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ABSTRACT

The simultaneous effect of amplification due to cooling and damping due to resonant absorption on the kink oscillations of coronal
loops is studied. The governing equation describing the kink oscillations is derived in the thin tube thin boundary layer approximation.
The cooling time is assumed to be much larger than the oscillation period, and the Wentzel-Kramers-Brillouin (WKB) method is used
to obtain the equation describing the dependence of the oscillation amplitude on time. This equation is solved numerically for various
values of determining parameters. In particular, the question if the amplification due to cooling can balance the resonant damping
and produce undamped oscillation is addressed. The conclusion is that the amplification due to cooling is not very efficient and can
balance the resonant damping only when the density contrast is not very large and the cooling is very fast with the characteristic
cooling time of the order of the oscillation period.
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1. Introduction

Transverse coronal loop oscillations were first observed by
TRACE in 1998. This observation was reported by Aschwanden
et al. (1999) and Nakariakov et al. (1999) who interpreted these
oscillations as standing fast kink waves. An important property
of these oscillations was that they quickly damped with the char-
acteristic damping time of the order of a few oscillation periods.
Ruderman & Roberts (2002) suggested that this damping was
due to resonant absorption related to the loop inhomogeneity in
the radial direction. Using the thin tube thin boundary (TTTB)
approximation they provided the estimate of the loop inhomo-
geneity using the observed damping time. Later Goossens et al.
(2002) obtained similar estimates for eleven events where the
coronal loop kink oscillations were observed.

An important property of oscillating coronal loops is that,
very often, they are in a highly dynamic state. In particular, they
can cool quickly with the characteristic cooling time of the order
of a few periods of the kink oscillation (Aschwanden & Terradas
2008). This observation put on the agenda theoretical study of
MHD waves and oscillations in dynamic plasmas. Morton et al.
(2009) studied propaqation of MHD waves in a homogeneous
plasma with parameters varying in time. The effect of cooling
on the coronal loop kink oscillations was first studied by Morton
& Erdélyi (2009, 2010) who showed that cooling causes the de-
crease of the oscillation period. Ruderman (2011b, Paper I in
what follows) studied the kink oscillations of coronal loops with
slowly varying density (note that Figs. 3, 6 and 7 in this pa-
per are incorrected; the corrected figures are given in Ruderman
2011a). He obtained the so-called adiabatic invariant determin-
ing the time-evolution of the oscillation amplitude and showed
that cooling causes the amplification of kink oscillations.

Although, as we have already mentioned, usually the coro-
nal loop kink oscillations are heavily damped, sometimes it is

observed that their amplitude practically does not change dur-
ing the entire time of observation. In particular, in 17 events
of coronal loop kink oscillations reported by Aschwanden et al.
(2002) no damping was observed in 7 of these events. Recently
Aschwanden & Schrijver (2011) reported observations of coro-
nal loop oscillations using data from Atmospheric Imaging
Assembly (AIA) onboard Solar Dynamic Observatory (SDO). In
one case the oscillation was practically undamped. Aschwanden
& Schrijver (2011) concluded that, if we assume that the damp-
ing is due to resonant absorption and use the thin tube thin
boundary (TTTB) approximation, then the ratio of the thick-
ness of the transitional layer where the density changes, ℓ, to
the loop radius R should be extremely small. An important prop-
erty of the observed loop was that it was cooling. It was sug-
gested in Paper I that the loop oscillation was undamped because
the damping due to resonant absorption was balanced by ampli-
fication due to cooling. Then the ratio ℓ/R was estimated. For
this it was assumed that the characteristic amplification time is
equal to the damping time. For a particular event reported by
Aschwanden & Schrijver (2011) ℓ/R ≈ 0.04 was obtained, so,
in that case, the conclusion by Aschwanden & Schrijver (2011)
that the transition layer has to be extremely thin remains valid.
However, it was noted in Paper I that the characteristic amplifi-
cation time and, as a result, the estimate of ℓ/R, is very sensitive
to the cooling time and the initial temperature of the loop.

The method used in Paper I to estimate ℓ/R is not very ac-
curate. The main reason is that it does not take into account the
effect of cooling on the damping rate. Cooling causes the aver-
age density decrease in the loop and, as a result, the decrease of
the ratio of average densities inside and outside the loop. This
decrease of the average density ratio affects the damping rate.
Hence, the effect of loop cooling on kink oscillations of coro-
nal loops is two-fold: it amplifies the oscillations and affects the
damping rate due to resonant absorption.
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The aim of this paper is to study the simultaneous effect of
cooling and resonant absorption on coronal loop kink oscilla-
tions. The paper is organized as follows. In the next section
we formulate the problem, introduce the quasi-Lagrangian de-
scription, and derive the linear governing equation for the mag-
netic field line displacement in the cold plasma approximation.
In Sect. 3 we derive the general governing equation for kink
oscillations of magnetic loops in the thin tube thin boundary
(TTTB) approximation. In Sect. 4 we consider oscillations of
slowly cooling loops and derive the equation for the oscillation
amplitude that describes both the amplification of oscillations
due to cooling and their damping due to resonant absorption.
In Sect. 5 we study the oscillations of loops with the barometric
density variation along the loop. Section 6 contains the summary
of the obtained results and our conclusions.

2. Problem formulation and quasi-Lagrangian

description

The coronal loop is modelled as a straight magnetic tube with
the magnetic field having the same direction and magnitude in-
side and outside the tube. In what follows we use cylindrical
coordinates r, ϕ, z with the z-axis coinciding with the magnetic
tube axis. The plasma density ρ is a function of r, z and time t.
It varies from its value inside the tube to its value outside in a
transitional layer of thickness ℓ. Hence, it is given by

ρ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρi(t, z), 0 < r < R − ℓ/2,
ρt(t, r, z), R − ℓ/2 < r < R + ℓ/2,

ρe(t, z), r > R + ℓ/2,

(1)

where R is the radius of the loop cross-section and ρt(t, r, z)
is a monotonic function of r, ρt(t,R − ℓ/2, z) = ρi(t, z),
ρt(t,R + ℓ/2, z) = ρe(t, z). The density variation with time causes
the plasma flow in the z-direction. The plasma density and back-
ground flow velocity U(t, r, z) are related by the mass conserva-
tion equation,

∂ρ

∂t
+
∂(ρU)

∂z
= 0. (2)

The perturbations of the magnetic field and plasma velocity, b =

(br, bϕ, bz) and u = (ur, uϕ, uz), are described by the linearized
MHD equations in the cold plasma approximation,

∂u

∂t
+ U

∂u

∂z
+ u · ∇U =

1

µ0ρ
(∇ × b) × B, (3)

∂b

∂t
= ∇ × (u × B + U × b), (4)

∇ · b = 0, (5)

where U = Uez, B = Bez, B = const is the magnetic field mag-
nitude, ez is the unit vector in the z-direction, and µ0 is the mag-
netic permeability of free space. Dissipation is only important
in the dissipative layers embracing Alfvénic resonant magnetic
surfaces in the region R− ℓ/2 < r < R+ ℓ/2. Since we neglected
dissipative terms in Eqs. (3)–(5), these equations describe the
plasma motion everywhere except in the dissipative layers. It
follows from Eq. (3) that uz = 0.

Now we introduce the so-called quasi-Lagrangian descrip-
tion. Consider an individual magnetic field line. The equation of
the unperturbed magnetic field line can be written in the vector
form as r = zez + a, where r is the position vector of any point

on the magnetic field line, a is a constant vector and a ⊥ ez. The
equation of the perturbed magnetic field line is

r = zez + a + ξ(t, z), (6)

where ξ ⊥ ez is the magnetic field line displacement. Consider a
fluid particle that is on this magnetic field line at the initial mo-
ment of time. Since the magnetic field is frozen in the plasma the
particle will remain on this magnetic field line at any subsequent
moment of time. Then its trajectory is given by

r(t) = z(t)ez + a + ξ(t, z(t)), (7)

and the velocity by

Uez + u =
dr

dt
= (U + uz)ez +

∂ξ

∂t
+ (U + uz)

∂ξ

∂z
· (8)

Taking into account that uz = 0 we obtain

u =
∂ξ

∂t
+ U
∂ξ

∂z
· (9)

The magnetic field vector is tangent to the magnetic field line,
which implies that Bez + b is parallel to ez + ∂ξ/∂z. It follows
from this relation that, in the linear approximation,

b⊥ = B
∂ξ

∂z
, (10)

where b⊥ = (br, bϕ, 0). Substituting Eqs. (9) and (10) in Eq. (4)
we find that the perpendicular component of this equation, i.e.
the component normal to the z-direction, is satisfied identically.

Let us introduce the perturbation of the magnetic pressure
P = Bbz/µ0. To obtain the relation between bz and ξ we use
the z-component of Eq. (4) and Eq. (5). Then, using Eqs. (9)
and (10), we obtain

∂P

∂t
= −ρV2

A

∂(∇ · ξ)
∂t

, (11)

where V2
A
= B2/µ0ρ is the square of the Alfvén speed. Assuming

that P = −ρV2
A
∇ · ξ at the initial moment of time, we arrive at

P = −ρV2
A∇ · ξ. (12)

Substituting Eqs. (9) and (10) in Eq. (3), taking into account that
uz = 0, and using the identity

(∇ × b) × B = −∇(B · b) + (B · ∇)b,

which is valid when B = const, yields

(
∂

∂t
+ U
∂

∂z

)2
ξ = −1

ρ
∇⊥P + V2

A

∂2ξ

∂z2
, (13)

where

∇⊥ = ∇ − ez

∂

∂z
·

We assume that at the loop foot points the magnetic field lines
are frozen in the dense photospheric plasma, so

ξ = 0 at z = ±L/2, (14)

where L is the loop length. In what follows Eqs. (12) and (13)
together with the boundary conditions (14) are used to study the
plasma motion everywhere except the dissipative layers.
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3. Derivation of the governing equation

In this section we use Eq. (13) only in the regions r < R−ℓ/2 and
r > R + ℓ/2 where ρ is independent of r. We start the derivation
of the governing equation from introducing the small parame-
ter ǫ = R/L. For typical coronal loops this parameter does not
exceed 0.05. Then we introduce the stretched variable Z = ǫz.
Further, we outline that the oscillation period can be considered
as the characteristic time of the problem. It is of the order of
L/Ckh = ǫ

−1R/Ckh, where Ckh is the characteristic kink speed.
This estimate inspires us to introduce the “slow” time T = ǫt.
Now we apply the operator (∇⊥·) to Eq. (13). Using Eq. (12) we
obtain the equation for P:

1

r

∂

∂r
r
∂P

∂r
+

1

r2

∂2P

∂ϕ2
− ǫ

2

V2
A

(
∂

∂T
+ U

∂

∂Z

)2
P + ǫ2

∂2P

∂z2
= 0. (15)

In what follows we consider only kink oscillations and take ξ and
P proportional to exp(iϕ). Then, neglecting terms of the order of
ǫ2 in Eq. (15) we reduce it to

1

r

∂

∂r
r
∂P

∂r
− P

r2
= 0. (16)

The thin tube approximation cannot be used to describe the
plasma motion far from the magnetic tube. However, we only
consider the oscillations with the amplitude that rapidly decays
with the distance from the tube boundary, so we only need to de-
scribe the plasma motion in the immediate vicinity of the tube.
Hence, we can use Eq. (16) both inside and outside the tube. The
solution to Eq. (16) has to be regular at r = 0 and tend to zero as
r → ∞. Using these conditions we obtain

P = ǫ2
{

(r/R)Qi(t, z), 0 ≤ r ≤ R − ℓ/2,
(R/r)Qe(t, z), r ≥ R + ℓ/2,

(17)

where, at present, Qi(t, z) and Qe(t, z) are arbitrary functions sat-
isfying the conditions Qi(t,±L/2) = Qe(t,±L/2) = 0, and the
multiplier ǫ2 has been introduced for the convenience. Note that
Eq. (17) remains valid even for leaky oscillations (see Dymova
& Ruderman 2005). Substituting this equation in Eq. (13) we
obtain

(
∂

∂T
+ Ui

∂

∂Z

)2
ξri − V2

Ai

∂2ξri

∂Z2
= − Qi

Rρi

, 0 ≤ r ≤ R − ℓ
2
, (18)

(
∂

∂T
+ Ue

∂

∂Z

)2
ξre − V2

Ae

∂2ξre

∂Z2
=

RQe

r2ρe

, r ≥ R +
ℓ

2
· (19)

In particular, it follows from Eqs. (12) and (18) that ξ is inde-
pendent of r in the region 0 ≤ r ≤ R − ℓ/2.

Let us introduce the jump of function f (r) across the inho-
mogeneous layer,

δ f = f (R + ℓ/2) − f (R − ℓ/2).

In the following calculations we keep terms proportional to ℓ/R
while we neglect terms proportional to (ℓ/R)2 and the higher
powers of ℓ/R. It follows from Eqs. (12) and (13) that δξr ∼ ℓ/R
and δP ∼ ℓ/R. Using the second of these estimates and Eq. (17)
we obtain the approximate relation

Qe = Qi + ǫ
−2 δP. (20)

Substituting this result in Eq. (19) we obtain the approximate
equation

(
∂

∂T
+ Ue

∂

∂Z

)2
ξri − V2

Ae

∂2ξri

∂Z2
=

Qi

Rρe

(
1 − ℓ

R

)
+
δP

ǫ2ρeR

−
(
∂

∂T
+ Ue

∂

∂Z

)2
δξr + V2

Ae

∂2δξr

∂Z2
· (21)

Eliminating Qi from Eqs. (18) and (21) yields

ρi

(
∂

∂T
+ Ui

∂

∂Z

)2
ξri + ρe

(
∂

∂T
+ Ue

∂

∂Z

)2
ξri −

2B2

µ0

∂2ξri

∂Z2

=
ℓρi

R

{ (
∂

∂T
+ Ui

∂

∂Z

)2
ξri − V2

Ai

∂2ξri

∂Z2

}
+
δP

ǫ2R

−ρe

(
∂

∂T
+ Ue

∂

∂Z

)2
δξr + ρeV2

Ae

∂2δξr

∂Z2
· (22)

To simplify the notation we introduce η = ξri. Then, returning to
the original independent variables, we eventually arrive at

ρi

(
∂

∂t
+ Ui

∂

∂z

)2
η + ρe

(
∂

∂t
+ Ue

∂

∂z

)2
η − 2B2

µ0

∂2η

∂z2
= L, (23)

where

L =
ℓρi

R

{ (
∂

∂t
+ Ui

∂

∂z

)2
η − V2

Ai

∂2η

∂z2

}
+
δP

R

−ρe

(
∂

∂t
+ Ue

∂

∂z

)2
δξr + ρeV2

Ae

∂2δξr

∂z2
· (24)

L = 0 when ℓ = 0. In this case Eq. (23) coincides with Eq. (21)
in Ruderman (2010).

4. Kink oscillations of coronal loops with slowly

varying density

4.1. The WKB approximation

The aim of this section is to derive the equation governing the
time dependence of the amplitude of kink oscillations of coro-
nal loops with slowly varying density in the presence of reso-
nant damping. Let us introduce the notation ν = ℓ/R ≪ 1. We
assume that the characteristic time of the density variation, tch,
is much larger than the characteristic oscillation period, Pch. We
aim to obtain the equation for the amplitude that describes the ef-
fects of density variation and resonant damping in the same order
approximation. In accordance with this we put Pch/tch = O(ν).
Now, similar to Paper I, we use the Wentzel-Kramers-Brillouin
(WKB) method (see, e.g. Bender & Orszag 1978). In accordance
with this method we write

η = S (t, z) exp[iν−1Θ(t)]. (25)

Then we expand S in the series

S = S 0 + νS 1 + . . . (26)

It follows from our assumptions that the characteristic period
of kink oscillations is νtch. On the other hand, it is also of the
order of the loop length divided by the characteristic kink speed.
Hence, it can be taken to be equal to L/(B/

√
µ0ρch), where ρch

is the characteristic density. As a result we have

B ∼ ν−1 √µ0ρch

L

tch

·
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This estimate inspired us to introduce the scaled magnetic field

B̃ = νB. It follows from Eqs. (18) and (19) that Qi,e ∼ ν−2, which
implies that P ∼ ν−2. Since δP/P ∼ ν, we have δP ∼ ν−1. In
accordance with this estimate we introduce the scaled variable
δ̃P = ν δP. Now, substituting Eqs. (25) and (26) in Eq. (23), we
obtain

(ρi + ρe)

{
Ω2S 0 + ν

(
Ω2S 1 − 2iΩ

∂S 0

∂t
− iS 0

dΩ

dt

)}

− 2iν(ρiUi + ρeUe)Ω
∂S 0

∂z
+

2B̃2

µ0

(
∂2S 0

∂z2
+ ν
∂2S 1

∂z2

)
=

ν

{
ρi

(
Ω2S 0 + Ṽ2

Ai

∂2S 0

∂z2

)
− ρe

⎛⎜⎜⎜⎜⎝Ω2δ̃S ) + Ṽ2
Ae

∂2δ̃S

∂z2

⎞⎟⎟⎟⎟⎠

− δ̃P
R

exp(−iν−1Θ)

}
+ O(ν2), (27)

where

Ω =
dΘ

dt
, δξr = δS exp(iν−1Θ), δ̃S = ν−1δS , ṼA = νVA, (28)

where δS is the jump of S across the transitional layer.
Collecting terms of the order of one in this equation yields

∂2S 0

∂z2
+
Ω2

C̃2
k

S 0 = 0, C̃2
k =

2B̃2

µ0(ρi + ρe)
· (29)

This approximation is sometimes called the approximation of
geometrical optics. Introducing

ω = ν−1Ω, C2
k = ν

−2C̃2
k =

2B2

µ0(ρi + ρe)
, (30)

we rewrite Eq. (29) as

∂2S 0

∂z2
+
ω2

C2
k

S 0 = 0. (31)

The quantityω can be considered as the instantaneous frequency
of kink oscillation. It follows from Eq. (14) that S 0 satisfies the
boundary conditions

S 0 = 0 at z = ±L/2. (32)

Equations (29) and (32) constitute the boundary value problem
that determines the oscillation frequency Ω. This problem co-
incides with the boundary value problem obtained by Dymova
& Ruderman (2005) for kink oscillations of a magnetic tube
with the density varying along the tube that is in a static equi-
librium. In what follows we assume that Ω2 is the eigenvalue
and S 0 the corresponding eigenfunction of the boundary value
problem defined by Eqs. (29) and (32). In accordance with the
general theory of the Sturm-Liouville problem Ω2 is real (see,
e.g. Coddington & Levinson 1978). It is straightforward to see
that Ω2 > 0.

In the next order approximation, sometimes called the ap-
proximation of physical optics, we collect the terms of the order
of ν in Eq. (27). With the aid of Eq. (29) this yields

∂2S 1

∂z2
+
Ω2

C̃2
k

S 1 =
1

C̃2
k
(ρi + ρe)

{
1

2
Ω2(ρi − ρe)S 0

− ρe

⎛⎜⎜⎜⎜⎝Ω2δ̃S ) + Ṽ2
Ae

∂2δ̃S

∂z2

⎞⎟⎟⎟⎟⎠ −
δ̃P

R
exp(−iν−1Θ)

}

+
2iΩ

C̃2
k

(
∂S 0

∂t
+
ρiUi + ρeUe

ρi + ρe

∂S 0

∂z
+

S 0

2Ω

dΩ

dt

)
· (33)

It follows from Eq. (14) that S 1 satisfies the boundary conditions

S 1 = 0 at z = ±L/2. (34)

The homogeneous counterpart of the boundary value problem
constituted by Eqs. (33) and (34) has a non-trivial solution
S 1 = S 0. This means that the boundary value problem determin-
ing S 1 has a solution only when the right-hand side of Eq. (33)
satisfies the compatibility condition. We obtain this compatibil-
ity condition by multiplying Eq. (33) by S 0, integrating the ob-
tained equation, and using the integration by parts and Eq. (34).
After some algebra we write this condition as

∫ L/2

−L/2

1

C̃2
k

∂(ΩS 2
0
)

∂t
dz =

µ0Ω

2B̃2

∫ L/2

−L/2

S 2
0

∂

∂z
(ρiUi + ρeUe) dz

+
i

(ρi + ρe)C̃2
k

∫ L/2

−L/2

S 0

{
1

2
Ω2(ρi − ρe)S 0

− ρe

⎛⎜⎜⎜⎜⎝Ω2δ̃S ) + Ṽ2
Ae

∂2δ̃S

∂z2

⎞⎟⎟⎟⎟⎠ −
δ̃P

R
exp(−iν−1Θ)

}
dz. (35)

Using the mass conservation Eq. (2) we obtain

µ0

2B2

∫ L/2

−L/2

S 2
0

∂

∂z
(ρiUi + ρeUe) dz =

− µ0

2B2

∫ L/2

−L/2

S 2
0

∂

∂t
(ρi + ρe) dz = −

∫ L/2

−L/2

S 2
0

∂C−2
k

∂t
dz. (36)

Substituting this expression in Eq. (35) we transform it to

d

dt

⎛⎜⎜⎜⎜⎝ω
∫ L/2

−L/2

S 2
0

C2
k

dz

⎞⎟⎟⎟⎟⎠ =
i

(ρi + ρe)C2
k

∫ L/2

−L/2

S 0

{
ℓω2

2R
(ρi − ρe)S 0

− ρe

(
ω2δS + V2

Ae

∂2δS

∂z2

)
−
δP

R
exp(−iν−1Θ)

}
dz. (37)

The quantity in the brackets on the left-hand side of this equa-
tion is called the adiabatic invariant. When ℓ = 0 the right-hand
side of Eq. (37) is zero, the adiabatic invariant is conserved, and
Eq. (37) coincides with Eq. (16) in Paper I.

It is worth noting that, even when ℓ = 0, the oscillation en-
ergy is not conserved because the cooling loop is an open sys-
tem. Really, during the cooling the total mass of the loop de-
creases, so there is the flux of the plasma and, consequently, also
the energy flux through the foot points. Hence the conservation
of the adiabatic invariant is not related to the energy conserva-
tion. Probably it can be interpreted in terms of conservation of
the wave action, however this is a problem for the future study.

The equation expressing the conservation of the adiabatic in-
variant becomes especially simple in the case of a homogeneous
coronal loop and the ratio of densities inside and outside the loop
independent of time, which was considered in Paper I. In this
case ω = πCk/L and it follows from the adiabatic invariant con-
servation that the wave amplitude is proportional to ρ

−1/4

i
.

4.2. Calculation of δξr and δP

Equation (37) determines the time evolution of S 0 and thus the
oscillation amplitude. However this equation is not closed. To
make it closed we need to express δS and δP in terms of S 0. It
follows from Eq. (2) that U is of the order of νCkh. We also have
the estimate ∂S 0/∂t ∼ νωS 0. This implies that the account of the
flow and the time derivative of S 0 in the description of plasma
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motion in the transitional layer will only give corrections of the
order of ν to the expressions for δS and δP. Since we only need
to calculate the right-hand side of Eq. (37) in the leading order
approximation with respect to ν, it follows that we need to calcu-
late δS and δP also only in the leading order approximation with
respect to ν. This implies that we can neglect the plasma flow and
the time derivative of S 0 and use the quasi-static description of
plasma motion in the transitional layer when calculating δS and
δP. The only difference between the static and quasi-static de-
scription is that, while in the former the coefficient functions in
the equations describing the plasma motion are independent of
time, in the latter they depend on time as on a parameter. Then
we can use the results obtained by Dymova & Ruderman (2006,
Paper II in what follows) in the static case. However the analysis
in Paper II was carried out under the assumption that ρe/ρi is in-
dependent of z. Since we do not make this assumption we have
to modify this analysis. In what follows we briefly describe the
results obtained in Paper II and the modifications that we make.

First of all we notice that, in Paper II, not the jump of the
radial displacement but the jump of the radial velocity across the
transitional layer was calculated. However it does not cause any
problem because, in the quasi-static description, this jump is just
equal to iωδξr . Also notice that, in Paper II, the frequency with
the different sign was used. Now, following Paper II, we consider
the Alfvén oscillations of individual magnetic field lines. They
are described by the eigenvalue problem

V2
A

∂2w

∂z2
= −ω2

Aw, w = 0 at z = ±L/2. (38)

In this equation ω2
A

is the square of the Alfvén frequency. Note

that VA and w are functions of t, r and z, and ω2
A

is a function of t
and r. The eigenvalues of this problem are real and constitute an
infinite monotonically increasing sequence ω2

A1
< ω2

A2
< . . . ,

ω2
An
→ ∞ as n→ ∞ (see, e.g. Coddington & Levinson 1978). It

is straightforward to show that all eigenvalues are positive. Any
function g(z) square integrable in the interval [−L/2, L/2] can be
expanded in the generalized Fourier series

g(t, r, z) =

∞∑

n=1

gn(t, r)wn(t, r, z), (39)

where wn(t, r, z) is the eigenfunction of the boundary value prob-
lem (38) corresponding to the eigenvalue ω2

An
(t, r). Obviously,

all wn can be chosen to be real. The eigenfunctions corre-
sponding to different eigenvalues are orthogonal with the weight
V−2

A
(t, r, z). In addition they can be normalized in such a way that

they satisfy the relation

∫ L/2

−L/2

V−2
A wmwn dz = δmn, (40)

where δmn is the Kronecker delta-symbol. If g(z) has a con-
tinuous second derivative and satisfies the boundary conditions
g(±L/2) = 0, then the sum in (39) is uniformly convergent and
can be differentiated twice (see, e.g. Titchmarsh 1946; Naimark
1967). The Fourier coefficients are given by

gn =

∫ L/2

−L/2

V−2
A (z)g(z)wn(z) dz. (41)

The global kink oscillation is in resonance with nth harmonic
of local Alfvén oscillations at the resonant magnetic surface de-
fined by the equation r = rn if the condition ω2

An
(rn) = ω2 is

satisfied. Since ω2
An
→ ∞ as n → ∞, there can be only a fi-

nite number of Alfvén resonances. Observations show that, in
most cases, the fundamental harmonic of kink oscillations is
dominant, so the oscillation amplitude is determined by the fun-
damental harmonic. De Moortel & Brady (2007) reported ob-
servations of coronal loop kink oscillations where a node was
present. This may indicate that the first overtone was the domi-
nant mode in these oscillations. However, De Moortel & Brady
(2007) pointed out that there is a possibility that the observed
node was a purely geometrical effect related to the fact that the
loops were non-planar. Recently this possibility was confirmed
in the theoretical study of kink oscillations of non-planar loops
by Ruderman & Scott (2011). In accordance with this we con-
sider only the fundamental harmonic of the kink oscillations in
what follows.

When ρi(z) > ρe(z) for all z ∈ [−L/2, L/2], we have VAi(z) <
Ck(z) < VAe(z) for all z ∈ [−L/2, L/2]. In that case, using the os-
cillations theorem (e.g. Coddington & Levinson 1978), we can
prove that ω2

A1
(R−ℓ/2) < ω2 < ω2

A1
(R+ℓ/2), which implies that

there is r1 ∈ [R − ℓ/2,R + ℓ/2] such that ω2
A1

(r1) = ω2, i.e. there
is always at least one resonant position in the transitional layer.
It also follows from the oscillation theorem that, since VA(r)
is a monotonically increasing function, ω2

An
(r) is also a mono-

tonically increasing function for any n. Then we immediately
conclude that, if there are rm and rn such that ω2

Am
(rm) = ω2,

ω2
An

(rn) = ω2, and m < n, then there is rk such that ω2
Ak

(rk) = ω2

for any k satisfying m < k < n, and rn < rk < rm.
It is straightforward to verify that the expression for δP de-

rived in Paper II remains valid:

δP = (ℓ/R)ǫ2Qi(t, z)[1 + O(ν)]. (42)

To calculate δξr we expand ξr in the generalized Fourier series
as

ξr =

∞∑

n=1

ξnwn. (43)

Recall that the global kink oscillation is in resonance with the
nth harmonic of the local Alfvén oscillations when there is
rn ∈ [R − ℓ/2,R + ℓ/2] such that ω2

An
(rn) = ω2. It follows from

Paper II that, in this case, the jump of ξn across the dissipative
layer embracing the resonant surface r = rn is given by

[ξn] = −
πiΨn(rn)

R2|∆n|
· (44)

Here Ψn is the nth Fourier coefficient of function Ψ = P/ρt,

∆n = −
∂ω2

An

∂r

∣∣∣∣∣∣
r=rn

, (45)

and the jump of function f (r) across the dissipative layer is de-
fined by

[ f (r)] = lim
ε→+0
{ f (rn + ε) − f (rn − ε)}. (46)

From this point our analysis deviates from that in Paper II.
Taking into account that functions wn(r) are continuous we ob-
tain from Eqs. (43) and (44) that the jump of ξr across the nth
dissipative layer is given by

[ξr]n = −
πiΨn(rn)wn(rn)

R2|∆n|
· (47)
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Since P = O(ǫ2), it follows from Eq. (12) that, in the thin tube
approximation, ∇ · ξ = 0. This equation can be rewritten as

∂(rξr)

∂r
= −iξϕ, (48)

where ξϕ is the ϕ-component of vector ξ. In the leading order
approximation with respect to ν the ϕ-component of Eq. (13)
takes the form

V2
A

∂2ξϕ

∂z2
+ ω2ξϕ =

iP

ρR
· (49)

Expanding both sides of this equation in the Fourier series and
using Eq. (38) we obtain

ξϕn =
iΨn

R(ω2 − ω2
An

)
· (50)

This relation is valid for r � rn. Using this result and taking into
account that r ≈ R in the transitional layer we transform Eq. (48)
to

∂ξr

∂r
=

1

R2

∞∑

n=1

Ψnwn

ω2 − ω2
An

· (51)

If there are exactly N resonances then this equation is valid for
r � rn, n = 1, . . . ,N, where rN < rN−1 < · · · < r1. It follows
from this equation that, for any ε > 0,

ξr(r) = ξr(R + ℓ/2) −
1

R2

∞∑

n=1

∫ R+ℓ/2

r

Ψn(r′)wn(r′) dr′

ω2 − ω2
An

(r′)
,

r1 + ε ≤ r ≤ R + ℓ/2, (52)

ξr(r) = C +
1

R2

∞∑

n=1

∫ r

a

Ψn(r′)wn(r′) dr′

ω2 − ω2
An

(r′)
,

r2 + ε ≤ r ≤ r1 − ε, (53)

where C and a are constants, and r2+ε < a < r1−ε. Using these
results we obtain

[ξr]1 = ξr(R + ℓ/2) − C − 1

R2
P

∫ R+ℓ/2

a

Ψ1(r)w1(r) dr

ω2 − ω2
A1

(r)

− 1

R2

∞∑

n=2

∫ R+ℓ/2

a

Ψn(r)wn(r) dr

ω2 − ω2
An

(r)
, (54)

where P indicates the principal Cauchy part of the integral.
Comparing this expression with Eq. (47) yields

C = ξr(R + ℓ/2) − 1

R2
P

∫ R+ℓ/2

a

Ψ1(r)w1(r) dr

ω2 − ω2
A1

(r)

− 1

R2

∞∑

n=2

∫ R+ℓ/2

a

Ψn(r)wn(r) dr

ω2 − ω2
An

(r)
+
πiΨ1(r1)w1(r1)

R2|∆1|
· (55)

Substituting this expression in Eq. (53) we obtain the expression
for ξr valid for r2 < r ≤ R + ℓ/2,

ξr(r) = ξr(R + ℓ/2) −
1

R2

(
P

∫ R+ℓ/2

r

Ψ1(r)w1(r′) dr′

ω2 − ω2
A1

(r′)

+

∞∑

n=2

∫ R+ℓ/2

r

Ψn(r)wn(r′) dr′

ω2 − ω2
An

(r′)
− πiΨ1(r1)w1(r1)

|∆1|

)
· (56)

Continuing this procedure we eventually arrive at the expression
for ξr valid for R − ℓ/2 ≤ r ≤ R + ℓ/2,

ξr(r) = ξr(R + ℓ/2) −
1

R2

⎛⎜⎜⎜⎜⎜⎝
N∑

n=1

P

∫ R+ℓ/2

r

Ψn(r)wn(r′) dr′

ω2 − ω2
An

(r′)

+

∞∑

n=N+1

∫ R+ℓ/2

r

Ψn(r)wn(r′) dr′

ω2 − ω2
An

(r′)
− πi

N∑

n=1

Ψn(rn)wn(rn)

|∆n|

⎞⎟⎟⎟⎟⎟⎠ · (57)

It follows from this expression that

δξr = −
1

R2

⎛⎜⎜⎜⎜⎜⎝
N∑

n=1

P

∫ R+ℓ/2

R−ℓ/2

Ψn(r)wn(r) dr

ω2 − ω2
An

(r)

+

∞∑

n=N+1

∫ R+ℓ/2

R−ℓ/2

Ψn(r)wn(r) dr

ω2 − ω2
An

(r)
− πi

N∑

n=1

Ψn(rn)wn(rn)

|∆n|

⎞⎟⎟⎟⎟⎟⎠ · (58)

4.3. Governing equation for amplitude

Using Eqs. (42) and (58) we are now in the position to express
δS and δP in terms of S 0. It follows from Eqs. (18), (25) and
(29) that

ǫ2Qi =
ω2

2
R(ρi − ρe)S 0 exp(iν−1Θ)[1 + O(ν)]. (59)

Substituting this result in Eq. (42) we obtain

δP =
ℓω2

2
(ρi − ρe)S 0 exp(iν−1Θ)[1 + O(ν)]. (60)

The variation of P across the transitional layer is of the order of
ν. Since we calculate δS in the leading order approximation with
respect to ν, we can take P = ǫ2Qi when calculating δS . Hence
we can substitute

Ψ =
ω2R

2ρt

(ρi − ρe)S 0 exp(iν−1Θ) (61)

in Eq. (58). Then, introducing function

Φ =
ρi − ρe

2ρt

S 0

and its Fourier coefficients Φn we obtain that δS is given by

δS = −
ω2

R

⎛⎜⎜⎜⎜⎜⎝
N∑

n=1

P

∫ R+ℓ/2

R−ℓ/2

Φn(r)wn(r) dr

ω2 − ω2
An

(r)

+

∞∑

n=N+1

∫ R+ℓ/2

R−ℓ/2

Φn(r)wn(r) dr

ω2 − ω2
An

(r)
− πi

N∑

n=1

Φn(rn)wn(rn)

|∆n|

⎞⎟⎟⎟⎟⎟⎠ · (62)

Substituting Eqs. (60) and (62) in Eq. (37) we obtain with the
aid of Eq. (38)

d

dt

⎛⎜⎜⎜⎜⎝ω
∫ L/2

−L/2

S 2
0

C2
k

dz

⎞⎟⎟⎟⎟⎠ =
iµ0ω

2

2RB2

∫ L/2

−L/2

S 0

×
⎛⎜⎜⎜⎜⎜⎝

N∑

n=1

P

∫ R+ℓ/2

R−ℓ/2

[ρt(r)ω2
An

(r) − ρeω
2]Φn(r)wn(r) dr

ω2 − ω2
An

(r)

+

∞∑

n=N+1

∫ R+ℓ/2

R−ℓ/2

[ρt(r)(r) − ρeω
2]Φn(r)wn(r) dr

ω2 − ω2
An

(r)

⎞⎟⎟⎟⎟⎟⎠ dz

− πµ0ω
4

2RB2

N∑

n=1

∫ L/2

−L/2

[ρt(rn) − ρe]S 0Φn(rn)wn(rn)

|∆n|
dz. (63)
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Let W0(t, z) be solution to Eq. (31) satisfying the boundary con-
ditions (32) that corresponds to the fundamental mode. We take
W0 to be real. Since the eigenfunction describing the fundamen-
tal mode has no nodes, we can take W0 > 0. Finally, since an
eigenfunction multiplied by an arbitrary function of t is once
again an eigenfunction, we can take max(W0) = 1, where the
maximum is calculated with respect to z at a fixed t. The general
solution corresponding to the fundamental mode is

S 0(t, z) = A(t)W0(t, z) exp[iF(t, z)], (64)

where A(t) > 0 and F(t) are real functions. Since max |S 0| = A,
the function A(t) is the oscillation amplitude at the instant t. It
follows from Eq. (41) and the definition of the Alfvén speed that

Φn =

∫ L/2

−L/2

V−2
A Φwn dz =

µ0

2B2
AeiF

∫ L/2

−L/2

(ρi − ρe)W0wn dz. (65)

Substituting Eqs. (64) and (65) in Eq. (63) we obtain

d(ωIA2)

dt
= −ΓA2, (66)

dF

dt
= Υ, (67)

where

I =

∫ L/2

−L/2

(ρi + ρe)W2
0 dz, (68)

Γ = −
πµ0ω

4

2RB2

N∑

n=1

∫ L/2

−L/2

(ρi − ρe)W0wn(rn) dz

×
∫ L/2

−L/2

[ρt(rn) − ρe]W0wn(rn)

|∆n|
dz, (69)

Υ =
µ0ω

4RB2I

⎧⎪⎪⎨⎪⎪⎩
N∑

n=1

P

∫ R+ℓ/2

R−ℓ/2

(∫ L/2

−L/2

(ρi − ρe)W0wn(rn) dz

×
∫ L/2

−L/2

[ρt(r)ω2
An

(r) − ρeω
2]W0wn(r)

ω2 − ω2
An

(r)
dz

⎞⎟⎟⎟⎟⎠ dr

+

∞∑

n=N+1

∫ R+ℓ/2

R−ℓ/2

(∫ L/2

−L/2

(ρi − ρe)W0wn(rn) dz

×
⎛⎜⎜⎜⎜⎝
∫ L/2

−L/2

[ρt(r)ω2
An

(r) − ρeω
2]W0wn(r)

ω2 − ω2
An

(r)
dz

⎞⎟⎟⎟⎟⎠ dr

⎫⎪⎬⎪⎭ . (70)

The multiplier exp[iF(t)] describes only a small phase shift of
the oscillations. Since we are mainly interested in the amplitude
dependence on time, we will use only Eq. (66) in what follows.

5. Kink oscillations of coronal loops

with barometric density distribution

5.1. Kink oscillations of static coronal loops

To verify the accuracy of Eq. (66) we apply it to studying the
damping of kink oscillations of static coronal loops and com-
pare the results with those obtained in previous studies. For static
loops Eq. (66) reduces to

dA

dt
= −γA, γ =

Γ

2ωI
, (71)

so the oscillation amplitude decreases exponentially with the
decrement γ. Let us introduce ζ = ρi(L/2)/ρe(L/2). Now we
make the same assumptions as in Paper II. We assume that
ρi(z)/ρe(z) = ζ and ρt(r, z) = f (r)ρi(z), where f (r) is a mono-
tonically decreasing function, f (R− ℓ/2) = 1, f (R+ ℓ/2) = 1/ζ.
In particular, we obtain such an equilibrium if we assume that
the plasma is isothermal with equal temperatures inside and out-
side the loop, and use the barometric formula for the density. It is
shown in Paper II that, when ρt(r, z) = f (r)ρi(z), we can take wn

independent of r, while the eigenvalue dependence on r is given
by

ω2
An(r) =

ω2
An

(R − ℓ/2)

f (r)
· (72)

In what follows we assume that there is only one resonant po-
sition, r = r1, so N = 1 in Eqs. (69) and (70). Equation (31)
become

2B2

µ0(ζ + 1)ρe(z)

d2S 0

dz2
= −ω2S 0. (73)

Equation (38) for the fundamental harmonic at r = r1 takes the
form

B2

µ0ζρe(z) f (r1)

d2w1(r1)

dz2
= −ω2

A1(r1)w1(r1). (74)

It is obvious that the resonant conditionω2
A1

(r1) = ω2 is satisfied
only when the coefficient functions at the second derivative at
these two equations coincide. This gives

f (r1) =
ζ + 1

2ζ
· (75)

Substituting Eq. (72) in Eq. (45) and using Eqs. (75) we obtain

∆1 =
2ζω2 f ′(r1)

ζ + 1
· (76)

Since W0 and w1(r1) are the eigenfunctions of the same eigen-
value problem corresponding to the same eigenvalue, we have
W0(z) = w1(r1, z). Using this result and Eq. (76) we transform
the expression for γ to

γ = − πµ0ω(ζ − 1)2

16ζRB2| f ′(r1)|

∫ L/2

−L/2

ρe(z)w2
1(r1, z) dz. (77)

Using Eq. (40) we obtain

∫ L/2

−L/2

ρe(z)w2
1(r1, z) dz =

2B2

µ0(ζ + 1)

∫ L/2

−L/2

V−2
A (r1, z)w2

1(r1, z) dz =
2B2

µ0(ζ + 1)
· (78)

Substituting this result in Eq. (77) we arrive at

γ = − πω(ζ − 1)2

8ζ(ζ + 1)R| f ′(r1)|
· (79)

This expression coincides with the expression for γ given by
Eq. (82) in Paper II if we substitute in this equation ∆1 given
by Eq. (76). When f (r) is a linear function given by

f (r) =
ζ + 1

2ζ
− ζ − 1

ζℓ
(R − r), (80)
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the expression for γ reduces to

γ

ω
= − πℓ(ζ − 1)

8R(ζ + 1)
, (81)

which coincides with the expression used by Goossens et al.
(2002; see also the review papers by Goossens et al. 2006; and
Ruderman & Erdélyi 2009). For the sinusoidal density profile
determined by

f (r) =
ζ + 1

2ζ
−
ζ − 1

2ζ
sin
π(R − r)

ℓ
, (82)

we obtain from Eq. (75) that r1 = R. Then Eq. (79) reduces to

γ

ω
= − ℓ(ζ − 1)

4R(ζ + 1)
(83)

obtained by Ruderman & Roberts (2002). Note that both
Goossens et al. (2002) and Ruderman & Roberts (2002) con-
sidered magnetic tubes with the density that depends on r only,
while in this paper we consider the density varying along the
loop. Dymova & Ruderman (2006) showed that, under the as-
sumption that ρe/ρi = const. and ρt/ρi is independent of z, the
ratio γ/ω is the same for any function ρi(z). In view of this result
the coincidence of the expressions for γ/ω given by Eqs. (81)
and (83) with those in Goossens et al. (2002) and Ruderman &
Roberts (2002), respectively, is not surprising.

5.2. Kink oscillations of cooling coronal loops

In this subsection we once again assume that there is only one
resonant position r = r1. Similar to Paper I we also assume that
the plasma temperature outside the loop, T0, does not change
with time, while it decreases inside the loop due to the radiative
cooling. Following Aschwanden & Terradas (2008) and Morton
& Erdélyi (2010) we approximate the temperature evolution in-
side the loop by an exponentially decaying function,

T (t) = T0 exp(−t/tcool). (84)

In accordance with the equation of mass conservation the tem-
perature variation with time causes the plasma flow, so the
plasma inside the tube is not in the hydrostatic equilibrium, and
the density distribution is not described by the barometric for-
mula. However it was shown in Paper I that, for typical flow ve-
locities observed in coronal loops, the flow effect on the density
distribution is weak, and the barometric formula for the density
is a good approximation. Hence, we use the barometric formula
for the density both inside and outside the loop. Then, assuming
that the loop has a half-circle shape, we obtain

ρi(t, z) = ρf exp

(
− L

πH(t)
cos
πz

L

)
, (85)

ρe(z) =
ρf

ζ
exp

(
− L

πH0

cos
πz

L

)
, (86)

where ρf = const. is the density at the foot points inside the loop,

H(t) =
kBT (t)

mg
(87)

is the atmospheric scale height, H0 = H(0), kB is the Boltzmann
constant, m is the mean mass per particle (equal to one half of the

proton mass for the proton-electron plasma), and g is the gravi-
tational acceleration. We further assume that the density profile
in the transitional layer is linear, so

ρt(t, r, z) =
1

2
[ρi(t, z) + ρe(z)] + [ρi(t, z) − ρe(z)]

R − r

ℓ
· (88)

We see that ρt = (ρi + ρe)/2 when r = R, so VA(R, z) = Ck(z).
Then it follows that Eq. (38) coincides with Eq. (31) when r = R
and, therefore, ω2

A1
(R) = ω2. Hence we conclude that r1 = R

and, as in the previous subsection, W0(z)/w1(R, z) is a constant.
Recall that we consider only the fundamental mode. Since the
equilibrium is symmetric with respect to the apex point, it fol-
lows that W0(z) is an even function. Then it takes its maximum
value at z = 0, and the condition max(W0) = 1 reduces to
W0(0) = 1. Using this condition we obtain

w1(R, z) = w1(R, 0)W0(z). (89)

It follows from Eq. (40) and the relation VA(R) = Ck that

w2
1(R, 0) =

2B2

µ0I
· (90)

Differentiating Eq. (38) with respect to r and then taking r = R
we obtain, with the aid of Eq. (89),

⎛⎜⎜⎜⎜⎝
2ω2(ρi − ρe)

ℓ(ρi + ρe)
−
∂ω2

A1

∂r

⎞⎟⎟⎟⎟⎠
W0

C2
k

=
∂3W0

∂z2∂r
+
ω2

C2
k

∂W0

∂r
· (91)

Multiplying this equation by W0, integrating with respect to z,
and using the integration by parts and the boundary conditions
W0(±L/2) = 0 yields

∆1 = −
∂ω2

A1

∂r

∣∣∣∣∣∣
r=R

= −2ω2J

ℓI
, J =

∫ L/2

−L/2

(ρi − ρe)W2
0 dz. (92)

Using Eqs. (88)–(90) and (92) we obtain

Γ = −
πω2ℓ|J|

4R
· (93)

Let us introduce the dimensionless variables and parameters

σ =
z

L
, τ =

t

tcool

, ̟ =
ωL

Cf

, κ =
L

πH0

, (94)

where

C2
f =

2ζB2

µ0ρf(ζ + 1)
· (95)

Since we solve a linear problem, we can fix A at the initial mo-
ment of time arbitrarily. We take A(0) = 1, so that A(t) is just the
ratio of the current and initial oscillation amplitude. We rewrite
Eq. (31) with W0 substituted for S 0 in the dimensionless form as

∂2W0

∂σ2
+
̟2W0

ζ + 1

[
ζ exp(−κeτ cos(πσ)) + exp(−κ cos(πσ))

]
= 0.

(96)

Since we only consider the fundamental mode and the loop is
symmetric with respect to the apex point, we can use the bound-
ary conditions

∂W0

∂z
= 0 at σ = 0, W0 = 0 at σ = 1/2 (97)
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Fig. 1. The dependence of the relative amplitude A on the dimensionless
time τ for ζ = 3 and κ = 0.5. The solid, dotted, dashed and dashed-
dotted curves correspond to α = 0, 0.13, 0.5, and 1.0 respectively.

Fig. 2. The same as Fig. 1, but for ζ = 3 and κ = 1. The solid, dotted,
dashed and dashed-dotted curves correspond to α = 0, 0.22, 0.5, and
1.0 respectively.

instead of the boundary conditions (32). Recall that W0(0) = 1.
The dimensionless form of Eq. (66) with Γ given by Eq. (93) is

d(̟Π+A2)

dτ
= −α̟2|Π−|A2, (98)

where

Π± =

∫ 1/2

0

W2
0

[
ζ exp(−κeτ cos(πσ)) ± exp(−κ cos(πσ))

]
dσ,

(99)

and the parameter

α =
πℓCftcool

4RL
(100)

determines the relative strength of resonant damping and ampli-
fication due to cooling. When deriving the expression for Π± we
have taken into account that W0, ρi(z) and ρe(z) are even func-
tions.

We see that the dependence of the oscillation amplitude A
on time is determined by the three non-dimensional parameters,
α, ζ and κ. The function A(t) is calculated numerically for var-
ious values of α, ζ and κ. The results of these calculations are
presented in Figs. 1–6.

Fig. 3. The same as Fig. 1, but for ζ = 3 and κ = 2. The solid, dotted,
dashed and dashed-dotted curves correspond to α = 0, 0.19, 0.5, and
1.0 respectively.

Fig. 4. The same as Fig. 1, but for ζ = 10 and κ = 0.5. The solid, dotted,
dashed and dashed-dotted curves correspond to α = 0, 0.08, 0.5, and
1.0 respectively.

Let us introduce the critical value of α, αc, defined by the
condition that, for this value of α, A(1) = A(0), i.e. the oscillation
amplitude at t = tcool is equal to the initial amplitude. We also
introduce the critical value of the transitional layer thickness, ℓc,
defined by

ℓc

R
=

4αcL

πCf tcool

· (101)

When ℓ = ℓc the amplification due to cooling is in balance with
damping due to resonant absorption. Using Figs. 1–6 we obtain
the following values of αc for various values of ζ and κ:

Table 1. Values of αc for various values of ζ and κ.

ζ 3 3 3 10 10 10

κ 0.5 1 2 0.5 1 2
αc 0.13 0.22 0.19 0.08 0.1 0.09

This table shows that αc decreases when ζ increases. The depen-
dence of αc on κ is non-monotonic and, for ζ = 10, very weak.

It is worth noting the non-monotonic behaviour of the dotted,
dashed and dashed-dotted curves in Figs. 2 and 3. It is related to
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Fig. 5. The same as Fig. 1, but for ζ = 10 and κ = 1. The solid, dotted,
dashed and dashed-dotted curves correspond to α = 0, 0.1, 0.5, and 1.0
respectively.

Fig. 6. The same as Fig. 1, but for ζ = 10 and κ = 2. The solid, dotted,
dashed and dashed-dotted curves correspond to α = 0, 0.08, 0.5, and
1.0 respectively.

the fact that, for ζ = 3 and κ = 1 and 2, the function Π−(t)
changes the sign: while Π−(0) > 0, Π−(t) < 0 for sufficiently
large t, so there is such t0 that Π−(t0) = 0. The right-hand side
of Eq. (98) is very small for t close to t0. For these values of t
the resonant damping is very weak and the amplification due to
cooling dominates.

We also note that the condition ρi(z) > ρe(z) for all z ∈
[−L/2, L/2] is violated for ζ = 3 and κ = 1 and 2, and also
for ζ = 10 and κ = 2. However in all these cases there is still
only one resonant position. It seems that the kink mode becomes
leaky for sufficiently large values of t when ζ = 3 and κ = 2
and, may be, also when ζ = 3 and κ = 1. If this is the case
then there is an additional damping due to leakage. However, in
the thin tube approximation, this damping is very small and can
be safely neglected. Having this in mind we did not study this
problem further.

We are now in the position to give a more accurate esti-
mate of the transitional layer thickness in the event reported by
Aschwanden & Schrijver (2011). In this oscillation event the
initial oscillation period was Pinit = 395 s. It was estimated in
Paper I that κ ≈ 1 and tcool ≈ 2050 s. and, following this paper,
we take ζ = 10. Since in the initial moment of time ρi(z)/ρe(z) =
const., it follows from Eq. (96) that ̟(0) is independent of ζ.

Then we can use Fig. 4 in Paper I to obtain ̟(0) ≈ 4.8 for
κ = 1. Now, using the relation ̟(0) = 2πL/PinitCf , we find
L/Cf ≈ 300 s. It follows from Table 1 that αc ≈ 0.1 for ζ = 10
and κ = 1. Substituting these values in Eq. (101) we obtain
ℓc/R ≈ 0.02, which is about twice smaller than the crude es-
timate obtained in Paper I. Hence the conclusion made both by
Aschwanden & Schrijver (2011) and in Paper I that the observed
oscillation could stay undamped only if the transitional inhomo-
geneous layer is extremely thin remains valid.

The ability of amplification due to cooling to balance the
resonant damping strongly depends on the characteristics of the
oscillating loop and on the cooling time. As an example, con-
sider a loop with ζ = 3 and κ = 1. In this case αc ≈ 0.22 and,
once again in accordance with Fig. 4 in Paper I, ̟(0) ≈ 4.8.
Substituting these numbers in Eq. (101) we obtain

ℓc

R
≈ 0.21

Pinit

tcool

· (102)

If we now take tcool = Pinit, then we obtain ℓc/R ≈ 0.21, which
is in the range of values of ℓ/R typical for non-cooling loops
(see, e.g. Goossens et al. 2002). Recall that the analysis in this
section has been carried out under the assumption that tcool ≫
Pinit, so it is questionable if Eq. (102) remains valid for tcool =

Pinit. For such a short cooling time the problem should be solved
numerically without using the WKB method.

One concluding remark concerns the oscillation period.
Since cooling causes the evacuation of plasma from the loop, the
average plasma density in the loop decreases and, consequently,
the frequency of kink oscillations increases. Theoretically this
problem has been comprehensively studied by Morton & Erdélyi
(2009) and in Paper I for the loop model with the sharp bound-
ary. In particular, in Paper I the time dependence of the oscilla-
tion frequency for the model of cooling loop considered in this
subsection was calculated. Since the presence of the transitional
layer at the tube boundary does not affect the oscillation fre-
quency in the TB approximation, there is no need to address the
problem of frequency increase in this paper.

As for the comparison with the observations, we first of all
note that the observational evidence of frequency decrease was
found in the wavelet analysis by De Moortel et al. (2004). They
reported a 35% decrease in the oscillation period in the event re-
ported by Nakariakov et al. (1999). The problem of the period
decrease has been also addressed by Morton & Erdélyi (2010)
who found that the analytical profile with increasing frequency
fits better the observational data than the profile with the con-
stant frequency. On the other hand, the period decrease has not
been found in any other papers analyzing observations of coro-
nal loop kink oscillations, including the paper by Aschwanden &
Schrijver (2011), which is not surprising at all. The point is that,
in all these papers, the best fit to the data has been carried out
using the function e−γt sin(ωt − θ). Hence, it has been assumed
from the very beginning that the oscillation frequency is con-
stant. To determine the frequency variation we need to use the
function given by Eq. (25) with Θ and S calculated numerically
using the procedure presented in this paper. The best fit must be
carried out with respect to the initial phase of the oscillation, tcool

and ν = ℓ/R. In this way we can verify and, possibly, correct the
value of cooling time found from the direct observation of the
loop temperature. We can also obtain the estimate of the transi-
tional layer thickness. At present this analysis of observations of
cooling loop kink oscillations is in progress.
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6. Summary and conclusions

In this paper we have studied the resonant damping of kink os-
cillations of cooling coronal loops. We modelled the loop by a
straight magnetic cylinder that consists of the core region and
transitional layer. The magnetic field is straight and has constant
magnitude everywhere. In the core region and outside the loop
the plasma density varies only along the loop, while in the tran-
sitional layer it also varies in the radial direction from its value
inside the core region to its value outside the loop. In addition,
the density varies with time. The time-dependence of the den-
sity causes the plasma flow along the loop. The plasma motion
is described by the linearized MHD equations in the cold plasma
approximation. Using the quasi-Lagrangian description and the
thin tube approximation we derived the equation governing the
displacement of the loop axis. This equation is not closed be-
cause, in addition to the loop axis displacement, it contains the
jumps of the plasma displacement and magnetic pressure pertur-
bation across the inhomogeneous layer. When there is no inho-
mogeneous layer and the loop has a sharp boundary, this equa-
tion reduces to the corresponding equation previously derived in
Paper I.

The effects of cooling and resonant damping have been stud-
ied under the assumption that both the characteristic cooling
time and damping time are much larger than the characteris-
tic oscillation period. The second assumption implies that we
use the thin boundary layer approximation. The two assump-
tions enabled us to use the WKB method. With the use of this
method and the connection formulae we calculated the jumps
of the plasma displacement and magnetic pressure perturbation
across the inhomogeneous layer and obtained the closed equa-
tion for the loop axis displacement under the assumption that the
radial dependence of the density is linear. Then we derived the
equation describing the time-variation of the so-called adiabatic
invariant for the loop kink oscillations first introduced in Paper I.
When the loop has a sharp boundary the adiabatic invariant is
conserved. The equation for the adiabatic invariant determines
the time-dependence of the amplitude of the loop oscillation.

We further assumed that cooling occurs only inside the loop,
while the temperature of the external plasma does not change.
We also assumed that the loop has a half-circle shape, the initial
plasma temperature is the same inside and outside the loop,
and it is constant, and the density dependence on the height is
described by the barometric formula. Finally, we assumed that
the temperature inside the loop decreases exponentially. Under
these assumptions the equation for the oscillation amplitude
written in the dimensionless form contains three dimensionless
parameters: the ratio of densities inside and outside the loop at
the initial moment of time ζ > 1, the ratio of the loop height
to the initial atmospheric scale height κ, and the parameter α

characterizing the efficiency of the resonant damping. The latter
parameter is proportional to the ratio of the transitional layer
thickness ℓ to the radius of the loop cross-section R.

The equation for the oscillation amplitude was solved nu-
merically for various values of ζ, κ and α. The most interesting
problem was to study when the amplification of the oscillation
amplitude due to cooling can balance the resonant damping to
produce undamped oscillations. We consider the oscillation as
undamped if its amplitude at the time equal to the characteristic
cooling time tcool is the same as at the initial moment of time.
We denote the value of α corresponding to undamped oscilla-
tions as αc, and the corresponding value of ℓ as ℓc. The quantity
αc is given in Table 1 for various values of ζ and κ. This quantity
decreases when ζ increases, while its dependence of κ is non-
monotonic. When ζ = 10, αc is almost independent of κ. On the
basis of the numerical results we can make the conclusion that,
in general, the amplification due to cooling is not very efficient.
It can balance the resonant damping and produce undamped os-
cillations of loops with typical values of ℓ/R (ℓ/R � 0.2) only
when ζ is sufficiently small (ζ � 3) and the cooling occurs very
quickly with tcool of the order of the oscillation period.
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