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ABSTRACT 

 
The work presented attempts to construct a thermal imaging method with potential for numerically 
detecting the deposition of solidifying industrial process liquors evolving through time. In this simplified 
case it is assumed that the physical problem can be described by the two-dimensional time dependent 
heat equation. The problem is then posed mathematically, as an inverse geometric problem, which is 
solved numerically using the meshless Method of Fundamental Solutions (MFS). This allows the 
reconstruction of an internal boundary that describes the shape of the solidifying deposit as it develops 
through time. The main advantage of this method is that only non-invasive data is required, such as 
wall temperatures and heat fluxes. Numerical results presented correspond to a possible formation 
occurring due to an industrial pipe leakage. 
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1. INTRODUCTION 
 
The ability to non-invasively monitor and detect the development of solidifying process liquor is vital 
within many industrial applications. Undetected build up of such liquors, usually brought about by 
equipment malfunction or containment vessel failures, can potentially lead to hazardous conditions. 
With sufficient reliable monitoring procedures these situations can be minimised and detected quickly. 
This holds true for a variety of industries and in particular for the nuclear industry where knowledge of 
the size, shape and morphology of fissile material is critical, as undesirable conditions may potentially 
pose a large safety risk. The radioactive nature of these materials makes it challenging to use manual 
inspection as human exposure should be kept to a minimum or even non-existent when dealing with 
highly active liquors. Furthermore, most electronic inspection equipment cannot operate reliably within 
close proximity for extended periods of time.  
 
The work presented within the paper attempts to address the problems outlined by constructing and 
evaluating non-invasive thermal imaging method. The fundamental principle behind the approach, is 
that a meshless numerical method is implemented, namely the Method of Fundamental Solutions 
(MFS), in order to solve the two-dimensional time dependent heat equation. Formulating this 
mathematically as an inverse geometric problem allows the reconstruction of an internal time 
dependent boundary which allows the non-invasive mapping of developing internal structures through 
time. 
 
A range of experiments were conducted by the National Nuclear Laboratories (NNL), using a simulant 
solution of Sodium Nitrate in order to further understand dripping crystalline materials under a range of 
environmental conditions. An example of the type of formations that could form is shown in Figure 1. In 
order to test the numerical method, attempts are made to use the approach to locate standardised 
geometric inclusions based on simplified morphologies from external boundary information 
(temperatures and heat flux).  



 
Figure 1: Images of typical formations for an industrial pipe leak. 

 
 

2. MATHEMATICAL MODEL AND NUMERICAL SOLUTION 
 

The mathematical formulation of the inverse geometric problem under investigation requires finding 

the temperature u  and the moving internal defect )(tD  compactly contained in a spatial planar 

bounded domain Ω  such that Ω \ )(tD  is connected satisfying the two-dimensional time-

dependent heat equation  
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subject to the outer wall temperature (2), the inner inclusion boundary temperature (3), the initial 
(4) conditions  
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and the additional heat flux measurement 
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where n is the outward normal to the boundary. For a unique solution we assume that the initial 
domain D(0) is known. 
 
By using the Method of Fundamental Solutions (MFS) we seek an approximate solution as a linear 
combination of non-singular fundamental solutions, see Johansson et al. (2011), 
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),(\ tDΩ mτ  are times located in the interval ,),( TT−  and F  is the fundamental solution for the 

two-dimensional heat equation given by 
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As the boundary and initial conditions (2)-(5) are known we can fit the approximated data of the 
MFS to these values using a nonlinear least-squares formulation to find the unknown values the 

unknown vector of coefficients c and the star-shaped defect )(tD  which is assumed to be 



parameterised by an unknown vector of radii r. This recasts into the minimization of the following 
least-squares functional: 
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A minimisation process is then performed on the objective function (8) using the MATLAB routine 
‘FMINCON’ in order to fit the MFS approximation to known data. 
 

The physical set up of the above method is shown in Figure 2. Here we take a circular domain Ω  for 
simplicity. In the MFS, N sensors (collocation points) are placed uniformly across the outer wall and 
readings are taken for M intervals in time. More details of the MFS implementation can be found in 
Dawson et al. (2011). 

 

 
Figure 2. Physical set-up for the method described in section 2. 

 
 

3. NUMERICAL RESULTS 
 

Initially, the method has been tested by the authors for identifying simple geometries successfully (e.g. 

circular inclusions). Here we attempt to locate a peanut star-shaped boundary )(tD , parameterised by, 
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We take T=1 and the boundary and initial conditions (2)-(4) given by 
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and we generate the heat flux data (5) numerically by solving first, using the MFS, the direct problem 
given by equations (1)-(4) when the inclusion D(t) is known and given by equation (9). The temperature 
and heat flux values are not based on experimental values in this example, since it is the purpose of 
this paper to evaluate the proposed method, therefore taking cases with known solutions allows a direct 
comparison to be made with the calculated results. The geometry of the external domain is based 
around a circle of radius one metre and the time period taken arbitrarily as one hour. 



 
 
 
 
 
Here the temperature and heat flux values are taken across N=18 uniform points on the domain 
boundary (wall) at M=18 equally spaced points in time, these have found to provide an adequate 
balance between computational time, accuracy and stability. The initial guess for the rigid inclusion is 
taken as a circle of radius 0.7. We also take c=0 as the initial guess for the vector of MFS coefficients. 
 
Figures 3 displays the RMS and the objective function (8), where the RMS takes the form, 
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where 
m

jr are the discrete radial values for the radius ),,( tr θ which parameterises the unknown 

inclusion D(t) and 
*

jr  are the discrete values of the exact inclusion (9). 

 

 

 
 

Figure 3. Objective Function (8) and RMS (10) for various iterations. 

 



The numerical solution at the final time, t=T=1, and the full space-time plot are shown in Figure 4. From 
this figure it can be seen that in the case of this relatively complex geometry the MFS provides a good 
approximation of the unknown inclusion, D(t). In this example the unknown shape does not move in 
time, however this is not know a priori so it provides a suitably robust case in order to test the method.  
More work has been conducted to investigate the retrieval of inclusions where geometries change over 
time. These have also been successfully located using the proposed approach. 
 

 

 
 

Figure 4. Plot of the final solution at t=T=1 and space-time plot of the inclusion located using the approach. 

 
 

 

 
4. CONCLUSIONS 

 
This paper has demonstrated the use of the proposed method for one example. The method was 
shown to be reasonably accurate for a fairly complex stationary shape. Results will be shown at the 
conference for reconstructing time-dependent shapes with noisy data. 
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