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Abstract 

Stated choice surveys are used extensively in the study of choice behaviour across many different 

areas of research, notably in transport. One of their main characteristics in comparison with most 

types of revealed preference (RP) surveys is the ability to capture behaviour by the same respondent 

under varying choice scenarios. While this ability to capture multiple choices is generally seen as an 

advantage, there is a certain amount of unease about survey length. The precise definition about 

what constitutes a large number of choice tasks however varies across disciplines, and it is not 

uncommon to see surveys with up to twenty tasks per respondent in some areas. The argument 

against this practice has always been one of reducing respondent engagement, which could be 

interpreted as a result of fatigue or boredom, with frequent reference to the findings of Bradley & 

Daly (1994) who showed a significant drop in utility scale, i.e. an increase in error, as a respondent 

moved from one choice experiment to the next, an effect they related to respondent fatigue. While 

the work by Bradley & Daly has become a standard reference in this context, it should be recognised 

that not only was the fatigue part of the work based on a single dataset, but the state-of-the-art and 

the state-of-practice in stated choice survey design and implementation has moved on significantly 

since their study. In this paper, we review other literature and present a more comprehensive study 

investigating evidence of respondent fatigue across a larger number of different surveys. Using a 

comprehensive testing framework employing both Logit and mixed Logit structures, we provide 

strong evidence that the concerns about fatigue in the literature are possibly overstated, with no 

clear decreasing trend in scale across choice tasks in any of our studies. For the data sets tested, we 

find that accommodating any scale heterogeneity has little or no impact on substantive model 

results, that the role of constants generally decreases as the survey progresses, and that there is 

evidence of significant attribute level (as opposed to scale) heterogeneity across choice tasks. 

Keywords: fatigue; stated choice experiments; multiple data sets; willingness to pay; scale; learning 
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1. Introduction 

Choice experiments are a popular setting within which to investigate the preferences of a sample of 

individuals between offered alternatives, where one or more alternatives may be available today 

and/or are prospective offers. These surveys are used extensively in producing guidance for policy 

makers and thus play a crucial role in transport policy and planning. There is an extensive literature 

on the design of choice experiments (see Bliemer & Rose, 2009, for a detailed review), and a growing 

literature on investigating candidate attribute processing rules invoked by respondents (see 

Hensher, 2010, for a detailed review) when asked to evaluate a series of alternatives in a given 

choice set and to choose the most preferred (or to rank all the alternatives). The repeat nature of 

the choice experiment across a number of choice sets has been recognised as a feature that requires 

special attention, with the focus primarily on ways of accounting for the correlated structure 

induced by offering each respondent multiple choice sets in a sequence (see Daly & Hess, 2010, for a 

recent discussion). 

In addition, there has been great interest in the possible role of three behavioural mechanisms as a 

respondent goes through a survey, namely fatigue, boredom, and learning. The impact of these 

mechanisms on results is typically thought to be restricted to model scale. If a respondent is bored 

or becomes fatigued, his or her engagement with the survey reduces or mistakes are being made, 

and as a result, model scale goes down (i.e. the variance of the error increases). Fatigue and 

boredom, though different in nature, thus have a possibly very similar impact on results, and in 

practice it will not be possible to distinguish between them. In the remainder of the paper, we will 

largely be restricting ouƌƐĞůǀĞƐ ƚŽ ƚŚĞ ƚĞƌŵ ͚ĨĂƚŝŐƵĞ͛͘ LĞĂƌŶŝŶŐ ŽŶ ƚŚĞ ŽƚŚĞƌ ŚĂŶĚ ǁŽƵůĚ ŵĞĂŶ͕ ŵŽƐƚ 
simply, that as a respondent starts to better understand the choice tasks, model scale increases. 

Fatigue and boredom especially have received a lot of attention, but the claims and the suggestion 

that the error variance associated with the alternatives defining a choice set increases throughout 

the sequence (or in some studies that it is U-shaped), are typically based on a single data set. In this 

context, a disproportionately large weight is given, especially in applied studies, to the early 

evidence in Bradley & Daly (1994). This paper showed that in a survey making use of up to sixteen 

binary choice tasks (thirteen on average), the scale decreased significantly throughout the duration 

of the experiment.  

The issue of fatigue has also been addressed by a number of other authors. Adamowicz, et al. (1998) 

looked at the issue in a study involving eight choice sets with three alternatives each, and found no 

effects of either learning or fatigue. Phillips et al. (2002) use a 12-task experiment and find lower 

scale in the second set of six tasks than in the first set of six tasks. Hanley et al (2002) found no 

significant differences between the results for respondents who faced four tasks and the results for 

respondents who faced eight tasks in a five-attribute, two-alternative experiment. Risa Hole (2004) 

also made use of choice set specific scale parameters in a data set collected for forecasting the 

demand for an employee Park and Ride service, where each respondent was shown nine choice sets 

each containing only two attributes, time and cost. None of the scale parameters were significantly 

different from one. Holmes and Boyle (2005) look at an experiment with four choice tasks and find 

higher scale for the fourth task than for the first task. 

Savage and Waldman (2008) investigated learning and fatigue across multiple stated choice (SC) 

tasks for both mail and online survey modes, and found that out of the two, only online respondents 

responded with decreasing quality as they progressed through multiple choice tasks. Caussade et al. 

(2005) investigated effects of learning and fatigue while simultaneously investigating the impact of 

design complexity and cognitive burden in a heteroskedastic logit framework on a route choice data. 

It was observed that learning effects were prevalent during the first nine tasks, followed by fatigue 

effects. The notion of learning effects being followed by fatigue effects is also consistent with the 

findings by Hu (2006) who interacted the scale parameter with the task number in a mixed logit 
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model and found learning effects over the first six choice tasks, followed by fatigue effects. Brazell 

and Louviere (1996) similarly suggested that scale increases up to a point before it decreases again, 

in an experiment with 96 tasks, while Raffaelli et al (2009) found that learning effects dominated 

over the first ten out of sixteen choice tasks in a five attribute five alternative experiment making 

use of the heteroskedastic logit model. Bateman et al. (2008) use a sixteen-choice-task experiment 

and find that only the scale parameters for tasks 3, 9, and 16 are significantly different from 1, where 

contrary to common assumptions, the least reliable estimates are in the middle of the sequence, 

with the most reliable question being the sixteenth one, a point by which most analysts would 

assume fatigue to have set in. Bech et al. (2010) exposed respondents to different numbers of choice 

tasks (5, 9, 13, and 17) and found that respondents who were given 17 tasks had slightly higher error 

variance than respondents who were only given five tasks, while respondents with nine tasks had 

higher scale than respondents with five tasks. Brouwer et al. (2009) used mixed logit models in the 

context of a five task and three alternative experiment, finding increasing scale parameters 

consistent with learning effects, a suggestion that was confirmed by an analysis of respondent 

reported certainty measures.   

Finally in a particularly important contribution,  Bateman et al. (2008a), in a contingent valuation 

(CV) context,  investigated the formation and nature of preferences by addressing an issue of 

particular importance to the valuation of low experience goods, namely the speed at which 

individuals can form stable preferences for relatively novel goods presented in unfamiliar markets. 

They developed a new approach, called learning design contingent valuation, to eliciting stated 

preferences for non-market goods. They found evidence of both institutional learning and value 

learning in repeated responses to CV questions. Valuations of an initial good exhibited typical 

anomalies, namely inconsistencies between single and double-bounded valuations of that good and 

anchoring effects. Analysis of trends in both within-good valuation differences and in anchoring 

showed significant reductions in both anomalies as repeated valuations are made. Indeed by the 

time respondents had undertaken a number of CV valuations both anomalies completely 

disappeared.  

The evidence from the literature across a number of disciplines is clearly not conclusive, with the 

majority of papers showing either a lack of fatigue effects or even the presence of some learning 

effects, be it a context of unfamiliar or familiar markets. Most papers are also just based on a single 

dataset, often with a very limited number of choice tasks. However, the evidence from Bradley & 

Daly (1994) has been used so extensively that revisiting the issue seems appropriate. Indeed some 

recent work (cf. Brownstone et al., 2010) went as far as suggesting that model results are not 

reliable if they fail to account for the increasing error as a respondent progress through a stated 

choice experiment. While this paper wishes in no way to discredit the work of Bradley & Daly (1994), 

evidence from a single dataset is clearly not sufficient to justify making use of short surveys. It is also 

important to recognise the potential benefits of multiple choice tasks. As an example, Plott (1996) 

suggested that respondents may discover their true preferences through a learning process, and 

such learning process is expected to change preferences and thus parameter estimates in discrete 

choice experiments. 

The topic of this paper is thus to revisit the issue of respondent fatigue in repeated choice settings. 

With a view to allowing us to reach more general conclusions than previous work, we look at a 

number of data sets collected in various countries and in different contexts, to investigate the extent 

of any systematic relationship between error variance (or scale) and choice set sequence. A key 

characteristic of the datasets is that the order of choice tasks is randomised across respondents, 

thus breaking the correlation between scale variation across tasks and attributes of the tasks ʹ it is 

not clear that this has been the case in all (or even most) previous studies looking at fatigue effects. 

Additionally, while the majority of existing work has focussed solely on the investigation of scale 

differences across choice tasks, we offer a more comprehensive testing framework that also studies 
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differences in relative sensitivities across tasks, and also extend our analysis beyond simple Logit 

models to Mixed Logit structures. 

Although there is evidence of some amount of difference in error variance, we were surprised to 

find that the differences were often small and had little influence on substantive model results. 

Crucially, there is no general decreasing trend in scale. Encouragingly from the perspective of the 

growing reliance on SC surveys with a large number of choice scenarios (up to 16 in our data sets), 

there is surprisingly little evidence of respondent fatigue. On the other hand, the study of the 

relative sensitivities across choice tasks suggests the possibility of learning of true preferences as a 

respondent proceeds through the survey. In conjunction, these findings suggest that analysts can 

capture choices for a large number of scenarios for each respondent (or at least larger than 

commonly assumed), giving respondents ample time to express their true preferences without any 

undue impacts of respondent fatigue. 

The remainder of this paper is organised as follows. In the next section, we outline the empirical 

testing framework used in our analysis. This is followed in Section 3 by a discussion of the different 

datasets used in our empirical work. Section 4 presents model results, and finally, Section 5 offers a 

brief summary and conclusions. 

2. Framework for empirical tests 

This section briefly outlines the framework used for the empirical tests conducted for this study. 

A total of six tests are carried out for each dataset, split into two groups of three tests. The first 

three tests relate to models estimated jointly on the data for all choice tasks, while the second set of 

three tests relate to models estimated separately for individual choice tasks. The first group of three 

tests thus relates to the work of Bradley & Daly (1994) and is concerned with studying the impact of 

allowing for choice task specific scale parameters. The second group of three tests makes of use of 

choice task specific models, thus also allowing for additional differences in relative sensitivities. 

The first two tests make use of both multinomial logit (MNL) and mixed multinomial logit (MMNL) 

models, using a linear-in-attributes specification of the utility function, where, for the MMNL 

models, we made use of lognormal distributions for the random parameters. For the third test, we 

restricted ourselves to the MNL results, for reasons discussed below. The same applies to the three 

tests in the second group, as the small sample sizes would not have permitted the reliable 

estimation of choice task specific MMNL models. The MMNL models were specified with inter-

respondent heterogeneity, thus recognising the repeated choice nature of the data. In both MNL 

and MMNL models, the panel specification of the sandwich error estimator was used to once again 

recognise the repeated choice nature of the data (cf. Guilkey & Murphy, 1993, and Daly & Hess, 

2010).  

We will now look at the tests in turn. 

2.1. Scale differences across choice tasks 

Three tests are conducted on each data set to investigate the effect of allowing for scale differences 

across choice tasks. The tests make use of information from two separate models. The first is a base 

model that does not allow for any differences across choice tasks. In particular, let Ujnt be the utility 

of alternative j for respondent n in choice task t (t = 1, .. T). In the base model, we then simply have 

that  

Ujnt = Vjnt н ɸjnt с Ĩ;ɴ͕ǆjntͿ н ɸjnt,       (1) 
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i.e. the utility is composed of a deterministic component Vjnt, and a random component ɸjnt, where 

this follows a type I extreme value distribution, with errors distributed identically and independently 

(iid) across tasks. The deterministic component Vjnt is given by Ĩ;ɴ͕ǆjnt), where ɴ and xjnt are a vector 

of coefficients to be estimated and a vector of observed attributes respectively, and where the 

functional form for f() depends on model specification. With the iid distribution of errors, and the 

constant ɴ across tasks, any systematic differences in utilities across choice tasks are thus solely a 

function of differences in observed attributes. 

In the second model, we allow for scale differences across choice tasks, by rewriting Equation (1) as: 

Ujnt с ɲt Ĩ;ɴ͕ǆjnt) н ɸjnt,          (2) 

where an appropriate normalisation is required, e.g. setting ɲ1=1. With errors still specified as iid 

extreme value, an increase in ɲt for a specific choice task equates to increased weight for the 

deterministic component of utility for choice task t, i.e. reduced variance for the error term. This 

specification is formally equivalent to the Nested Logit specification used by Bradley & Daly (1994) 

and others, but is based on the estimation of models with non-linear utility functions, where we use 

both MNL and MMNL models. 

2.1.1. Test 1.1: Model fit impacts 

Our first criterion is a likelihood ratio test1 comparing the base model with the model making use of 

choice task specific scale parameters. In other words, with LLbase and LLscale giving the log-likelihood 

obtained with models based on Equation (1) and Equation (2) respectively, we use -2(LLbase-

LLscaleͿΕʖ2
T-1. Here, the degrees of freedom for the test are equal to T-1, i.e. the number of estimated 

scale parameters in model 2. This test is carried out for both MNL and MMNL models. 

2.1.2. Test 1.2: Evidence of scale differences 

As a next step, we study the estimates for the choice task specific scale parameters ɲt, looking for 

differences in scale across choice tasks, through comparison with the (normalised) scale for the first 

task, ɲ1. In particular, we look for any signs of trends across choice tasks in the values for the scale 

parameters, with reductions (i.e., higher unobserved variance) suggesting fatigue and increases (i.e., 

lower unobserved variance) suggesting learning effects. Once again, this test is carried out for both 

MNL and MMNL models. 

2.1.3. Test 1.3: Impact on relative parameter estimates 

As a final step, we investigate whether allowing for potential scale differences across choice tasks 

has any impact on substantive model results in the form of relative sensitivities, focussing on 

willingness-to-pay (WTP) indicators, and in particular also the significance levels of any differences 

between the models with and without choice task specific scale parameters. This test is only carried 

out for the MNL models so as to avoid the added difficulty of also studying differences in the implied 

heterogeneity in the WTP indicators, where only limited effort had gone into appropriate 

specifications of the distributions, using Lognormal distributions throughout. 

2.2. Choice task specific models 

Our second set of three tests move away from the assumption that any impacts of survey duration 

are restricted to scale differences and thus looks at choice task specific models that allow for 

                                                           

1
 For the MNL models, this test is approximate as it does not recognise the repeated choice nature of the data. 
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variation also in relative sensitivities. Given sample size limitations, these tests are restricted to MNL 

models only. 

In particular, we estimate a separate model for each choice task. It can be seen that the combined 

results for these T models are equivalent to those that would be obtained from a single model in 

which we rewrite the specification in Equation (1) as: 

Ujnt с Ĩ;ɴt,xjntͿ н ɸjnt,        (3) 

i.e. using choice task specific parameters. 

The results from these choice task specific models could again highlight the presence of specific 

trends, such as respondents focussing more or less on specific coefficients as the survey progresses. 

As an example, one school of thought would be that respondents initially focus on their most 

important attributes while they get used to the experiment, while another view would be that 

respondents in time focus on just such a subset. Both phenomena could be seen as evidence of 

learning effects, while the second could similarly be interpreted as fatigue. 

2.2.1. Test 2.1: Model fit impacts 

Our first test in this group looks at the impact on model fit of allowing for choice task specific 

models. In particular, we compute a combined model fit (made up of the fits of the individual 

models), where this is given by LLcombinedсєt LLt, where LLt gives the log-likelihood for the model 

estimated on the data for choice task t only. We then conduct likelihood-ratio tests for this 

combined model against the model assuming complete homogeneity across task, i.e. -2(LLbase-

LLcombinedͿΕʖ2
(T-1)p, and the model allowing for scale differences but maintaining an assumption of 

homogeneity in relative sensitivities, i.e. -2(LLscale-LLcombinedͿΕʖ2
(T-1)p-T+1. 

2.2.2. Test 2.2: Trends in model fit 

Next, we look at any trends in model fit across the choice task specific models, i.e. a study of LLt  for 

t=1,...T, noting that this is strongly related to the scale difference test in section 2.1.2., with higher 

scale equating to greater weight for the deterministic component of utility, and hence more extreme 

choice probabilities (with the choice probability for the alternative with the highest deterministic 

utility increasing as scale increases). Here, we also look for correlation between the choice task 

specific log-likelihood contributions and the task number. 

2.2.3. Test 2.3: Evidence of trends in relative importance of different attributes 

The model making use of choice task specific scale parameters allows for scale differences across 

choice tasks. The choice task specific models allow for such scale heterogeneity but also additional 

heterogeneity in the relative importance of difference attributes across tasks. We first compare the 

degree of heterogeneity in the model with scale heterogeneity only to the degree of heterogeneity 

in the choice task specific models, on the basis of the coefficient of variation. In the model with 

choice task specific scale parameters, this will, for coefficient k (i.e. ɴk), be given by 

cvk,scaled=я;ǀĂƌ;ɲ1ɴk,..., ɲTɴk))/ɴk, i..e the heterogeneity will clearly be constant across coefficients. On 

the other hand, in the model based on Equation (3), we would have cvk,combinedся;ǀĂƌ;ɴk1͕͕͘͘͘ ɴkT))/ 

;ʅ;ɴk1͕͕͘͘͘ ɴkT)), where ɴkt gives the value for coefficient k in choice task t. If any differences across 

choice tasks could be explained by the choice task specific scale parameters, we would have that 

cvk,combined/cvk,scaled=1. If on the other hand this ratio is greater than one, we have evidence of further 

heterogeneity, net of scale differences. Where there is such additional heterogeneity, it is of interest 

to look for any trends. For this purpose, it is necessary to first disentangle the two types of 

heterogeneity, where this can be achieved by factoring out the scale differences in the choice task 

specific models, through dividing each coefficient in each of the T models by the appropriate scale 
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parameter from the model with choice task specific scale parameters. In other words, we would 

have that ɴkt,net=ɴkt/ɲt. The resulting coefficients are net of scale differences, and we can look for 

correlation between coefficients and tasks, where we also compute a t-ratio for such correlation. If 

we obtain significant positive correlation between task numbers and <ɴk1͕͕͘͘͘ ɴkT>, then this equates 

to decreasing sensitivity as the survey progresses if ɴk is a negative coefficient, and increasing 

sensitivity as the survey progresses if ɴk is a positive coefficient. The opposite reasoning applies to 

negative correlation. 

3. Data 

In this section, we present the different datasets used in our analysis. These datasets were collected 

in different countries (UK, Denmark, Australia, USA) and made use of different choice scenarios in 

terms of number of alternatives (two or three) as well as number of attributes (from two to six), 

while some additional differences arise in the number of choice tasks faced by each respondent 

(ranging from eight to sixteen). Finally, three of the surveys were conducted as computer aided 

personal interviews (CAPI), while a fifth one (fungibility study) was conducted as an online survey. 

The Atlanta survey used a mixture of these two data collection methods. These differences across 

surveys allow us to reach more general conclusions. 

The crucial common factor across all surveys is that for each respondent, the order of the T tasks 

was randomised. This ensures that any scale differences retrieved in the analysis should be free of 

effects of the specific make up of individual choice tasks; in other words, there should be no 

correlation attribute levels (and potentially resulting task complexity) and the scale effects retrieved 

in our analysis. Indeed, if the same ordering had been used across respondents, and if say the first 

task had always been easier, then some deterministic patterns in scale heterogeneity could have 

been expected. As already alluded to earlier, it is not clear that this requirement was met in all or 

even most previous studies looking at respondent fatigue.  

3.1. Atlanta toll road study 

The first case study makes use of data collected for a toll road study in Atlanta (see Hess et al., 2008 

for more details). In each choice task, a respondent was faced with three alternatives; driving in the 

existing untolled lanes (general lanes), driving in a tolled lane (managed lanes), or carpooling in the 

managed lanes in return for a reduced toll. The three alternatives were described by two attributes, 

namely travel time and toll (zero for general lanes). For each respondent, data was collected from 

eight choice tasks. 

Three different samples were collected for this study, with differences in the underlying design 

approach. In the first sample of 1,563 respondents, an orthogonal design was used, with the eight 

tasks for each respondent being drawn at random from the overall design, i.e., making use of 

random blocking. In the second sample of 1,146 respondents, the same underlying design was used, 

but the eight tasks for each respondent were obtained with orthogonal blocks. For the final sample 

of 1,110 respondents, a D-efficient design was used, once again with orthogonal blocking. There 

were some socio-demographic differences across the three samples, as discussed by Hess et al. 

(2008), and these are partly reflected in the differences in the WTP measures across the three 

samples. In each of the three samples, the data was collected via an internet based survey. 

3.2. Fungibility data 

The second case study used data collected by Orr et al. (2010) in a study looking at the fungibility of 

monetary valuations in a transport safety context. Specifically, the survey looked at the relative 

sensitivities to rail travel time, costs, and safety (number of accidents). Each respondent faced three 

different binary SC experiments, trading time against cost, time against safety, and safety against 

cost. Each experiment made use of five choice tasks, equating to a total of 15 choices per 
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respondent, where a D-efficient design was used. The order of the three experiments was 

randomised across respondents, with the same number of respondents in each of six orderings, and 

the order of choice tasks was also randomised within each experiment. Finally, each respondent was 

additionally presented with three corresponding contingent (CV) valuation exercises involving the 

binary comparisons, where half the respondents were given the CV experiments first, with the other 

half being given the SC experiments first. A final sample of 397 respondents was obtained for this 

study; the slight loss of balance across the twelve different subgroups was so small as to be 

inconsequential. 

3.3. Danish Value of Time data 

The third case study makes use of data from a binary unlabelled abstract choice experiment 

conducted in Denmark, with the two alternatives being described by travel time and travel cost. The 

attribute combinations were based on a manual design encouraging trading between the two 

attributes. For further details on this survey, see for example Fosgerau (2006). Each respondent was 

faced with up to eight choice tasks, and for the present study, we made use of a sample of 3,633 

observations from 472 commuters, and a sample of 13,387 observations from 1,725 non-

commuters. 

3.4. Sydney M4 data 

Our fourth case study makes use of data collected in a three alternative route choice experiment in 

Sydney (cf. Hensher & Rose, 2005), making use of a D-efficient design. Of the three alternatives, the 

first corresponded to a reference trip where the attributes for that alternative were kept invariant 

across the sixteen choice tasks faced by the respondent. The three alternatives were described in 

terms of five attributes, namely free flow time, slowed down time, running costs, tolls, and travel 

time variability. For the present study, we made use of samples of 3,792 observations from 237 

commuters, and 3,280 observations from 205 non-commuters.  

3.5. Second Australian dataset 

Our fifth case study makes use of a survey very similar to that from the fourth case study, but 

collected in a different Australian city in 2005, and making use of an additional travel time 

component, described as crawl time. For further details on this survey, see the recent application in 

Hess et al. (2010). A D-efficient design was used once again, and each respondent was faced with 

sixteen choice tasks. For the present analysis, we made use of a sample of 4,864 observations from 

304 commuters. 

4. Empirical analysis 

We now proceed with the discussion of the empirical results, taking each dataset in turn. Separate 

tables are used for the MNL results for each dataset (or subsample), giving us Table 1 to Table 7. The 

results for the two MMNL tests are summarised in a joint table across all datasets (Table 8). 

4.1. Atlanta toll road study 

The model specification for the Atlanta data made use of alternative specific constants (ASC) for the 

first two alternatives (GM & ML), along with marginal utility coefficients for time and tolls, and an 

additional dummy (penalty) term if carpooling (i.e. alternative 3) meant increasing vehicle occupancy 

by two people (OCC). For the MMNL models, the two marginal utility coefficients were allowed to 

vary across respondents. We will now look at the results from the various tests in turn, across the 

different subsamples. 
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The results for the first three tests using MNL models on the Atlanta data are summarised in Table 1. 

In test 1.1., we note that the use of choice task specific scale parameters leads to improvements in 

log-likelihood by 1.32 units for the first sample, 7.12 units for the second sample, and 12.09 units for 

the third sample. Each step comes at the cost of seven additional parameters; we see that this 

improvement is not significant at any reasonable level of confidence for the first sample, while it is 

significant at the 95% level of confidence for the second sample and the 99% level for the third 

sample. On the other hand, the MMNL results in Table 8 show significant improvements in fit only 

for the first sample. 

Given the results of the likelihood ratio tests, we would thus expect an absence of scale 

heterogeneity for the MNL results for first sample, a finding that is confirmed in test 1.2., with no 

scale parameter being significantly different from 1 (the first choice task being used as the base). The 

evidence of a small but significant improvement in MNL model fit for the second sample is 

consistent with the findings from test 1.2., which show some significant differences in scale across 

choice tasks. Crucially however, the scale parameters for all choice tasks are greater than that for 

the first task, and the fluctuation we observe after this first task shows no sign of any clear trend 

indicating either learning or fatigue effects. Similarly, the MNL results for the third sample do indeed 

suggest some significant scale differences, but the trend is one of increases, especially after the 

fourth choice task, suggesting evidence of learning rather than fatigue. For the MMNL results, only a 

handful of scale parameters (across the three models) obtain modest levels of statistical significance 

for t-ratios against a base value of 1, but crucially, no evidence of significant reductions in scale are 

observed. The differences in results between MNL and MMNL are somewhat to be expected, given 

that the latter now explains part of the error through the heterogeneity specification. As alluded to 

earlier, there are small differences in socio-demographics between the three samples, primarily 

relating to a greater share of respondents travelling for work reasons in the second and third group 

(and hence travelling more regularly), where these groups also show somewhat higher income. In 

part, these variations could explain the differences in results, and especially the greater propensity 

for learning in these two groups in the MNL model. See also discussions by Ladenburg and Olsen 

(2008) in this context. 

Turning our attention next to the impact that allowing for choice task specific scale parameters has 

on substantive MNL model results (i.e. test 1.3), we observe essentially no differences in any of the 

four ratios between the base model and the model with choice task specific scale parameters, across 

the three samples. 

The results for the second set of three tests on the Atlanta data are summarised in Table 2. Looking 

first at test 2.1, we observe that for the first sample, the improvement in fit obtained from using 

choice task specific models is not statistically significant when compared to the base model and the 

model with choice task specific scale parameters. On the other hand, in the second and third 

sample, the use of choice task specific models leads to improvements over the base model and the 

model with choice task specific scale parameters that are significant beyond the 99% level of 

confidence.  

The results from test 2.2 for the first sample are in line with the lack of improvement obtained with 

the choice task specific models and the absence of significant differences in scale across choice 

tasks. Indeed, there is no evidence of any significant variation in model fit across the eight choice 

task specific models. On the other hand, we obtain some evidence of a gradual improvement in the 

case of the second sample, with a much stronger effect in the case of the third sample. These 

findings are line with the increases in scale observed in test 1.2 for these two samples.  

Looking finally at test 2.3, we note that while for the first sample, there are increases in 

heterogeneity compared to the model with choice task specific scale parameters; this is not 

surprising given the almost complete lack of scale differences in this sample. However, the 
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fluctuation seems to be almost completely random, with two exceptions: we see a decrease in the 

estimates for the general lanes constant; and some evidence of increased toll sensitivity as the 

experiment progresses. In the second sample, we see increased heterogeneity for all parameters 

except the managed lanes constant, but this heterogeneity net of scale shows no trends across the 

eight choice tasks. In the third sample, we once again see evidence of heterogeneity on top of the 

scale variations, with a suggestion of decreasing sensitivity to increased occupancy (remembering 

that the estimate is negative), and increasing sensitivity to tolls and travel time as the experiment 

progresses. 

4.2. Fungibility study 

The specification for the models estimated on the fungibility data made use of three linear 

coefficients, for travel time (minutes), cost (£), and the number of accidents (in 1000s), where these 

were allowed to vary across respondents in the MMNL models. To allow us to separate out the 

effects of survey length, the models allowed for scale differences between the three different SC 

experiments, and also differences in scale depending on whether respondents took part in the CV 

experiment before or after the SC experiment. The results showed no significant scale differences 

depending on this latter ordering, while we observed that the scale for the time vs. money 

experiment is higher than for the cost vs. safety experiment, which in turn has higher scale than the 

time vs. safety experiment. 

The MNL results for this study are summarised in Table 3. We obtain a base model fit of -3,429.50, 

which increases to -3,418.87 when using choice task specific scale parameters; this improvement by 

nine units for 14 parameters is significant only at the 90% level (test 1.1). On the other hand, the 

improvement in the MMNL case is significant at high levels of significance. There is no evidence of 

fatigue when studying the evolution of scale parameters in the MNL model, and in fact, there is 

some evidence of increases in scale which would suggest possible learning effects (test 1.2). In the 

MMNL models, we note an initial drop in scale, but this is then followed by rather random variation. 

We also note no impact on the MNL WTP estimates as a result of allowing for choice task specific 

scale parameters (test 1.3). We observe improvements in the per-observation contribution to the 

log-likelihood function as the experiment progresses, in line with the results for the scale differences 

(test 2.2).  

The results from test 2.1 show that using choice task specific models leads to significant gains in 

model fit over the unscaled and scaled base models, suggesting the presence of variations in 

sensitivities across choice tasks. Finally, the results for test 2.3 show evidence of attribute specific 

heterogeneity (i.e. on top of the scale differences) for each of the six parameters, where this is 

significant for all parameters except for the scale parameter associated with giving the CV 

experiment first. There is evidence of increasing sensitivity to time, safety and cost, but by different 

degrees. This finding is interesting, and could be linked to learning of the true valuations, as 

discussed by Plott (1996). There is also some evidence of decreasing scale parameters for the cost 

vs. safety and the time vs. safety experiments ʹ this would suggest that the differences in scale 

between the three types of experiment are especially pronounced later in the survey. Here, one 

could argue that this is evidence of reduced engagement with these more difficult trade-offs later in 

the survey, but this is not in line with the overall findings in terms of a lack of scale reductions. 

4.3. Danish VOT data 

The models estimated on the Danish VOT data made use of linear travel time (minutes) and travel 

cost (Øre, with 1 Danish Crown (DKK)=100 Øre) coefficients, along with a constant for first 

alternative, included after evidence of significant effects of reading left to right. The two marginal 

utility coefficients were allowed to vary randomly across respondents in the MMNL models. The 
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MNL results for this dataset are summarised in Table 4, with separate models for commuters and 

non-commuters. 

The base model estimated on the commuter data obtained a log-likelihood of -2,404.02, which 

improves to -2,396.33 when using choice task specific scale parameters, where this increase in eight 

units for seven additional parameters is significant at the 95% level. However, from the results for 

test 1.2, it becomes clear that while there is some variation in estimated scales, there are no clear 

trends, and none of the differences are statistically significant.  

For the models estimated on the non-commuter data, the incorporation of choice-task-specific scale 

parameters leads to a highly significant improvement in model fit from -8,898.48 to -8,877.16, at the 

cost of seven additional parameters. This is consistent with the findings for test 1.2 which show a 

very sharp drop in scale when moving from the first to the second choice task, followed by an 

increase and greater stability from there onwards. A closer inspection of the results (results available 

on request) allows us to link this finding directly to the values for the ASC for the first alternative. 

The estimate for this constant is so high and dominant in the first task that the travel time coefficient 

is not in fact statistically significant ʹ this also explains the much lower valuation of travel time (VTT) 

for the first task. After the first task, the constant rapidly drops in value. This is again an indication of 

strong reading left to right effects for the first choice task. 

For the MMNL models (see Table 8), we observe highly significant gains in fit for both samples when 

incorporating scale differences across choice tasks. Alongside the drop in scale already mentioned 

for the MNL model for non-commuters, we see heightened scale later on in the experiment for both 

samples. 

Test 1.3 shows that the inclusion of choice task specific scale parameters has no impact on the 

estimated valuation of travel time (DKK/hour), in either of the two segments. From the results for 

test 2.1, we can see that the estimation of choice task specific models leads to highly significant 

gains in model fit when compared to both the unscaled and the scaled base model. Test 2.2 shows 

some fluctuation in model fit across the eight choice task specific models. However, there is no 

statistically significant trend. The main observation relates to the higher fit for the first choice task, 

which is in line with the above discussions on the importance of the constant in the first choice task, 

with a much higher rate of choosing the left alternative (leading to choices that are easier to model). 

This heterogeneity in the constant is also reflected in the results for test 2.3. We see evidence of 

significant attribute level heterogeneity for the constant, net of the scale difference, where, 

importantly, there is clear evidence of decreasing values for the constant as the experiment 

progresses. There is also evidence of increasing time sensitivity for non-commuters as the 

experiment progresses, while the other changes are of lesser importance. 

4.4. Sydney M4 data 

The models estimated on the Sydney data made use of ASCs for the first two alternatives, along with 

linear coefficients for the free flow time, slowed down time, and travel time variability coefficients 

(all in minutes), and the running costs and toll coefficients (in AUD). The MNL results are summarised 

in Table 5 for the commuter sample and Table 6 for the non-commuter sample.  

Looking first at test 1.1 for the commuter sample MNL models, we see that the base model obtains a 

log-likelihood of -2,854.28 which rises to -2,846.23 when incorporating the fifteen choice task 

specific scale parameters, an increase that is only significant at the 62% level. For the non-commuter 

models however, the incorporation of choice task specific scale parameters leads to an increase in 

the MNL log-likelihood from -2395.88 to -2378.15 at the cost of fifteen additional parameters, an 

improvement that is significant at the 99% level. 
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The results for test 1.2 for the commuter sample show no evidence of fatigue for the MNL model, 

and in fact possibly suggest some evidence of learning effects, although none of the differences are 

statistically significant. For non-commuters, we observe some variations in scale across choice tasks 

in the MNL models, with an initial drop followed by a renewed increase, and a definite absence of a 

consistent downwards trend. There is no evidence in either sample of any impact on the relative 

sensitivities as a result of allowing for choice task specific scale parameters (test 1.3). 

In the MMNL models, we see significant improvements in fit in both samples as a result of 

incorporating choice task specific scale parameters. Crucially, there is no evidence of fatigue. 

The estimation of choice task specific models leads to significant gains in model fit for both samples 

when compared to the unscaled and scaled base models (test 2.1). Interestingly however, the results 

in terms of choice task specific log-likelihood (test 2.2) are somewhat contrary to the findings in 

terms of significant scale variations, with evidence of a significant increasing trend for the commuter 

sample, while the variation for the non-commuter sample seems to be more random.  

The results for test 2.3 show significant variation in the constants net of the scale heterogeneity, 

where, with the positive estimates for the two constants, there is evidence of decreasing values for 

the constant, albeit that this is not statistically significant. For the commuter sample, we see 

additional variation especially for the slowed down time and toll coefficients, where the only 

statistically significant trend is however an increasing cost sensitivity as the experiment progresses. 

For non-commuters, we also see significant additional heterogeneity especially for toll, but no 

indication of any clear trends in the evaluation of the parameter estimates. 

4.5. Second Australian dataset 

The model specification for the second Australian dataset is very similar to that used in the Sydney 

case study, with the addition of a coefficient for crawl time. The MNL estimation results in Table 7 

show that that the inclusion of choice-task-specific scale parameters leads to an improvement in log-

likelihood from -2,668.39 to -2,644.62, which, at the cost of fifteen additional parameters, is 

significant at the 99% level (test 1.1). Once again, the actual trend is not completely clear, but there 

is possibly some evidence of learning, and clearly no evidence of fatigue (test 1.2), with once again 

consistent results for the changes in model fit (test 2.1), which show some evidence of significant 

increases in choice task specific log-likelihood as the experiment progresses. Again, there is no 

evidence of any impact on the relative sensitivities as a result of allowing for choice task specific 

scale parameters. In the MMNL models, we again observe a significant increase in model fit when 

incorporating scale differences, where these provide no evidence of respondent fatigue. 

The results for test 2.1 also show additional gains by making use of choice task specific models, 

suggesting the presence of differences across tasks that cannot be explained solely through the use 

of choice task specific scale parameters. Here, the results from test 2.3 show high levels of additional 

heterogeneity especially for the two constants and for the travel time variability coefficient. 

However, there are no clear trends for any of the estimates, except maybe the cost coefficient, 

which suggests reducing cost sensitivity as the experiment progresses. 

5. Conclusions 

This paper has attempted to provide a more reliable answer to the persisting question as to the 

presence of fatigue effects in SC surveys. Specifically, we have presented evidence from five 

different SC surveys, some of them split into several subsamples. We have made use of a 

comprehensive empirical framework employing both logit and mixed logit models. The degree of 

scale heterogeneity across choice tasks varies substantially across the different datasets, with in 

some cases no evidence of any differences over the presented sequence of choices. There seems to 

be more evidence of scale differences in the MMNL models. More crucially however, in those 
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datasets where significant differences are observed, there is no clear evidence of any consistent 

decrease in scale over the duration of the experiment, with the opposite applying in some cases, 

indicating the possible existence of learning effects. A summary plot showing the scale variations in 

shown in Error! Reference source not found., which shows that overall, the variations are more 

amplified in the MNL models, but that there is no conclusive evidence relating to respondent 

fatigue, and more suggestions relating to learning effects. As already mentioned, the visible drop 

observed for the Danish non-commuter sample is a result that we attribute to the high value for the 

alternative specific constant in the first task. It should be noted that there is also evidence of higher 

weight for the constants in early tasks in other datasets, as reflected for example in the decreasing 

importance of the constants in the M4 commuter data as the experiment progresses.  

Additionally, in these data sets, while parameter estimates show variation on top of scale 

differences, this variation is mostly random, although there are trends in some cases which could be 

possible evidence of learning effects, as previously discussed by Plott (1996). Here, Figure 2 shows 

trends in the MNL WTP measures, with the WTP in all datasets normalised to 1 for the first task. 

Some of the datasets show very stable results, while others, most notably the trade-off between 

slowed down time and running costs in the second Australian dataset, change quite substantially. On 

average, there are more increases than decreases, possibly suggesting initial cost aversion followed 

by learning of the trade-offs. This point also relates to the fact that overall, there is more evidence of 

learning (in terms of increasing scale) than fatigue. The larger constant for the first task can be linked 

to this in that it could signify that respondents simplify the first task by choosing the first alternative. 

This is also supported in discussions by Carlsson et al. (2011) who suggest that the first choice is the 

most difficult for respondents. 

The findings in this paper are consistent with several other studies over the years, as outlined in the 

introduction. The difference is that our work is based on multiple datasets and makes use of a 

comprehensive testing framework, allowing us to more easily generalise the results. On balance, the 

weight still given to the early evidence in Bradley & Daly (1994) seems unjustified. The question still 

arises though as to why the findings in that paper were so substantially different. One possible 

reason lies in the nature of the survey. Rather than being based on a design that gave each 

respondent a fixed set of choice tasks, the underlying design produced a set of nine alternatives for 

each respondent, drawn randomly from the full set of possible attribute combinations. The 

respondent was then presented with randomly produced binary choices from these nine alternatives 

up to a point where a full preference ordering could be inferred. The possible repeated occurrence 

of an alternative is one possible reason for the evidence of fatigue (or boredom) in that data. In this 

context, an interesting avenue for future work would be to attempt to link the different observations 

on fatigue to characteristics of the sample as well as the survey. The present work made use of data 

from several substantially different surveys, with no obvious link between the findings and these 

differences in terms of sample as well as survey design. Similarly, there is no obvious link between 

the data collection method and the results. This however is an area that deserves further 

investigation. One argument would be that fatigue might set in earlier in self administered surveys. 

On the other hand, self administered surveys can be completed at a time that is convenient to the 

respondent (unlike interviewer led surveys) and this may again have a positive impact. Finally, a case 

could be made for reduced risk of fatigue when respondents are familiar with the choice scenarios. 

This could in part explain the greater scope for learning in the second and third Atlanta sample 

which involve more regular travellers. The question also arises whether the somewhat random 

fluctuations for the fungibility study are related to inexperience with the specific trade-offs used in 

that survey. It must also be recognised that differences exist between data sets that cannot be fully 

explained. 

The evidence in the present paper, and that from a number of other applications described in the 

introduction, should serve to somewhat ease the concerns about respondent fatigue, and the above 
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discussion possibly explains the discrepancies with the work by Bradley & Daly (1994). While testing 

for fatigue and learning effects is still good practice, it should also be noted that it is not practical to 

work with scale differences in a final model used for implementation. Indeed, the marginal effect of 

a given attribute in choice set t would then be given ďǇ ʅtɴ͕ ŵĞĂŶŝŶŐ ƚŚĂƚ ƚŚĞ t-ratios will vary across 

tasks, leading to complications in producing a single measure of robustness for a given effect. Finally, 

there is clear evidence across all our case studies that even in the presence of significant scale 

differences across choice tasks, the impact of these differences on the WTP measures is minimal at 

the most. 
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Table 1: Atlanta data: results for tests 1.1.-1.3. 

  

  Sample 1 Sample 2 Sample 3 

T
E

S
T

 1
.1

 

 

LL base -10,088.24 -5,985.65 -5,715.62 

 

par 5 5 5 

 

LL scale -10,086.92 -5,978.53 -5,703.53 

 

choice tasks 8 8 8 

 

LR-test 2.63 14.24 24.18 

 

df 7.00 7.00 7.00 

 

p-value 0.92 0.05 0.00 

               

T
E

S
T

 1
.2

 (
sc

a
le

 p
a

ra
m

e
te

rs
) 

 

Choice task est. t-ratio (vs. 1) est. t-ratio (vs. 1) est. t-ratio (vs. 1) 

 

1 1 - 1 - 1 - 

 

2 1.04 0.77 1.11 1.82 1 0 

 

3 1.02 0.38 1.14 2.23 1.05 0.81 

 

4 0.99 -0.21 1.07 1.14 1.05 0.83 

 

5 1.02 0.36 1.2 2.97 1.14 2.13 

 

6 0.99 -0.15 1.07 1.15 1.17 2.46 

 

7 1.07 1.22 1.19 2.78 1.21 2.94 

 

8 1 0 1.17 2.7 1.23 3.22 

               

T
E

S
T

 1
.3

 (
W

T
P

) 

 

  

time 

($/hr) 

general 

lanes vs 

car pool 

($) 

managed 

lanes vs 

car pool 

($) 

avoid 

occupancy 

increase by 

2 ($) 

time 

($/hr) 

general 

lanes vs 

car pool 

($) 

managed 

lanes vs 

car pool 

($) 

avoid 

occupancy 

increase by 

2 ($) 

time 

($/hr) 

general 

lanes vs 

car pool 

($) 

managed 

lanes vs 

car pool 

($) 

avoid 

occupancy 

increase by 

2 ($) 

 

Unscaled est 11.45 9.03 5.14 0.57 8.84 7.39 4.22 0.54 8.12 6.66 4.17 1.11 

 

Unscaled t-rat 11.30 10.40 11.30 1.90 12.50 11.40 12.90 2.60 11.10 10.80 12.70 4.30 

 

Scaled est 11.44 9.02 5.13 0.56 8.81 7.30 4.18 0.54 8.09 6.58 4.14 1.09 

 

Scaled t-rat 11.30 10.40 11.30 1.80 12.60 11.50 12.90 2.60 11.20 10.80 12.70 4.20 

 

t-rat (diff) -0.01 -0.01 -0.01 -0.02 -0.01 -0.10 -0.08 0.00 -0.02 -0.09 -0.08 -0.06 
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Table 2: Atlanta data: results for tests 2.1.-2.3. 

   

Sample 1 Sample 2 Sample 3 

T
e

st
 2

.1
 

 

LL combined -10,070.35 -5,946.36 -5,673.81 

 

par 40 40 40 

 

LR-test (comb vs unsc) 35.79 78.59 83.62 

 

df 35 35 35 

 

p-value 0.43 0.00 0.00 

 

LR-test (comb vs sc) 33.15 64.35 59.43 

 

df 28 28 28 

 

p-value 0.23 0.00 0.00 

           

T
e

st
 2

.2
 (

tr
e

n
d

s 
in

 L
L)

 

 

Task per obs LL per obs LL per obs LL 

 

1 -0.8057 -0.6903 -0.6710 

 

2 -0.7968 -0.6616 -0.6782 

 

3 -0.8007 -0.6349 -0.6709 

 

4 -0.8129 -0.6728 -0.6623 

 

5 -0.8105 -0.6115 -0.6299 

 

6 -0.8134 -0.6674 -0.6188 

 

7 -0.7897 -0.6161 -0.5865 

 

8 -0.8132 -0.6342 -0.5941 

 

correl (t-rat) -0.17 (-0.43) 0.6 (1.83) 0.94 (7.03) 

 

scaled model -0.8067 -0.6521 -0.6423 

 

                 

T
e

st
 2

.3
 (

re
la

ti
v

e
 

h
e

te
ro

g
e

n
e

it
y

)   

GL ML OCC toll time GL ML OCC toll time GL ML OCC toll time 

 

cv (scaled) 0.03 0.03 0.03 0.03 0.03 0.06 0.06 0.06 0.06 0.06 0.08 0.08 0.08 0.08 0.08 

 

cv (individual) 0.07 0.07 1.25 0.13 0.08 0.05 0.13 1.04 0.21 0.14 0.10 0.11 0.43 0.20 0.21 

 

rate of change +165% +159% +4,801% +424% +204% -18% +129% +1,695% +255% +134% +22% +44% +450% +161% +162% 

 

corr between task & 

est. net of scale -0.56 -0.37 0.14 -0.63 0.44 -0.51 -0.03 0.12 -0.49 -0.40 -0.06 0.25 0.68 -0.65 -0.67 

 

t-rat -1.65 -0.97 0.34 -2.00 1.19 -1.44 -0.08 0.30 -1.38 -1.07 -0.14 0.64 2.26 -2.12 -2.24 



19 

Table 3: Results for fungibility data 

TEST 1.1 

 

TEST 1.3 (WTP) 

 

TEST 2.2 

          

LL base -3,429.50 

 

  

time vs 

cost 

($/hr) 

safety vs 

cost 

($/1000acc) 

 

Task per obs LL 

par 6 

 

Unscaled est 6.12 3.8 

 

1 -0.6086 

LL scale -3,418.87 

 

Unscaled t-rat 13.1 8.9 

 

2 -0.5884 

choice 

tasks 15 

 

Scaled est 6.23 3.89 

 

3 -0.5476 

LR-test 21.27 

 

Scaled t-rat 13.4 8.8 

 

4 -0.5764 

df 14 

 

t-rat (diff) 0.17 0.15 

 

5 -0.5792 

p-value 0.09 

     

6 -0.5563 

    

TEST 2.1 

 

7 -0.5834 

        

8 -0.5799 

    

LL combined -3,369.19 

 

9 -0.5708 

TEST 1.2 (scale 

parameters) 

 

par 48 

 

10 -0.5608 

    

LR-test (comb vs unsc) 120.62 

 

11 -0.5600 

Choice 

task est. 

t-ratio 

(vs. 1) 

 

df 42 

 

12 -0.5002 

1 1.00 - 

 

p-value 0.00 

 

13 -0.5494 

2 1.19 0.72 

 

LR-test (comb vs sc) 99.35 

 

14 -0.5672 

3 1.61 1.69 

 

df 28 

 

15 -0.5584 

4 1.38 1.24 

 

p-value 0.00 

 

correl (t-rat) 0.55 (2.37) 

5 1.36 1.15 

     

scaled model -0.5741 

6 1.38 1.06 

       7 1.26 0.86 

 

Test 2.3 (relative heterogeneity) 

8 1.40 1.24 

       

9 1.42 1.17 

 

  cv (scaled) 

cv 

(individual) 

rate of 

change 

corr between 

task & est. net 

of scale t-rat 

10 1.50 1.45 

 

cost 0.16 0.28 +76% -0.75 -4.12 

11 1.54 1.35 

 

safety 0.16 0.49 +209% -0.91 -7.98 

12 2.06 2.20 

 

time 0.16 0.53 +237% -0.83 -5.47 

13 1.64 1.45 

 

Scale (CV first) 0.16 0.55 +248% -0.36 -1.40 

14 1.42 1.16 

 

Scale (cost vs safety) 0.16 0.49 +205% -0.58 -2.56 

15 1.61 1.60 

 

Scale (time vs safety) 0.16 0.55 +248% -0.77 -4.38 
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Table 4: Results for Danish data 

TEST 1.1 

 

TEST 2.1 

            commuters non-commuters 

 

  commuters non-commuters 

LL base -2,404.02 -8,898.48 

 

LL combined -2,368.71 -8,800.37 

par 3 3 

 

par 24 24 

LL scale -2,396.33 -8,877.16 

 

LR-test (comb 

vs unsc) 70.63 196.22 

choice tasks 8 8 

 

df 21 21 

LR-test 15.39 42.63 

 

p-value 0.00 0.00 

df 7 7 

 

LR-test (comb 

vs sc) 55.24 153.59 

p-value 0.03 0.00 

 

df 14 14 

 

p-value 0.00 0.00 

    TEST 1.2 (scale parameters) 

 

TEST 2.2 (LL per obs) 

        

 

commuters non-commuters 

 

Task commuters non-commuters 

Choice task est. 

t-ratio 

(vs. 1) est. t-ratio (vs. 1) 

 

1 -0.6241 -0.6079 

1 1 - 1 - 

 

2 -0.6716 -0.6807 

2 0.94 -0.10 0.35 -6.56 

 

3 -0.6549 -0.6629 

3 1.47 0.59 0.65 -2.03 

 

4 -0.6458 -0.6712 

4 2.06 0.97 0.55 -2.76 

 

5 -0.6592 -0.6622 

5 1.44 0.51 0.62 -2.20 

 

6 -0.6323 -0.6657 

6 2.35 0.99 0.59 -2.21 

 

7 -0.6622 -0.6472 

7 1.15 0.19 0.84 -0.70 

 

8 -0.6659 -0.6608 

8 1.21 0.27 0.61 -2.18 

 

correl (t-rat) -0.33 (-0.87) -0.27 (-0.68) 

      

scaled model -0.6596 -0.6631 

          TEST 1.3 (VTT) 

 

Test 2.3 (relative heterogeneity) 

           

     

commuters non-commuters 

  comm.. 

non-

comm. 

 

  ASC cost time ASC cost time 

Unscaled est 55.52 33.59 

 

cv (scaled) 0.33 0.33 0.33 0.28 0.28 0.28 

Unscaled t-rat 12.20 10.90 

 

cv 

(individual) 2.09 0.36 0.31 1.30 0.28 0.37 

Scaled est 53.44 32.74 

 

rate of 

change +543% +9% -5% +363% +1% +33% 

Scaled t-rat 12.40 11.10 

 

corr 

between 

task & est 

net of scale -0.74 -0.69 -0.43 -0.87 -0.86 -0.75 

t-rat (diff) -0.33 -0.20 

 

t-rat -2.70 -2.31 -1.17 -4.29 -4.19 -2.78 
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Table 5: Results for M4 commuter data 

TEST 1.1 

 

TEST 2.1 

 

TEST 1.3 (trade-offs against cost coefficient) 

             LL base -2,854.28 

 

LL joint unscaled -2,854.28 

  

free flow time 

(AUD/hr) 

slowed down 

time (AUD/hr) 

travel time variability (AUD/hr) 

travel time variability (AUD/hr) 

toll 

($/$) par 7 

 

par 7 

 

Unscaled est 13.21 16.74 1.11 1.68 

LL scale -2,846.23 

 

LR-test (comb vs unsc) 97.96 

 

Unscaled t-rat 7.7 10.1 11.2 1.8 

choice tasks 16 

 

df 49 

 

Scaled est 13.14 16.728 1.12 1.65 

LR-test 16.09 

 

p-value 0.00 

 

Scaled t-rat 7.7 10.2 11.3 1.8 

df 15 

 

LR-test (comb vs sc) 81.86 

 

t-rat (diff) -0.03 -0.01 0.02 -0.03 

p-value 0.38 

 

df 34 

       

   

p-value 0.00 

       

       

Test 2.3 (relative heterogeneity) 

TEST 1.2 (scale parameters) 

 

Test 2.2 (trends in LL) 

       

        

cv (scaled) cv (individual) 

rate of 

change 

corr between task 

& est net of scale t-rat 

Choice task est. t-ratio 

(vs. 1)  

Task per obs LL  ASC1 0.10 1.01 +908% -0.44 -1.83 

1 1 - 

 

1 -0.7890 

 

ASC2 0.10 2.59 +2,473% -0.33 -1.32 

2 1.00 0.00 

 

2 -0.8021 

 

free flow time 0.10 0.18 +81% 0.26 0.99 

3 1.13 0.75 

 

3 -0.7511 

 

slowed down time 0.10 0.24 +136% 0.35 1.39 

4 0.89 -0.81 

 

4 -0.8262 

 

travel time variability 0.10 0.13 +25% 0.10 0.36 

5 1.02 0.13 

 

5 -0.7949 

 

cost 0.10 0.17 +65% -0.50 -2.18 

6 1.27 1.33 

 

6 -0.7181 

 

toll 0.10 0.70 +592% 0.39 1.58 

7 1.11 0.70 

 

7 -0.7456 

       8 1.26 1.38 

 

8 -0.7253 

       9 1.17 0.92 

 

9 -0.7329 

       10 1.22 1.18 

 

10 -0.7068 

       11 1.16 0.88 

 

11 -0.7430 

       12 1.20 1.05 

 

12 -0.7376 

       13 1.24 1.34 

 

13 -0.6722 

       14 1.19 1.02 

 

14 -0.7068 

       15 1.21 1.14 

 

15 -0.7021 

       16 1.34 1.75 

 

16 -0.6831 

       

    

correl (t-rat) 0.82 (5.33)  

      

    

scaled model -0.7506 
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Table 6: Results for M4 non-commuter data 

TEST 1.1 

 

TEST 2.1 

 

TEST 1.3 (trade-offs against cost coefficient) 

             LL base -2,395.90 

 

LL joint unscaled -2,395.90 

  

free flow time 

(AUD/hr) 

slowed down 

time (AUD/hr) 

travel time variability (AUD/hr) 

travel time variability (AUD/hr) 

toll 

($/$) par 7 

 

par 7 

 

Unscaled est 13.38 15.25 1.22 1.43 

LL scale -2,378.20 

 

LR-test (comb vs unsc) 146.60 

 

Unscaled t-rat 7.1 7.9 8.7 1.7 

choice tasks 16 

 

df 49 

 

Scaled est 13.37 15.31 1.21 1.54 

LR-test 35.40 

 

p-value 0.00 

 

Scaled t-rat 7.3 8.1 9.1 1.9 

df 15 

 

LR-test (comb vs sc) 111.20 

 

t-rat (diff) 0.00 0.02 -0.02 0.09 

p-value 0.00 

 

df 34 

       

   

p-value 0.00 

       

       

Test 2.3 (relative heterogeneity) 

TEST 1.2 (scale parameters) 

 

Test 2.2 (trends in LL) 

       

        

cv (scaled) cv (individual) 

rate of 

change 

corr between task 

& est net of scale t-rat 

Choice task est. t-ratio 

(vs. 1)  

Task per obs LL  ASC1 0.16 1.10 +571% 0.11 0.42 

1 1 - 

 

1 -0.7278 

 

ASC2 0.16 1.23 +649% -0.35 -1.40 

2 1.27 1.32 

 

2 -0.7102 

 

free flow time 0.16 0.33 +100% 0.28 1.08 

3 0.95 -0.36 

 

3 -0.7595 

 

slowed down time 0.16 0.26 +57% -0.26 -1.02 

4 0.81 -1.60 

 

4 -0.8468 

 

travel time variability 0.16 0.26 +60% 0.32 1.27 

5 1.54 2.05 

 

5 -0.6073 

 

cost 0.16 0.17 +5% 0.12 0.44 

6 0.96 -0.27 

 

6 -0.7829 

 

toll 0.16 1.71 +944% -0.12 -0.47 

7 1.35 1.54 

 

7 -0.6473 

       8 1.33 1.47 

 

8 -0.6395 

       9 1.11 0.64 

 

9 -0.7161 

       10 1.41 1.81 

 

10 -0.6522 

       11 1.23 1.08 

 

11 -0.6780 

       12 1.15 0.88 

 

12 -0.6859 

       13 1.08 0.40 

 

13 -0.7473 

       14 1.37 1.71 

 

14 -0.6561 

       15 1.05 0.31 

 

15 -0.7268 

       16 1.09 0.56 

 

16 -0.7459 

       

    

correl (t-rat) 0.16 (0.62)  

      

    

scaled model -0.7251 
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Table 7: Results for second Australian study 

TEST 1.1 

 

TEST 2.1 

 

TEST 1.3 (trade-offs against cost coefficient) 

             

LL base -2668.39 

 

LL joint unscaled -2,668.39 

  

free flow time 

(AUD/hr) 

slowed down 

time (AUD/hr) 

crawl time 

(AUD/hr) 

travel time 

variability 

(AUD/hr) 

toll 

($/$) 

par 8 

 

par 8 

 

Unscaled est 8.51 12.55 17.86 -3.33 0.89 

LL scale -2644.62 

 

LR-test (comb vs unsc) 157.17 

 

Unscaled t-rat 3.70 5.70 5.70 1.10 6.60 

choice tasks 16 

 

df 56 

 

Scaled est 8.45 13.03 17.95 -2.97 0.91 

LR-test 47.54 

 

p-value 0.00 

 

Scaled t-rat 3.60 5.60 5.60 1.00 6.30 

df 15 

 

LR-test (comb vs sc) 109.63 

 

T-rat (diff) -0.02 0.15 0.02 0.09 0.09 

p-value 0.00 

 

df 41 

       

   

p-value 0.00 

       

       

Test 2.3 (relative heterogeneity) 

TEST 1.2 (scale parameters) 

 

Test 2.2 (trends in LL) 

       

        

cv (scaled) cv (individual) 

rate of 

change 

corr between task 

& est net of scale t-rat 

Choice task est. t-ratio 

(vs. 1)  

Task per obs LL  ASC1 0.14 +0.86 +521% 0.12 0.45 

1 1 - 

 

1 -0.6398 

 

ASC2 0.14 5.91 +4,151% -0.10 -0.38 

2 0.96 -0.36 

 

2 -0.6868 

 

free flow time 0.14 0.52 +274% 0.35 1.39 

3 1.16 1.16 

 

3 -0.6066 

 

slowed down time 0.14 0.35 +155% -0.30 -1.16 

4 1.12 1.01 

 

4 -0.5549 

 

crawl time 0.14 0.20 +47% 0.29 1.15 

5 1.35 2.20 

 

5 -0.5431 

 

travel time variability 0.14 2.13 +1,428% -0.18 -0.69 

6 1.29 1.95 

 

6 -0.5428 

 

cost 0.14 0.34 +146% 0.43 1.80 

7 1.28 1.97 

 

7 -0.5378 

 

toll 0.14 0.19 +36% 0.11 0.40 

8 1.25 1.69 

 

8 -0.5092 

       9 1.45 2.59 

 

9 -0.4885 

       10 1.60 2.90 

 

10 -0.4605 

       11 1.35 2.03 

 

11 -0.5217 

       12 1.65 3.39 

 

12 -0.3977 

       13 1.37 2.50 

 

13 -0.5033 

       14 1.35 2.50 

 

14 -0.5036 

       15 1.46 2.61 

 

15 -0.5141 

       16 1.31 1.89 

 

16 -0.5086 

       

    

correl (t-rat) 0.74 (4.07)  

      

    

scaled model -0.5437 
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Table 8: MMNL results 

 Atlanta sample 1 Atlanta sample 2 Atlanta sample 3 Danish commuters Danish non-commuters 

LL base -7,705.63 -4,795.75 -4,410.44 -2,087.14 -7,231.21 

LL scale -7,694.40 -4,789.50 -4,406.11 -2,064.54 -7,211.95 

LR-test 22.45 12.50 8.67 45.20 38.51 

df 7 7 7 7 7 

p-value 0.0021 0.0853 0.2775 0.0000 0.0000 

           

           Choice task scale est. t-ratio (vs. 1) scale est. t-ratio (vs. 1) scale est. t-ratio (vs. 1) scale est. t-ratio (vs. 1) scale est. t-ratio (vs. 1) 

1 1 - 1 - 1 - 1 - 1 - 

2 1.14 1.65 0.96 -0.55 1.02 0.24 0.75 -0.76 0.76 -1.28 

3 1.15 1.64 1.02 0.24 1.08 0.90 1.94 1.38 1.24 0.77 

4 1.18 1.98 0.90 -1.41 1.07 0.73 3.32 1.67 1.43 1.14 

5 1.08 0.94 1.06 0.68 1.14 1.43 3.46 1.81 1.64 1.42 

6 1.17 1.84 0.89 -1.48 1.18 1.85 3.17 1.90 1.65 1.43 

7 1.11 1.21 0.96 -0.48 1.20 1.94 2.63 1.55 1.63 1.37 

8 1.15 1.59 0.97 -0.32 1.17 1.67 2.91 1.77 1.97 1.56 

           

           

  

Fungibility M4 commuters M4 non-commuters Second Australian 

 

 

LL base -2,786.28 -2,366.25 -1,978.79 -2,213.39 

 

 

LL scale -2,770.76 -2,347.10 -1,958.89 -2,178.50 

 

 

LR-test 31.04 38.29 39.79 69.78 

 

 

df 14 15 15 15 

 

 

p-value 0.0055 0.0008 0.0005 0.0000 

 

           

           

 

Choice task scale est. t-ratio (vs. 1) scale est. t-ratio (vs. 1) scale est. t-ratio (vs. 1) scale est. t-ratio (vs. 1) 

 

 

1 1 - 1 - 1 - 1 - 

 

 

2 0.50 -3.62 1.26 1.20 1.49 1.74 0.96 -0.22 

 

 

3 0.70 -1.16 1.25 1.21 1.40 1.52 1.60 1.68 

 

 

4 1.85 1.23 1.33 1.45 1.30 1.28 1.33 1.40 

 

 

5 0.72 -1.36 1.39 1.66 1.79 2.30 1.79 2.05 

 

 

6 0.62 -1.56 1.36 1.61 1.85 2.31 2.46 2.93 

 

 

7 1.08 0.17 1.36 1.64 2.53 2.87 1.89 2.20 

 

 

8 1.01 0.03 1.77 2.80 2.38 2.29 1.68 2.10 

 

 

9 0.61 -1.64 1.55 2.08 1.63 1.97 2.59 2.56 

 

 

10 0.72 -1.08 1.50 2.07 1.94 2.30 1.90 2.10 

 

 

11 0.62 -1.56 1.49 1.91 1.78 2.31 2.17 2.46 

 

 

12 0.92 -0.20 1.69 2.15 1.86 2.83 2.57 2.70 

 

 

13 1.03 0.07 2.03 2.97 2.00 2.58 1.87 2.16 

 

 

14 1.15 0.32 2.00 2.82 1.78 2.33 1.88 2.44 

 

 

15 0.87 -0.38 1.64 2.25 1.63 2.24 2.48 3.01 

 

 

16 - - 1.78 2.60 1.68 2.30 1.71 2.18 
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Figure 1: Summary results on choice task specific scale parameters 

(choice task on x-axis, scale parameter on y-axis)  
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Figure 2: Trends in WTP measures 

(range of choice tasks on x-axis, scale parameter on y-axis) 
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