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Movement control in older adults:  

does old age mean middle of the road?  

 

R. K. Raw, G. K. Kountouriotis, M. Mon-Williams 

and R. M. Wilkie*  

University of Leeds 

Old age is associated with poorer movement skill as indexed by reduced speed and accuracy. 

Nevertheless, reductions in speed and accuracy can also reflect compensation as well as 

deficit. We used a manual tracing and a driving task to identify generalised spatial and temporal 

compensations and deficits associated with old age. In Experiment 1 participants used a hand-

held stylus to trace a path. In Experiment 2 participants steered along paths in a virtual reality 

driving simulator. In both experiments, participants were required to stay within the boundaries 

whilst we manipulated task difficulty by changing path width or movement speed. The older 

group showed worse performance in the highly constrained conditions. Corner-cutting 

effectively reduces the curvature of bends but yields a greater risk of error (i.e. clipping the 

path/road-edge). Corner-cutting is thus less risky on wider paths and we found that corner-

cutting increased for both age-groups in both tasks when paths were wider. Crucially, we 

observed a greater degree of corner-cutting in the young group compared to the old, 

suggesting the old group compensated for decreased motor skill with „middle-of-the-road‟ 

behaviour. Enforcing increased speed caused all participants to increase corner-cutting. Thus, 

older participants showed spatial compensation for decreased skill by biasing their position 

towards the middle of the path in both a manual and steering task. External constraints (narrow 

paths and fast speeds) prevented this strategy and revealed age-related declines in skills 

central to manual control and driving. 
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Movement skills deteriorate with age, with movements becoming slower, less accurate and 

more variable (Schmidt & Lee, 1999). This decline can be explained through changes in 

physiology including a reduction in sensory sensitivity, deterioration in strength and flexibility 

and an increased susceptibility to diseases that affect both the central nervous system (e.g. 

stroke) and the periphery (e.g. arthritis). The impact of these changes is profound, and a 

decline in motor ability can greatly limit the extent to which older people are capable of 

undertaking everyday tasks (Giampaoli, Ferrucci, & Cecchi et al., 1999; Rantenen, Guralnik, 

& Foley et al., 1999). It is not surprising then that older adults show decrements in 

performance when faced with behavioural tasks that examine movement speed and 

accuracy in a laboratory environment. For example, in simple motor coordination tasks 

(which require the execution of fast and repetitive movements within a set time frame), older 

adults take a longer period of time to achieve the same movement goals as their younger 

counterparts (Desrosiers, Hebert, Bravo, & Dutil, 1995; Verkerk, Schouten & Oosterhuis, 

1990). While aging causes a direct reduction in the speed at which movements can be 

carried out, it is possible that this age-related slowing is also driven by compensatory 

processes. Evidence suggests that humans are able to rapidly assess their intrinsic motor 

variability and optimize their motor strategies (Trommershauser, Gepshtein, Maloney, Landy 

& Banks, 2005). One strategy is generating slower actions to make it easier to use on-line 

feedback to make corrective adjustments. An increase in movement duration can, therefore, 

allow older adults to perform at an equivalent level of spatial accuracy as a younger 

population, with decrements only becoming apparent when there is an external timing 

constraint imposed upon the task (Morgan, Phillips & Bradshaw et al., 1994; Welsh, Higgins 

& Elliot, 2007).  

It can be seen that there are two possible interpretations of an increase in movement 

duration as a function of age: it could be a direct consequence of physiological changes, or a 

strategic response to these changes. Strategic compensation does not necessarily mean 

that behaviour is adjusted through conscious control. Older adults may consciously attempt 

to compensate for their difficulties and/or adapt to increased signal variability in a cognitively 

impenetrable manner (Desrosiers et al., 1995; Krampe, 2002; Smith, Umberger & Manning 

et al., 1999; Verkerk, Schouten & Oosterhuis, 1990). 

When it comes to interpreting motor control performance in a laboratory or clinical 

environment, practical issues arise. In a motor control task it can be difficult to detect 

changes in movement as a function of age when spatial accuracy is used as a measure, 

unless task duration is carefully controlled (i.e. participants may slow down to preserve 

accuracy). Furthermore, in rehabilitation settings, encouraging an individual to speed up their 

movements might actually interfere with their own successful strategic compensation. 
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Accordingly, it can be seen that there are good scientific and clinical reasons for 

understanding both the quantitative and qualitative changes that occur in movement as a 

function of age. Thus, the aim of our experiments was to explore whether older adults make 

spatial and temporal adjustments to their movements in order to meet the demands of 

different skilled motor tasks.  

The relationship between movement speed and accuracy was first formally defined by Fitts 

(1954). Fitts proposed that the time taken to complete a movement is a function of 

movement amplitude and target size. The relationship between duration and task 

parameters has been examined extensively within the movement literature (see Plamondon 

and Alimi, 1997 for a comprehensive review) and it has been established beyond a doubt 

that increasing accuracy demands (e.g. by decreasing target size) produces a lawful 

increase in movement duration – the so-called „speed-accuracy trade-off‟. We wanted to 

determine whether there are general strategies used to compensate for age-related deficits, 

so we examined the relationship between speed and accuracy in two different motor control 

tasks. Previous comparisons of hand-writing and walking movements have demonstrated 

that there are general patterns of behaviour that emerge during both actions (Hicheur, 

Vielledent, Richardson, Flash & Berthoz, 2005). Moving the hand to trace a path has the 

classic characteristics required to examine speed-accuracy trade-offs as well as strategic 

compensation (Johnson, Culmer, Burke, Mon-Williams & Wilkie, 2010). Visual feedback 

about hand position relative to the path edge can allow an individual to stay within a wide 

path when moving slowly. If the accuracy demands are increased (i.e. the path becomes 

narrower) then speed should reduce, or if the speed is increased then accuracy should be 

impaired. If there is increased visual-motor variability with age then we should also expect 

older adults to produce slower speeds and/or the adoption of movements that trace closer to 

the path centre (to avoid leaving the path). Similar issues arise during locomotion along 

demarked pathways. Steering smoothly and accurately around a bending roadway requires 

the same considerations of visual-motor variability as tracing with the hand. Cutting the 

corner allows the driver to take a faster line through the bend, but it also exposes the driver 

to increased risk of crossing the road boundary and having an accident. While many 

experiments have examined the information used to control steering along curved roadways 

(Land & Horwood, 1995; Wilkie & Wann, 2003; Salvucci & Gray, 2004; Coutton-Jean, 

Mestre, Goullon & Bootsma, 2009; Wilkie, Kountouriotis, Merat & Wann, 2010) as well as the 

neural basis of this control (Field, Wilkie & Wann, 2007; Billington, Field, Wilkie & Wann, 

2010) it remains unclear whether there are systematic changes in steering behaviour based 

upon the variability of the driver. If there are general compensatory mechanisms employed 



Journal of Experimental Psychology:                 © 2011 American Psychological Association 
Human Perception and Performance  

4 

 

by the central nervous system then we would expect to see them exhibited when visual-

motor variability increases with age. 

In the first experiment we used a manual task in which participants were asked to trace 

paths of variable thickness. In two of the conditions, speed was controlled (using a set fast or 

slow speed dictated by a moving „window‟), which allowed us to examine spatial strategies 

under a temporal constraint. We also included a condition in which participants were able to 

move at an unconstrained speed in order to explore natural age differences in speed-

accuracy selection (and trade-off). The participants were instructed that their trajectory must 

not leave the delineated path and, when time was unrestricted, that they must complete the 

task as quickly as possible. We used one path that was sufficiently thin to ensure that the 

task had to be completed by tracing the path‟s shape exactly, but we also included two 

thicker paths where the finish point could be reached faster in the preferred speed condition 

by cutting-the-corners. Because this corner-cutting strategy risks error (i.e. leaving the path), 

it would be safer to take longer in the preferred speed condition, and stick to the middle of 

the path. In light of the increased motor variability associated with older age, we therefore 

expected that when older participants were pacing themselves, they would stay closer to the 

middle of the path to reduce the risk of crossing outside of the path boundary. On the other 

hand, we expected less variable younger adults to cut-the-corners in order to reach the 

finish-line in a shorter period of time. We were also interested to determine whether any age 

difference in spatial strategy would remain when movement duration was pre-set (i.e. would 

participants still cut-the-corners when they could not achieve shorter overall movement 

duration?).  

In the second experiment we aimed to identify whether spatial compensation would translate 

to a different skilled movement scenario: steering along a roadway. We used the same 

shaped path as featured in the first experiment to create a series of virtual roads within a 

simulated driving environment. We chose steering as a comparison movement for three 

reasons. First, driving plays an important part in an older person‟s ability to maintain 

independence in later life, and therefore an increased awareness of age differences in 

steering behaviours has broad implications. Second, accident statistics suggest that older 

people are involved in a higher number of fatal incidences per 100 miles driven when 

compared to younger drivers (Massie, Campbell & Williams, 1995)1. Thus, identifying the 

strategies adopted by older drivers may help in understanding road-safety issues. Finally, a 

                                                           
1
 The underlying cause of road accidents is not always clear but the most frequent class of crash 

where an older driver (>60 years) was considered partly to blame were „right of way violations‟; 
carrying out manoeuvres such as lane changes, or turning on or off a road (Clarke, Ward, Truman & 
Bartle, DfT Road Safety Research Report 109, 2009). 
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simulated driving task provides the benefit of studying movement in a realistic scenario, 

while at the same time allowing us to maintain precise control over the visual stimuli. We 

measured steering bias (i.e. the extent to which participants cut-the-corner) and steering 

variability as participants steered along a series of roads that varied in width at slow or fast 

speeds. Similar studies conducted in the past with younger adults have identified a tendency 

to “cut-the-corner” and therefore steer closer to the inside road-edge (i.e. take the so-called 

„racing line‟) (Mars, 2008; Robertshaw & Wilkie, 2008). Nevertheless, maintaining a more 

central road position would allow an older driver with increased motor variability to contain 

his or her trajectory within the constraints of the road boundaries. Hence, we predicted that 

where possible older participants would be more inclined to adopt a „middle-of-the-road‟ 

strategy and exhibit less corner-cutting than the younger population. When external 

constraints (high speed) make a „middle-of-the-road‟ compensatory strategy difficult to 

implement we expected errors in the older participants to increase. 

 

Experiment 1 

Method 

Participants 

Twenty seven healthy individuals with no history of ophthalmological or neurological 

problems were tested from an opportunistic sample. All participants were right-handed as 

indexed by the Edinburgh Handedness Inventory (EHI; Oldfield, 1971) with an average score 

of 90.26 (SD = 13.88) out of the maximum 100. Participants were split into two groups. One 

young participant was excluded because their RMS error scores exceeded the group mean 

by over 3 SD. After exclusion, the „young‟ group consisted of 13 participants (6 females, 7 

males) aged between 18 and 38 years (average age = 27.69, SD = 6.06). The „old‟ group 

comprised 13 people (11 females, 2 males) aged between 62 and 80 years (average age = 

69.62 years, SD = 5.39). The University of Leeds ethics and research committee approved 

this study and all participants gave written informed consent in accordance with the 

Declaration of Helsinki. 

 

Procedure and Apparatus 

A tracing task was created using „KineLab‟, a kinematic assessment tool that can be used to 

design visual-spatial tasks and record the x and y co-ordinates of hand movement (Culmer, 
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Levesley, Mon-Williams & Williams, 2009). In this experiment, participants used a handheld 

stylus to draw along paths presented on a tablet PC. Each path was the same shape 

(measuring 184.3 mm in height from top to bottom, and 19.8 mm in width from left to right), 

but varied in thickness (2 mm, 4 mm, 6 mm). The speed at which participants were required 

to trace also varied between trials. Two of the conditions were set at a constant speed 

whereby the path was presented within a moving „window‟ which moved along and gradually 

revealed the future path whilst the path behind disappeared (see Figure 1a). This occurred 

at a rate of 12.86mm/sec in the slow condition and 23.64 mm/sec in the fast condition. A 

third condition was also included in which participants were able to trace at their own 

preferred pace. In this condition the path was static and fully visible throughout the trial (see 

Figure 1b). Each path thickness (narrow, medium and wide) was presented five times within 

each of the speed conditions (slow, fast, preferred) resulting in a total of 45 paths to trace 

(presented in a random order). Participants completed the task using their (preferred) right 

hand and were provided with the following instructions; “follow the path from start to finish as 

quickly as possible. You must NOT go outside of the path”.  

 

 

 

Figure 1. Screen shots taken from the Kinilab tracing task as the stimuli appeared to 

participants on the tablet PC screen (Nb. not to scale). (a) An example of a set speed trial 

with the medium path. (b) An example of a preferred speed trial with the medium path.  
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Analysis 

We calculated three measures of tracing performance: (i) Movement Time (MT), the time 

taken from the moment the stylus exited the start icon until the point at which the stylus 

crossed into the finish icon, (ii) Path Length (PL), which indicated the extent to which 

participants cut the corners by recording the length of the trace from start to finish, and (iii) 

Root Mean Squared (RMS) Error, the average distance of the stylus from the closest 

reference point on the middle of the path. We calculated each individual‟s mean score for the 

three path thickness conditions and the three speed conditions on each measure (MT, PL 

and RMS error). These data were then input into separate mixed ANOVAs to examine 

differences between the task conditions and age groups. Greenhouse-Geisser estimates of 

sphericity (ε) are reported where degrees of freedom have been adjusted. 

Results 

Figure 2a displays the mean Movement Time (MT) for the young and old groups on the 

narrow, medium and wide paths, in the controlled slow, controlled fast and preferred speed 

conditions. The ANOVA revealed significant main effects for path thickness (F (2, 48) = 

38.82, p < .001, η2 = .62, ε = .59) and speed condition (F (2, 48) = 386.58, p < .001, η2 = .94, 

ε = .52), and a path thickness × speed interaction (F (4, 96) = 58.99, p < .001, η2 = .71, ε = 

.32). While there was no main effect of age (F (1, 24) = 2.65, p > .05, η2 = .10), nor 

interactions between age and path thickness (F (2, 48) = .12, p > .05, η2 = .005), and no 3-

way interaction (F (4, 96) = .07, p > .05, η2 = .003), there was a significant age × speed 

interaction (F(2, 48) = 6.41, p < .001, η2 = .21, ε = .51). Figure 2a shows that path thickness 

did not greatly alter MT when speeds were held constant, but thicker paths did result in 

shorter MTs during „preferred‟ speed trials. Thus, the „set speed‟ trials successfully controlled 

speed, with the old and young participants having the same MTs in slow and fast conditions. 

The interaction between age and speed results from the „preferred‟ speed condition whereby 

there was a general increase in MT for the old group compared to the young. The lack of 

interaction between age and path thickness does indicate, however, that MT reduced by a 

similar amount as paths increased in thickness. In terms of speed/accuracy trade-offs it 

seems, therefore, that the old adopted slower speeds overall, but did not moderate speed 

differently compared to the young. 

Because MT decreased on wider paths when moving at the preferred speed it seems that 

participants may have been „cutting-corners‟ to reduce the distance the pen needed to travel 

from start to finish. To confirm corner-cutting behaviour we examined Path Length (PL). The 

„ideal‟ PL was calculated for the centre of the reference path and paths taken were generally 
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shorter than this value (shown by the horizontal dashed line on Figure 2, right-hand panels). 

For clarity of presentation, the mean PL on the narrow, medium and wide paths, in the set 

slow, set fast and preferred speed conditions are shown separately for the young group in 

Figure 2d and for the old group in Figure 2f. The ANOVA for PL revealed a significant main 

effect of path thickness (F (2, 48) = 307.16, p < .001, η2 = .93, ε = .58) and speed (F (2, 48) 

= 6.63, p < .001, η2 = .22, ε = .69), as well as a path thickness × speed interaction (F (4, 96) 

= 13.39, p < .001, η2 = .36, ε = .61). There was no main effect of age (F (1, 24) = .660, p > 

.05, η2 = .03), nor interactions between age and speed (F (2, 48) = .13, p > .05, η2 = .005), 

and no 3-way interaction (F (4, 96) = 2.05, p > .05, η2 = .08). However, there was a 

significant age × path thickness interaction (see Figure 2b and 2h, F (2, 48) = 9.06, p < .001, 

η
2 = .27, ε = .58).  

The general pattern across conditions shows that PL decreased as the path got thicker, 

indicating that there was a tendency for participants to cut-corners on these paths. 

Furthermore, PL was reduced when participants were tracing at faster speeds. The path 

thickness × speed interaction reflects the different gradients of the lines shown in Figures 2d 

and 2f, whereby different speed conditions were affected to a greater or lesser extent by the 

path thickness. These differences demonstrate two things: i) while there was little difference 

in PL between the set fast and slow conditions on narrow paths, PL decreased more for 

wider paths at fast speeds than at slow (i.e. there was most corner-cutting on wide paths at 

fast speeds), ii) while there was little difference in PL for the fast and preferred speeds 

conditions on the wide paths, PL increased more on the narrow paths at preferred speeds 

than at fast speeds  (i.e. there was less corner-cutting on narrow paths at preferred speeds). 

While the patterns for PL in old and young were similar, the path thickness × age group 

interaction indicates that older participants were less likely than the young to cut-the-corner 

as the path got thicker (see Figures 2b & 2h).   

An increase in PL could theoretically be explained by more erroneous tracing, rather than 

tracing the path more accurately. To confirm that the longer trajectories did indeed follow the 

path more accurately we calculated RMS error – the distance of the pen from the middle of 

the reference path at each time-point. The mean RMS error for narrow, medium and wide 

paths, in the set slow, set fast and preferred speed conditions are shown for the young group 

in Figure 2c and for the old group in Figure 2e. The ANOVA for RMS error revealed a 

significant main effect of path thickness (F (2, 48) = 224.188, p < .001, η2 = .82, ε = .75) and 

speed (F (2, 48) = 114.4, p < .001, η2 = .83, ε = .64), as well as a path thickness × speed 

interaction (F (4, 96) = 26.11, p < .001, η2 = .52, ε = .69). These results confirm that an 

increase in PL was associated with improved tracing accuracy (reduced RMS error). 
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The reduced corner-cutting (increased PL) observed in the old when tracing wide paths 

could be explained by a general preference for accuracy (and hence slower MTs when 

unconstrained). To determine whether the older adults were more accurate we examined the 

age-related results from the ANOVA. There was no main effect of age (F (1, 24) = .011, p > 

.05, η2 = 0), nor an age × path thickness interaction (F (2, 48) = 2.30, p > .05, η2 = .09). 

There was, however, an interaction between age and speed (F (2, 50) = 6.47, p < .01, η2 = 

.21), and a 3-way interaction (F (4, 96) = 2.73, p < .05, η2 = .10). The interactions occur 

because the older adults were more accurate in only one condition: tracing wide paths at 

preferred speeds (t(24) = 2.32, p<.05). The young sacrifice accuracy to follow faster 

trajectories that cut the corners. In all other conditions the older adults were no better that 

the young (Figure 2g). To determine whether the old had decreased motor skill we 

compared RMS error on the narrow path at slow speed across age groups since this 

condition should reflect the greatest possible accuracy: as expected by the interactions the 

young were better in this condition and stayed significantly closer to the path centre (Figure 

2g; t(24) = 2.08, p<.05).  
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Figure 2. Tracing performance on the narrow (2mm), medium (4mm) and wide (6mm) paths 

at the slow (circles), fast (triangles) and preferred (squares) speeds for the Young (filled 

symbols) and Old (open symbols) groups: (a) Movement Time, (b) Path Length for the 

Young and Old averaged across speed conditions, (c) RMS error for the Young, (d) Path 

Length for the Young, (e) RMS error for the Old, (f) Path Length for the Old, (g) RMS error 

for the Young and Old for constrained speed conditions, (h) Path Length for the Young and 

Old for constrained speed conditions. Horizontal dashed lines indicate the ‘ideal’ path length 

tracing the path centre (panels B,D,F,H). Horizontal dotted/dashed lines indicate the 

maximum error (half path width) to stay within the narrow (2mm, dot/dashed line), medium 

(4mm, dashed line) or wide (6mm, dotted line) paths (panels C, E G).   Bars = Standard 

Error of the Mean.  

 

Experiment 2 

The first experiment demonstrated that, when tracing paths, older adults were less inclined 

to cut the corners of thicker paths and were less able to accurately trace narrow paths. In the 

second experiment we examined whether similar patterns of behaviour would be observed in 

a steering task. As in experiment 1, we varied the path thickness and speed to see whether 

we could observe age-related changes in behaviour.  

 

Method 

Participants 

A new group of 28 healthy individuals with no previous history of ophthalmological or 

neurological problems formed a second opportunistic sample. Participants were split into two 

groups (N = 14): the „young‟ group (8 females) were aged between 19 and 39 years (mean = 

24.07, SD = 5.28) whereas the „old‟ group (9 females) were aged between 60 and 84 years 

(mean = 71.86, SD = 7.01). All participants held a UK driving licence and considered 

themselves to be a driver.  The mean EHI score was 86.52 (SD = 21.25) indicating that all 

participants were right-handed. The Addenbrooke's Cognitive Examination Revised (ACE-R) 

(Mioshi, Dawson, Mitchell, Arnold and Hodges, 2006) was also administered to the older 

participants to measure basic cognitive ability and the average score was 92.29 out of 100 

(SD = 6.37). All participants gave their written informed consent, and the experiment 

complied with ethical guidelines approved by the University of Leeds ethical committee, in 

accordance with the Declaration of Helsinki.  
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Procedure and Apparatus 

Participants were seated in a driving seat placed in front of a large screen (1.98m × 1.43m).  

The rotating, height adjustable, lockable chair allowed the older participants to comfortably 

transition into the chair. The distance from the eyes to the screen was 1m, and the distance 

from the eyes to the ground was 1.05m for all participants (Figure 3).   

 

 

Figure 3. An older adult participant steering along a road of medium (3m) width.   

 

A realistic textured ground plane with superimposed road-edges was presented (similar to 

Wilkie & Wann, 2003b). The shape of the road (Figure 3a) was created using the following 

sum of sines formula: 

sin sin sin
20 15 30

z z z
x         (1) 

 

The driving task was presented using a PC (Pentium(R) 4 CPU 3.20 GHz) to generate the 

scenes and a Sanyo Liquid Crystal Projector (PLC-XU58) to back-project the images. The 

edges of the road appeared in white against a grey gravel textured background with a blue 

sky (Figure 3). All roads followed the same shape but varied in width: narrow (1.5 m), 

medium (3 m) or wide (4.5 m). Speed of travel was constant within trials, but varied between 

trials so that each road type appeared five times at both a slow (8 m/s) and fast (16 m/s) 

speed. This resulted in a total of 30 roads to negotiate, which took around 10 minutes if the 

trials were completed without extended pauses. The order of conditions was randomised.  
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Participants were asked to steer along the virtual road and were told to „stay within the 

boundaries‟. Steering was controlled using a force-feedback wheel (Logitech G27 with a 

„return-to-centre‟ force active) and a „paddle‟ button (positioned beneath their fingers) that 

allowed participants to control when a trial started (allowing rest between trials if needed). 

Driving simulators run the risk of inducing motion sickness and this was highlighted to 

participants during the consent process. Indeed, the majority of the older group did 

experience some motion sickness with 10 out of the 14 older participants experiencing 

nausea at some point in the experiment (compared to only 1 of the young group). 

Analysis 

Three measures of steering performance were calculated: (i) steering error was calculated 

using the root mean squared (RMS) error of position from the middle of the road for each 

frame of each trial; (ii) In order to examine the variability across trials we calculated the 

standard deviation of RMS error (SD of steering error) for each condition; (iii) the steering 

bias of position relative to the middle of the road indicated whether the participants cut-the-

corner or were biased towards the outside edge. Larger positive values indicate more time 

spent steering towards the inside edge of the bend. A zero value does not, however, indicate 

that the participant stayed solely on the road midline (e.g. a participant could be highly 

variable but spend the same amount of time near the outside edge of the road as near the 

inside edge and so be unbiased). It is therefore important to examine bias alongside RMS 

error to evaluate steering performance. Trials in which steering error exceeded 4m were 

treated as outliers and excluded from all analyses, but only five trials needed to be excluded 

in this way: three trials from the old group and two from the younger group with no more than 

one trial per participant excluded. Three mixed model ANOVAs were used to explore 

separately the steering performance measures (steering error, SD of steering error and 

steering bias). These analyses had a 2 (young and old age groups) × 3 (narrow, medium 

and wide roads) × 2 (slow and fast speeds) design. Where the Greenhouse-Geisser ε values 

are reported, the degrees of freedom were adjusted in order to account for sphericity.   

 

Results 

Figure 4a displays the RMS steering error for the old and young groups on narrow, medium 

or wide roads, for slow and fast speed conditions. Table 1 displays the ANOVA results: there 

was a main effect of locomotor speed (F (1, 26) = 93.06, p < .001, η2 = .78), road width (F (1, 
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26) = 41.47, p < .001, η2 = .62, ε = .77) and a significant speed x width interaction (F (2, 52) 

= 27.53, p < .001, η2 = .51). Errors were smallest on narrow roads at slower speeds, but 

higher speeds caused greater errors when the road was narrow.  The age groups performed 

similarly in most conditions and there was no main effect of age (because of overlap the 

slow trials for young are hard to see in Figure 4a) but there was a width x speed x age 

interaction (F (2, 52) = 4.43, p < .05, η2 = .15). The three way interaction seems to be driven 

by the reduction in steering error between wide and narrow fast trials in the young (t(13) = 

4.89, p<.001) but not for old (t(13) = .15, p=.89).  

 

Table 1. The effect of road width and locomotor speed on RMS steering error in Old and 

Young participants in Experiment 2. Where the Greenhouse-Geisser ε values are reported, 

the degrees of freedom were adjusted in order to account for sphericity. 

 RMS Steering Error 

 F df     η
2       ε           p 

Road Width  41.47 2, 52 .62 .77 <.001 ** 

Speed 93.06 1, 26 .78  <.001 ** 

Agea .26 1, 26 .01  .617 

Width × Age 2.86 2, 52 .10  .08 

Speed × Age .03 1, 26 .03  .38 

Speed × Width 27.54 2, 52 .51  <.001 ** 

Speed × Width × Age 4.43 2, 52 .15  .02 * 

a
Age was the only between-subjects factor. *Result significant at the p < .05 level. 

**Result significant at the p < .001 level. 

 

RMS steering error provides a measure of within trial variability (relative to the road centre). 

Accurate control of steering depends upon reliably reproducing actions. To examine how 

consistent the groups were in their steering across trials of the same type we calculated the 

SD of RMS error. Figure 4b displays the mean SD of RMS steering error for the old and 
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young groups on narrow, medium or wide roads, in the slow and fast speed conditions. 

Table 2 displays the ANOVA results in which there were two significant effects. Firstly, there 

was a main effect of locomotor speed (F (1, 26) = 18.26, p < .001, η2 = .41), whereby 

steering was more variable when travelling quickly. This suggests that travelling at twice the 

speed made maintaining a consistent steering path across trials more difficult. Secondly, the 

older group were significantly more variable in their steering trajectories than the younger 

group (F (1, 26) = 6.67, p < .05, η2 = .20). Notably, the narrow fast condition yielded the 

greatest difference between the age groups indicating that the older participants found this 

condition particularly challenging.  

Table 2. The effect of road width and locomotor speed on steering bias and variability in Old 

and Young participants. Where the Greenhouse-Geisser ε values are reported, the degrees 

of freedom were adjusted in order to account for sphericity. 

a
Age was the only between-subjects factor. *Result significant at the p < .05 level. 

**Result significant at the p < .001 level 

 

Table 2 also displays the ANOVA results for the steering bias measure. Participants 

generally cut corners (positive steering bias shown in Figure 4c). Corner-cutting increased 

 SD of Steering Error  Steering Bias 

 F df η
2 ε p  F df η

2 ε p 

Rd Width 

(RW) 

.87 2, 52 .32 .65 .381  214.05 2, 52 .92 .65 <.001 ** 

Speed (S) 18.26 1, 26 .41   <.001 **  62.23 1, 26 .71  <.001 ** 

Agea (A) 6.67 1, 26 .20  .016 *  6.67 1, 26 .20  .016 * 

Width (W) 

* A 

.51 2, 52 .12 .62 .518  .89 2, 52 .06 .65 .378 

S * A 1.81 1, 26 .07  .190  .69 1, 26 .03  .415 

S * W .32 2, 52 .03 .68 .379  50.61 2, 52 .70 .64 <.001 ** 

S * W * A .45 2, 52 .02 .68 .566  20.82 2, 52 .09 .64 .174 
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on the wider roads (F (2, 52) = 214.05, p < .001, η2 = .89, ε = .65) and when travelling at the 

faster speed (F (1, 26) = 62.23, p < .001, η2 = .71). A significant interaction between road 

width and locomotor speed (F (2, 52) = 50.61, p < .001, η2 = .66, ε = .64) showed that the 

higher speed had a greater influence on steering bias when the road was narrow (Figure 4c).  

The difference in steering bias between the slow and fast conditions on narrow roads was 

0.27 m, whereas on medium and wide roads the difference was 0.13 m and 0.07 m 

respectively. A significant between-subjects effect of age revealed that the older participants 

were less likely to cut corners than the young (F (1, 26) = 6.67, p < .05, η2 = .20).  The only 

exception to this pattern may have been when steering along the narrow road at a fast 

speed (mean bias for young and old: 0.47 m and 0.48 m respectively) which was when the 

old struggled to maintain their accuracy (as measured by RMS error) and were also highly 

variable (shown by SD of RMS error).  

Looking across the measures it seems that the fast/narrow condition was the most difficult to 

complete successfully (i.e. by staying on the road) and the old in particular struggled with 

this speed/width combination. It should also be noted that apart from the fast/narrow 

condition, the older adults performed at similar levels of RMS error to the young, whilst 

exhibiting less bias. The old are, therefore, not merely avoiding cutting corners because they 

value accuracy more highly. It seems that they adopt a more central position in order to stay 

on the road, which is relatively successful unless the conditions are particularly difficult. 

Overall the steering results show that the older participants were more variable in their 

steering and that corner-cutting was less prevalent. We calculated the length of time 

participants spent off the road (Figure 4d) and the younger group were consistently able to 

take „racing-line‟ trajectories that passed close to the inside road-edge with no increased risk 

of leaving the road2. We examined this further by plotting individual steering trials for one 

young (Figure 5b&c) and one old participant (Figure 5d&e). The young participant stayed 

closer to the middle of the road when travelling slowly on the thinner roads (blue & green 

lines on Figure 5b) than on the wide road (red lines on Figure 5b), but clearly corner-cutting 

increased for thinner roads when travelling more quickly (Figure 5c). The older participant 

showed greater variability in the trajectories taken, especially at the fast speed (Figure 5e), 

consistent with the measure of SD of steering error. But the older participant followed the 

shape of the road more closely; this is most evident on the wide road at slow speeds 

(compare the red lines in Figure 5b and 5d).  

                                                           
2
 The same statistical pattern was found for time spent off road as for the other steering measures: a main effect 

of path width, speed and an interaction between width and speed (respectively F (2, 52) = 63.87, p < .001, ε = 
.61; F (1, 26) = 64.58, p < .001; F (2, 52) = 45.82, p < .001, ε = .70). The only difference was that the main effect 
of age did not reach statistical significance (F (1, 26) = 3.52, p = .072). 
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Figure 4. Steering performance on the narrow (1.5m), medium (3.0m) and wide (4.5m) 

roads at the Slow (circles) and Fast (triangles) speeds for Young (filled symbols) and Old 

(open symbols) groups: (a) RMS Steering Error, where a larger value indicates that 

trajectories were further from the path midline. The horizontal dot/dashed line indicates the 

distance of the narrow road edges from the midline (0.75m) (b) Mean SD of RMS Steering 

Error, where a larger value indicates less consistent steering trajectories across trials. (c) 

Mean Steering Bias, where a larger positive value indicates trajectories passed closer to the 

inside of each bend.  (d) Total time (s) spent off the road in each condition averaged across 

Young or Old participants. Bars = Standard Error of the Mean.  
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Figure 5. (a) Sinusoidal roads of three possible widths: narrow (1.5 m, blue), medium (3 m, 

green) and wide (4.5 m, red). The grey box shows the section of road that is expanded in the 

remaining panels. For clarity only the widest (red) road edges are shown in panel’s b-e. (b) 

Individual steering trajectories for a representative young participant on narrow (blue), 

medium (green) or wide (red) roads at slow speeds or (c) fast speeds. This young participant 

scored close to the mean group steering bias (mean steering bias = 0.47 m; group mean = 

0.46 m). (d) Individual steering trajectories for a representative old participant on narrow, 

medium or wide roads at slow speeds or (e) fast speeds. This old participant scored close to 

the mean group steering bias (mean steering bias = 0.38 m; group mean = 0.40 m). 
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General Discussion 

These studies provide new insight into the effects of aging on motor control. Previous 

research has identified an age-related decline in movement speed, accuracy and 

consistency (e.g. Desrosiers et al., 1995; Verkerk, Schouten, & Oosterhuis, 1990 Morgan et 

al., 1994; Welsh, Higgins & Elliot, 2007). Our findings support past findings, but also indicate 

that older adults adopt a different movement strategy when faced with a motor task that 

requires them to move steadily under temporal and/or spatial task constraints. We 

demonstrated this first by analysing speed and accuracy in a manual motor task (i.e. tracing 

paths) and then analysing accuracy, precision and bias in a „driving‟ scenario (i.e. steering 

along virtual roads). Using these tasks we established a tendency for older adults to remain 

closer to the middle of the path/road and slow their movements down when possible (relative 

to their younger counterparts) in order to avoid leaving the path. This suggests that older 

adults are sensitive to their level of motor skill and are capable of adjusting their movement 

strategy in order to meet task demands.  

In our first experiment we measured movement time, error and path length in a task that 

required participants to trace paths of varied thickness at their own preferred speed, or under 

a temporal constraint (i.e. a controlled slow or fast pace). When speed was controlled there 

was little difference in MT between the path thickness conditions, but when participants 

traced at their preferred speed, thicker paths yielded shorter MTs. The fact that there was no 

interaction between age and path thickness suggests that the effect of path thickness on MT 

was not dependent on age. Hence the MTs of the old and young decreased by a similar 

amount as the path got thicker. On the other hand, the interaction between age and speed 

condition suggests that when tracing at their preferred speed, the older participants traced 

more slowly than the young. In other words, when placed under a temporal constraint the old 

and young traced at a similar speed, but when pacing themselves, the older participants 

preferred to reduce their speed. This is understandable since the older adults were worse at 

tracing the narrow path under constrained slow speeds, indicating deficits in visual-motor 

control. Using the error and path length measures, we were able to explore further the 

effects of path thickness and speed on corner-cutting behaviour. Corner-cutting increased as 

paths got thicker, which reflects the greater margin for error either side of the pen when 

tracing along a wider path. We also observed age differences in corner-cutting behaviour 

whereby older participants were less likely to cut-the-corner as path thickness increased 

(Figure 2b). It seems that the older participants were sensitive to their limitations and 

therefore preferred to slow down where possible and keep the pen closer to the middle of 

the path in order to compensate for motor variability.  
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In the second experiment we aimed to establish whether similar age differences could be 

identified within an alternative visual-motor scenario. Previous comparisons of hand-writing 

and walking movements demonstrate that general patterns of behaviour can be observed 

during both actions (Hicheur, Vielledent, Richardson, Flash & Berthoz, 2005). We used a 

comparable set of conditions to our tracing task in order to generate virtual roads of varied 

width, with slow or fast locomotor speeds. The patterns of behaviour did seem to generalise 

from tracing to steering, with similar effects of path width and locomotor speed on spatial 

strategy. Steering at faster speeds along wider paths yielded a greater degree of corner-

cutting (as shown by steering bias and RMS error). We also observed age differences in 

steering, with older participants exhibiting more variable trajectories for all road widths and 

speeds. These findings may help to explain anecdotal reports that older drivers have a 

spatial bias towards the road centre. A middle-of-the-road strategy reduces the risk of 

crossing a road edge (just as keeping the nib of the pen close to the middle of the path can 

prevent error in tracing tasks). The compensatory steering strategy adopted by our older 

participants therefore seems appropriate given the greater variability observed in some 

conditions. This result also complements the findings of Trommershauser et al (2005), which 

suggests that the human nervous system is able to optimise actions by minimising the costs 

based on the variability present in the system.   

Real-life Compensation 

The finding that older people „play it safe‟ compared to their younger counterparts is in line 

with research that suggests older drivers are more risk adverse in real-world situations. 

When comparing the nature of road accidents associated with old and young drivers, 

qualitative differences become apparent which imply heightened risk aversion within the 

older population (Anstey, Wood, Lord & Walker, 2005; McGwin & Brown, 1999). In McGwin 

and Brown‟s (1999) report, accidents involving young drivers were frequently a result of risk-

taking behaviours such as drunk driving, whereas older drivers were more likely to be 

involved in accidents associated with fatigue, early/late night driving, travelling at high 

speeds or bad weather. Furthermore, older drivers were found to be over-represented in 

accidents characterised by difficulties with the perceptual-motor aspects of driving (e.g. 

failure to yield, heed stop signs/signals, attend to objects/people/vehicles, pull out at the 

correct time at intersections, turn or change lanes appropriately) suggesting that their greater 

incident rate is more to do with a decrease in skill as opposed to risk-taking behaviours 

and/or decisions. An older driver‟s reluctance to drive in these potentially hazardous 

situations could reflect an awareness of the threat that age-related motor decline poses to 

driver safety. Accordingly, the research implies that older drivers might implement a 

compensatory strategy of „avoidance‟ whereby they steer clear of risky driving situations 
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(e.g. rush hour, night-time driving), or a strategy of „adjustment‟ whereby they modify their 

driving style to account for their difficulties (e.g. by reducing speed; Hakamies-Blomqvist, 

Mynttinen, Backman & Mikkonen, 1999; Horberry, Hartley, & Gobetti et al., 2004; Planek & 

Overend, 1973). Our findings reflect the latter method of compensation – a tendency to 

adjust steering movements in order to avoid error in light of heightened motor variability. 

Hence, older participants adjusted their position on the road to compensate for a decrease in 

their ability to maintain a consistent path. In real-life situations, older drivers also tend to 

compensate by slowing down (Garber & Gadirau, 1988). In our experiment, we kept speed 

constant (within trials) so that we could directly compare steering behaviour across age-

groups, but it is likely that the spatial and temporal compensations interact within real world 

driving tasks. For instance, an older driver might slow down on a narrow road to decrease 

their path variability and/or allow them to avoid the need to cut corners. Nevertheless, our 

data show clearly that when these strategies are prevented because of external constraints 

(e.g. being in a stream of fast moving traffic) then the age-related deficits in skill become 

apparent. This finding has implications for the assessment of the older driver.  

The costs of compensation 

Compensatory strategies are not without cost. In the real world, a reduced consistency in 

road position makes it more difficult for the driver behind to safely complete manoeuvres that 

rely on the stability of the leading vehicle‟s road position (e.g. overtaking and merging). 

Likewise, driving too slowly increases the variance in the speed of vehicles travelling 

together which increases the risk of accidents (Garber & Gadirau 1988). Slow driving can 

frustrate other drivers leading to risky overtaking manoeuvres (McGwin & Brown 1999). It 

seems, therefore, that older drivers‟ compensatory strategies may not always be sufficient to 

ensure road safety. It is also important to note that our use of the word „strategy‟ (both in 

reference to the first and second experiment) does not imply that the compensatory 

behaviour is a conscious decision. There may indeed be a tendency for older adults to 

consciously and strategically compensate for their difficulties. Nevertheless, more 

fundamental adaptations that are not cognitively penetrable might also result from the 

increased variability of signals within the aged nervous system (Desrosiers et al., 1995; 

Krampe, 2002; Smith et al., 1999; Verkerk, Schouten & Oosterhuis, 1990). The human 

nervous system appears to be sensitive to noise in the informational variables used to carry 

out skilled tasks such as reaching (Tresilian, Mon-Williams & Kelly, 1999), grasping (Ernst & 

Banks, 2002) and steering (Wilkie & Wann, 2002) with less reliable information being down-

weighted. Thus, the bias towards adopting a particular spatial position might reflect low-level 

perceptual-motor adaptations to noise within the system. In older adults such noise is likely 

to be introduced both through degraded visual inputs as well as impaired motor outputs. In 
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our experiments all participants reported normal (or corrected-to-normal) vision. However, 

without conducting extensive eye-examinations, we are unable to identify whether 

decrements in individual motor performance were caused primarily by visual impairments. 

The relatively homogenous behaviour of the older adults suggests that noise in the system 

was not solely due to visual problems. In fact, because the older adults experienced a 

greater degree of motion sickness in Experiment 2, it might be that they were particularly 

reliant on visual information. Following the curvature of the road requires larger changes in 

steering trajectory and results in a greater degree of rotation in the optic flow field. The 

steering strategy adopted by older adults (i.e. to follow the shape of the road) may therefore 

have led to elevated reports of motion sickness. Nevertheless, because a similar pattern of 

behaviour was observed in Experiment 1, where no motion sickness issues were reported, 

we do not feel that the age differences we report can be explained by this phenomenon.   

Conclusions 

The findings of the present experiments have two primary implications for future research. 

First, our use of a manual tracing task to measure spatial and temporal differences between 

old and young participants revealed a tendency for older people to slow their movements 

down and adjust their spatial strategy to avoid error (i.e. reduced corner-cutting on the wider 

paths relative to the young). The possibility that older adults are not only sensitive to their 

difficulties, but are also able to adjust their movement strategy accordingly poses 

implications for our approach to motor rehabilitation in the future. Essentially, it is important 

to establish how older people learn (whether consciously, or unconsciously) to adapt to their 

new diminished level of skill before prompting or teaching new methods in a rehabilitative 

setting. Second, the driving experiment revealed for the first time age differences in steering 

bias and variability, which may be informative in terms of maintaining road safety. 

Specifically, it is important to establish what strategies are adopted by older drivers in order 

to ensure their safety (together with the safety of other road users). The extent to which 

compensatory strategies preserve road safety is unclear, but the high crash rate for older 

drivers suggests that strategic compensations are not completely successful. Moreover, 

whilst there is evidence that compensatory strategies might help prevent accidents (De 

Raedt & Pondjaert-Kristoffersen, 2000) compensation is not always possible without 

incurring a cost. Hakamies-Blomqvist (1994) argued that avoiding potentially hazardous 

scenarios leaves a driver less able to cope when presented with an unavoidable situation. 

Likewise, compensating through speed reduction has a cost since it makes merging with 

motorway traffic difficult (de Waard, Dijksterhuis, & Brookhuis,  2009) and the further a 

vehicle‟s speed deviates from the average on a motorway, the greater the risk of accident 
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(Garber & Gadirau, 1988). In our study we found that the older group found it particularly 

difficult to steer down the narrow road at fast speeds and this was the only condition in which 

they exhibited similar amounts of corner-cutting to the young. Subsequently, it can be seen 

that the system will fail to compensate when put under pressure, placing the driver and other 

road users in danger. 
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