | 05879 0.91
ASC Multi-storey (N) o 34751 556 | 3.4657 5.49
" -6.4490 524 || -6.4153 4.91
ASC lllegal (N) - 4.8051 383 || 47172 3.79
Time access (F) u -0.1116 3.81 -0.1111 3.79
. W 18388 815 || -1.8321 8.04
Time search (LN) - 0.8814 3.06 | 0.8777 2.99
. W 18863 648 || -1.0071 6.44
Time Egress (LN) - 0.6406 139 | 06954 1.73
. . m 0.9081 434 | 09014 4.10
Time parking fee (LN) G 0.6530 3.20 | 0.7045 3.30
. . m 23842 383 || -2.2088 3.74
Time expected fine (N) G 1.0626 325 | 1.0449 3.07
Number of observations 1335 1335
Likelihood at zero -1466.647 -1466.6
Likelihood at convergence -640.286 -640.615
Number of parameters 17 17




Table2: PCM: goodness of model parameters, computational times, LL accuracy and bias

MLHS/BTR* 200 draws 500 draws 1000 draws 2000 draws
Bias as share of standard error 0.4542 0.3068 0.3879 0.1025
RMSE as share of standard error 0.9919 0.7647 0.6949 0.4010
St. Dev. as share of standard error 0.8964 0.7062 0.5773 0.4054
Computational Time (s) 46 115 238 461
Monte-Carlo/ BFGS* 1000 draws 5000 draws 10000 draws
Bias as share of standard error 0.5609 0.1296 0.0739
RMSE as share of standard error 1.0258 0.2871 0.1765

Std. Dev. as share of standard error 0.8696 0.2633 0.1597
Computational Time (s) 479 1960 4202

Estimated accuracy of the log-likelihooc
Estimated bias of the log-likelihood

2.83351 (0.442%)
-1.48376 (0.232%)

1.27682 (0.199%)
-0.30128 (0.047%)

0.88883 (0.139%)
-0.14600 (0.023%)

Monte-Carlo/ BTR* 1000 draws 5000 draws 10000 draws
Bias as share of standard error 0.1988 0.0910 0.0588
RMSE as share of standard error 0.4539 0.2513 0.1698
Std. Dev. as share of standard error 0.4851 0.2437 0.1607
Computational Time (s) 229 1018 2315

Estimated accuracy of the log-likelihooc
Estimated bias of the log-likelihood

2.72686 (0.426%)
-1.37417 (0.215%)

1.22173 (0.191%)
-0.27585 (0.043%)

0.88936 (0.139%)
-0.14617 (0.023%)

Monte-Carlo/ BTRDA* 1000 draws 5000 draws 10000 draws
Bias as share of standard error 0.2596 0.0854 0.0746
RMSE as share of standard error 0.5603 0.2643 0.1512
Std. Dev. as share of standard error 0.4946 0.2597 0.1280
Computational Time (s) 149 677 1417

Estimated accuracy of the log-likelihooc
Estimated bias of the log-likelihood

2.80915 (0.439%)
-1.45836 (0.228%)

1.28189 (0.200%)
-0.30368 (0.047%)

0.88670 (0.138%)
-0.14530 (0.023%)

* draw type / optimisation routine
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Table 3: Mobidrive data set, estimation results

Alter-  Didtr. MLHS BTRDA

Parameter native 1000 draws 10,000 draws

| Est. t-stat. Est. t-stat.
ASC Car passenger CP n -1.1394  11.78 || -1.1390 11.77
ASC Public Transport PT u -0.7211 3.99 -0.7205 3.99
ASC Walk W H 1.3320 7.69 1.3324 7.70
ASC Bike B 8 0.8872 5.24 0.8886 5.25
Sub-Urban HHLD location CD, CP H 0.4439 5.21 0.4428 5.21
Urban HHLD location PT n 0.1950 1.79 0.1950 1.78
Age 1825 PT u 1.3009 8.42 1.3025 8.43
Age 2635 CDh, CP u 0.3778 2.31 0.3772 231
Age 5165 PT u 0.4562 4.27 0.4568 4.28
Female and part-time CP n 0.7179 6.83 0.7166 6.81
Married with children CD n 0.7938 9.26 0.7922 9.24
Malin car user CD u 1.0684 11.66 | 1.0677 11.64
Annual mileage by car CD 5 0.0267 7.55 0.0266 7.54
Number of season tickets CD 5 -0.1915 2.06 -0.1915 2.06
Number of stops CD 0 0.1596 3.52 0.1591 3.52
Time BP All u -0.0281 9.99 -0.0281 9.97
Time BP All c 0.0208 5.30 0.0210 5.32
Cost CD, PT u -0.1233 8.76 -0.1234 8.70
Cost CD, PT o 0.0423 2.18 0.0428 2.16
Time Budget CDh, CP u -0.0330 2.03 -0.0326 2.01
Time Budget CDh, CP o 0.0807 2.11 0.0585 1.97
Sum of Travel Time B u -0.0419 -5.87 | -0.0421 5.86
Sum of Travel Time B o 0.0409 4.80 0.0412 4.81
Tour Duration PT n 0.0039 16.50 | 0.0039 16.49
Number of observations 5795 5795
Likelihood at zero -8180.169 -8180.169
Likelihood at convergence -6447.956 -6447.400
Number of parameters 24
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Table 4: Mobidrive: goodness of model parameters, computational times, LL accuracy and bias

MLHS/BTR* 200 draws 500 draws 1000 draws 2000 draws
Bias as share of standard error 0.02690 0.00961 0.01409 0.00311
RMSE as share of standard error 0.04516 0.02486 0.02572 0.02261
St. Dev. 0.03678 0.02387 0.02227 0.02316
Computational Time (s) 381 967 2474 4468
Monte-Carlo/ BFGS* 1000 draws 2500 draws 5000 draws
Bias as share of standard error 0.00971 0.01826 0.00546
RMSE as share of standard error 0.06505 0.03428 0.02926
St. Dev. 0.06737 0.02891 0.02996
Computational Time (s) 3024 7610 14746

Estimated accuracy of the log-likelihooc 1.61874 (0.0251%)
Estimated bias of the log-likelihood -0.48425 (0.0075%)

1.03454 (0.0161%)
-0.19779 (0.0031%)

0.7237 (0.0112%)

-0.09738 (0.0015%)

Monte-Carlo/ BTR* 1000 draws 2500 draws 5000 draws
Bias as share of standard error 0.01946 0.01076 0.00491
RMSE as share of standard error 0.05128 0.04215 0.03615
St. Dev. 0.04927 0.04244 0.03769
Computational Time (s) 2280 5769 11064

Estimated accuracy of the log-likelihooc 1.63525 (0.0254%)
Estimated bias of the log-likelihood -0.49418 (0.0077%)

1.02798 (0.0159%)
-0.19529 (0.0030%)

0.7239 (0.0112%)

-0.09738 (0.0015%)

Monte-Carlo/ BTRDA* 1000 draws 2500 draws 5000 draws
Bias as share of standard error 0.01458 0.00765 0.00504
RMSE as share of standard error 0.06377 0.04622 0.03529
St. Dev. 0.06493 0.04750 0.03665
Computational Time (s) 1381 3215 5857

Estimated accuracy of the log-likelihooc 1.62796 (0.0253%)
Estimated bias of the log-likelihood -0.48979 (0.0076%)

1.023557 (0.0159%)
-0.19362 (0.0030%)

0.7255 (0.0112%)

-0.09726 (0.0015%)

* draw type / optimisation routine
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