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Integrating an Automated Theorem Prover
into Agda

Simon Foster and Georg Struth

Department of Computer Science, University of Sheffield, UK
{s.foster,g.struth}@dcs.shef.ac.uk

Abstract. Agda is a dependently typed functional programming lan-
guage and a proof assistant in which developing programs and proving
their correctness is one activity. We show how this process can be en-
hanced by integrating external automated theorem provers, provide a
prototypical integration of the equational theorem prover Waldmeister,
and give examples of how this proof automation works in practice.

1 Introduction

The ideal that programs and their correctness proofs should be developed hand-
in-hand has influenced decades of research on formal methods. Specification
languages and formalisms such as Hoare logics, dynamics logics and temporal
logics have been developed for analysing programs, protocols, and other com-
puting systems. They have been integrated into tools such as theorem provers,
SMT/SAT solvers and model checkers and successfully applied in the industry.
Most of these formalisms do not analyse programs directly on the code, but use
external tools and techniques with their own notations and semantics. This usu-
ally leaves a formalisation gap and the question remains whether the underlying
program semantics has been faithfully captured.

But there are, in fact, programming languages in which the development of
a program and its correctness proof can truly be carried out as one and the
same activity within the language itself. An example are functional program-
ming languages such as Agda [7] or Epigram [15], which are based on dependent
constructive type theory. Here, programs are obtained directly from type-level
specifications and proofs via the Curry-Howard isomorphism. These languages
are therefore, in ingenious ways, programming languages and interactive theo-
rem provers. Program development can be based on the standard methods for
functional languages, but the need of formal proof adds an additional layer of
complexity. It requires substantial mathematical skill and user interaction even
for trivial tasks. Increasing proof automation is therefore of crucial importance.

Interactive theorem provers such as Isabelle [17] are showing a way forward.
Isabelle is currently being transformed into a versatile proof environment by
integrating external automated theorem proving (ATP) systems, SMT solvers,
decision procedures and counterexample generators [5, 6,4]. Proof tasks can be
delegated to these tools, and the proofs they provide are internally reconstructed



to increase trustworthiness. But all this proof technology is based on classi-
cal logic. This has two main consequences. First, on the programming side the
proofs-as-programs approach is not available in Isabelle, hence programs cannot
be extracted from Isabelle proofs. Second, because of the absence of the law of
excluded middle in constructive logic, proofs from ATP systems and SMT solvers
are not generally valid in dependently typed languages. An additional complica-
tion is that proof reconstruction in dependently typed languages must be part
of type-checking. This makes an integration certainly not straightforward, but
at least not impossible.

Inspired by Isabelle we provide the first ATP integration into Agda. To keep
it simple we restrict ourselves to pure equational reasoning, where the rule of
excluded middle plays no role and the distinction between classical and construc-
tive proofs vanishes. We integrate Waldmeister [10], the fastest equational ATP
system in the world!. Waldmeister also provides detailed proofs and supports
simple sorts/types. Our main contributions are as follows.

e We implement the basic data-types for representing equational reasoning
within Agda. Since Agda needs to manipulate these objects during the type
checking process, a reflection layer is needed for the implementation.

e Since Agda provides no means for executing external programs before com-
pile time, the reflection-layer theory data-types are complemented by a
Haskell module which interfaces with Waldmeister.

e We implement equational logic at Agda’s reflection layer together with func-
tions that parse Waldmeister proofs into reflection layer proof terms. We
verify this logic within Agda and link it with the level of Agda proofs. This
allows us to reconstruct Waldmeister proofs step-by-step within Agda.

e Mapping Agda types into Waldmeister’s simple sort system requires abstrac-
tion. Invalid proofs are nevertheless caught during proof reconstruction.

e We provide a series of small examples from algebra and functional program-
ming that show the integration at work.

While part of the integration is specific to Waldmeister, most of the concepts
implemented are generic enough to serve as templates for integrating other, more
expressive ATP systems. Our integration can also be used as a prototype for
further optimisation, for instance, by providing more efficient data structures
for terms, equations and proofs, and by improving the running time of proof
reconstruction. Such issues are further discussed in the final section of this paper.

Formal program development can certainly be split into creative and routine
tasks. Our integration aims at empowering programmers to perform proofs at
the level of detail they desire, thus making program development cleaner, faster
and less error-prone.

This paper aims to explain the main ideas and features of our approach to
a formal methods audience. Its more idiosyncratic aspects, which are mainly of
interest for Agda developers, are contained in a technical report [8]; the complete
code for our implementation can be found at our website?.

! http://www.cs.miami.edu/"tptp/CASC/, 15/02/2011
2 http://simon-foster.staff.shef.ac.uk/agdaatp



2 Agda

Agda [7] is a dependently typed programming language and proof-assistant. It is
strongly inspired by Haskell and offers a similar syntax. In this section we briefly
introduce Agda as a programming language, whereas the next section focusses on
theorem proving aspects. Additional information about Agda, including libraries
and tutorials, can be found at the Agda Wiki®.

The data-types featured in this section come from Agda’s standard library.
The following inductive data-type declaration introduces vectors.

data Vec (A : Set) : N — Set where
(] : Vec A zero
2V {n}(x: A)(xs : Vec An) — Vec A (sucn)

In contrast to most other functional programming languages, Agda supports
dependent data-types. The data-type of vectors is defined depending on their
length n. In Agda syntax the parameters before the colon are constants, whose
values cannot be changed by the constructors. Parameters after the colon are
indices; their definition depends on the particular constructor. In this example,
the element type A of a vector is fixed, whereas the size varies. Vectors have
two constructors: The empty vector [| has type Vec A zero and zero length. The
operation :: (cons) takes, for each n, an element x : A and a vector xs : Vec A n
of length n, and yields a vector Vec A (suc n) of length n 4+ 1. Instances of this
data-type need not explicitly supply the parameter n, such hidden parameters
are indicated by braces. One can now define functions as usual.

head : V{n} {A : Set} - VecA(1+n)—A
head (x :: xs) = x

Agda only accepts total functions, but head should only be defined when
n # 0. The dependent type declaration captures this constraint. It thus allows a
fine control of data validity in specifications. Predicates can also be data-types:

data < : N — N — Set where
z<n : V{n} - zero < n
s<s : V{mn}(m<n : m < n) > sucm < sucn

The expressions z<n and s<s are names. Agda is white-space sensitive, so
they are parsed as one token, whereas zero < n is parsed as three tokens. The el-
ements of this data-type are inductive proofs of <. For instance, s<s (s<s z<n)
is a proof of 2 < 3. Hence, Agda data-types capture proofs as well as objects
such as numbers or vectors. Similarly, one can define n < m as suc n < m.

Agda provides two definitions of equality. Propositional equality, =, holds
when two values and their types have the same normal forms. Heterogeneous
equality, =, only requires equality of values. Two vectors xs : Vec A (m + n) and
ys : Vec A (n + m) have different types in Agda, hence xs = ys is not well typed.
But xs 2 ys would hold if xs and ys have same normal form.

3 http://wiki.portal.chalmers.se/agda/pmwiki .php



As a constructively typed language, Agda uses the Curry-Howard Isomor-
phism to extract programs from proofs. The above data-types provide examples
of how proofs yield programs for their inhabitants. A central tool for program
development by proof is the meta-variable; a “hole” in a program which can be
instantiated to an executable program by step-wise refinement.

greater : V(n : N) >3 (A (m : N) = n<m)
greatern = 7

The type of greater specifies that for every natural number n there exists
a natural number m greater than n. In the function body, ? indicates a meta-
variable for which a program must be constructed through proof. More precisely,
Agda requires a natural number m constructed in terms of n and a proof that
n < m. Agda provides a variety of tools for proof support. If the user invokes
the case-split command, two proof obligations are generated from the inductive
definition of natural numbers:

greater zero = {} 0
greater (sucn) = {}1

Each contains a meta-variable indicated by the braces and number. The first
one requires a value of type 3(A m — 0 < m). The second one requires a value
of type 3(A m — suc n < m) for the parameter suc n, assuming I(A m — n < m)
for the parameter n. In the first case, meta-variable refinement further splits the
goal into two meta-variables.

greaterzero = {}0,{}1

This is now a pair consisting of a natural number m and a proof that this witness
satisfies zero < m. The following code displays a value and proof:

greater zero = 1,s<s z<n

In this case, m = 1 and s<s z<n are the names of the inference rules needed for
the proof. By the first rule, zero < zero, by the second rule, therefore, suc zero <
suc zero, whence zero < suc zero by the definition of <.

This proof style lends itself naturally to incremental program construction,
where writing a program and proving its correctness are one activity. To further
automate this, Agda provides the proof-search tool Agsy [14], which can some-
times automatically construct programs and proofs. The remaining proof goal
in the example above can be solved automatically by calling Agsy.

greater (suc n) = (suc (proj; (greater n)),s<s (projz (greater n))

The functions proj; and proj, project on the value and the proof of the proof goal.
However, Agsy struggles with non-trivial proof goals. Increasing the degree of
automation is therefore highly desirable to free programmers from trivial proof
and construction tasks.



3 Integration of Automated Theorem Proving

ATP systems have already significantly increased proof automation in interactive
theorem provers. Isabelle [17], for instance, can use a tactic called Sledgehammer
to call external ATP systems. In contrast to interactive provers, which consist of a
relatively small inference engine, ATP systems are complex tools that depend on
a large number of heuristics. They are less trustworthy than interactive provers.
Consequently, Isabelle internally reconstructs all ATP proofs with the internally
verified ATP system Metis [11]. Since Metis is less efficient than the external
ATP systems, a relevance filter minimises the number of hypotheses given to
it. Metis then performs proof search to derive the goal from the hypotheses. In
practice, however, this macro-step proof reconstruction sometimes fails.

Evidently, Agda could benefit from a similar approach, but all state of the art
ATP systems are designed for classical predicate logic. The resolution principle,
which underlies most of these systems, is directly based on the law of excluded
middle. Since constructive proofs are needed for Agda, we have based a first inte-
gration on Waldmeister [10], an ATP system for pure equational logic, where the
difference between classical and constructive proof disappears. Equational logic
needs only rules for reflexivity, symmetry, transitivity, congruence, substitution
and a number of structural rules that are all present in constructive logic.

Our integration can serve as a basis for integrating full first-order ATP sys-
tems, which could still be used on subclasses of constructive formulae, such as
Harrop formulae [9] where classical and constructive proofs coincide.

Goals Proofs

Agda
layer

reflection
layer

ATP
layer

Fig. 1. Overview of automated theorem prover integration in Agda.

A Waldmeister integration into Agda is still not straightforward, for two
main reasons. Firstly, the built-in Agda normaliser changes hypotheses and proof
goals, but these are hidden within the proof state and cannot be accessed from
within Agda. Secondly, for both goal extraction and proof reconstruction, Agda
syntax must explicitly be manipulated as part of the type-checking process. We
see two main approaches to integrating an ATP system into Agda. The internal
approach performs most of the goal extraction and proof reconstruction within
Agda itself. Reflection, which we explain below, provides a way of mediating
Agda proofs with ATP proofs. In the external approach, proof proceeds by ac-



cessing the Agda proof state with an external tool, for instance Haskell, passing
this state to the ATP system, and writing an ATP proof back into Agda.

Each approach offers advantages and disadvantages. In this paper, we use
the former because it is conceptually cleaner and all the steps of proof recon-
struction are internally verified in Agda itself. An additional design decision is
whether to use Metis style macro-step proof reconstruction, or micro-step re-
construction of individual proof steps. Again, we take the latter approach. The
former would require an internally verified equational prover, and we expect
Agda’s internal proof tools to be efficient enough to handle single proof steps.
Fortunately, Waldmeister output is sufficiently detailed for this purpose.

Our internal approach uses the mechanism of reflection which is similar to
a quoting mechanism in programming languages, lifting syntax to an internal
meta-level, protecting it from evaluation and allowing manipulation within Agda.
Therefore all Agda data-types needed in proofs are represented at Agda’s reflec-
tion level before and after passing them to Waldmeister. Our approach therefore
uses the three layers illustrated in Figure 1: The Agda layer contains the initial
proof goal and realises the final proof. The reflection layer represents the Agda
goal and reconstructed ATP proof output. The ATP layer runs the serialised
proof goal and outputs an ATP proof.

Agda’s quoting mechanism, however is still experimental. Currently we can
reflect and realise a large class of equational problem specifications and proofs.
The serialisation of the reflected proof input into an ATP input is obtained by a
Haskell module. It requires abstraction because Agda’s type system is much more
powerful than the simple sorts supported by Waldmeister. In general, types can
often be encoded as predicates in ATP systems. State of the art ATP systems can
prove quite complex mathematical theorems but they often fail. The integration
must be able to cope with this situation. The same holds for proof reconstruction.
Ultimately, if Agda succeeds in realising a proof of an initial proof goal, it is
guaranteed that this proof is correct in Agda.

4 Proof Cycle Example

This section provides an overview of our Waldmeister integration. It shows how
a simple inductive proof is passed from the Agda layer through the reflection
layer to Waldmeister, and how the proof obtained by Waldmeister is passed back
and reconstructed within Agda.

Consider the following Agda proof goal:

assoc : V(xyz: N)= (x+y)+z=x+ (y+ 2)
We first perform a case-split on the first argument, yielding two meta-variables.

assoczeroyz = {}0
assoc (sucn)yz = {}1

Waldmeister can solve each individual goal. Within Agda, they must first be
lifted to a reflected signature ¥-Nat for natural numbers and their operations.



Nat : HypVec -- Proof environment for natural numbers

Nat = HyVec X-Nat axioms -- Construct it from signature and axioms
where
+-zero = T'1,0 ‘+ a =~ a -- Quotes indicate reflection layer
+-suc = I'2,'sucax ‘+ B~ ‘suc (o ‘+ f)
axioms = (+4-zero :: 4-suc :: [])

assoc-zero : Nat,[],I2F[]= (‘0 ‘+a) 4+ 8= ‘0 ‘4 (a ‘+ B)
assoc-zero = ?
assoc-suc : Nat,[],I3F (o ‘“+8) ‘+v=a 4+ (B +7) ][]
= (‘suca ‘4 8) ‘+y= ‘suca ‘+ (8 ‘+7)
assoc-suc = ?

The reflection layer types of assoc-zero and assoc-suc represent the proof goals
including environments for axioms, lemmas and variables used. The question
marks indicate meta-variables which need to be instantiated with a proof term.
This reflection layer data-type provides sufficient information for generating a
Waldmeister input file for the first proof obligation:

NAME agdaProof
MODE PROOF
SORTS Nat
SIGNATURE suc: Nat -> Nat
plus: Nat Nat -> Nat
zero,a,b: -> Nat
ORDERING LPO a > b > zero > suc > plus
VARIABLES x,y: Nat
EQUATIONS plus(zero,x) = x
plus(suc(x),y) = suc(plus(x,y))
CONCLUSION plus(plus(zero,a),b) = plus(zero,plus(a,b))

Waldmeister instantly returns with the following proof:

Axiom 1: plus(zero,xl) = x1
Theorem 1: plus(plus(zero,a),b) = plus(zero,plus(a,b))
Proof:
Theorem 1: plus(plus(zero,a),b) = plus(zero,plus(a,b))
plus(plus(zero,a),b)
by Axiom 1 LR at 1 with {x1 <- a}
plus(a,b)
by Axiom 1 RL at e with {x1 <- plus(a,b)}
plus(zero,plus(a,b))

1]

Non-trivial proofs can easily have hundreds of steps. Waldmeister’s output con-
tains sufficient information to reconstruct this proof step-by-step at the reflection
layer and instantiate the first meta-variable:

fror-nJustz reconstruct ((inj1 (# 0), true, eq-step (0 ::' []") (con (# 3) ([] ®)
=5 []1°):! (inji (# 0), false, eq-step ([] ') (con (# 2) (con (# 3)
([1°) =% con (#4) (11°) == [19)=[1°) =" (1)



The syntax in this proof need not concern us in this paper; it essentially expresses
the equational steps above. The function reconstruct uses the reflection layer
inference rules for equational logic, which we have internally proved to be sound.
To realise this proof in Agda it needs to be translated back to N.

N-[X] : [Signature] 3-Nat -- code omitted
N-Nat : [HypVec] Nat N-[X] -- code omitted

These functions link the reflection layer signature to concrete Agda functions and
ground the axioms. The first function instantiates the reflection layer signature,
the second one instantiates the hypotheses. The reflection layer proof term is
instantiated to a valid Agda proof corresponding to the first meta-variable {}0:

assoc zeroy z = 2-to-= (Fa-to-= _[| - {[X] = add-F-vars-[X] {T" = I'2}
N-TermModel (y, z, tt) } N-Nat assoc-zero [] f (A x — z))

The proof cycle for the second meta-variable, {}1, is similar.

5 The Reflection Layer

Agda data-types and proofs must be lifted to the reflection layer to enable their
manipulation within Agda. This section shows how data-types, theories and
proofs that enable ATP proofs can be implemented at the reflection layer. First
we describe the data-types and theories.

[ Signature] = [Equation] <#—— [HypVec]

l L

Operation <«—— Signature <e——— Expression <«——— Equation <—— HypVec
\ VarVec /

Fig. 2. Dependency graph of reflective components

Figure 2 shows the data-types required. They provide the reflection layer
syntax for the terms and equations used in the proofs and the interpretations of
these objects within Agda. We will now describe each of them. The basis of our
reflection layer syntax are operations and signatures. Operations can either be
Agda functions or data-type constructors; we need not distinguish them.

First we define operations, signatures and variable sets at the reflection layer.

record Operation (sorts : FinSet) : Set where

field
arity N
args : Vec (El sorts) arity

output : El sorts
record Signature : Set where
field
sorts, ops : FinSet
operations : Vec (Operation sorts) ops



record VarVec (X : Signature) : Set where
open Signature X
field
vars : FinSet
vvec : Vec (El sorts) vars

FinSet is a finite set and El indicates an element of a finite set. An n-ary
operation is represented as a record parametrised over the set of sorts in its sig-
nature. It consists of its arity, its input sorts args and its output sort. A signature
is a finite set of sorts together with a vector of operations. We also provide a
data-type for variables. Their sorts are determined by the signature under which
they appear. Therefore, variable vectors are parametrised by signatures. Next
we define terms.

mutual
data Expr X (I" : VarVec X) : VarSet I — Sort ¥ — Set where
con : (i : El (ops X)) {v : VarSetI'} (es : ExprVecI' v (opArgs X i))
— Expr £ T" v (opOutput X i)
var : (x : VarT') — Expr ¥ I" { x } (varSort I" x)

data ExprVec -- code omitted

The expression data-type has four parameters: (i) the signature X, (ii) the vari-
able context I" which lists all variables available for building a term, (iii) the
subset of variables v drawn from the context which the expressions contains,
represented by shorthand VarSet I' and (iv) the sort s of the expression. Con-
structor con takes the operation index i, and an expression vector parametrised
over its argument sorts; it yields an expression with the output sort of i. Con-
structor var takes a variable index and yields an expression with a singleton free
variable {x} of the correct sort. Expressions and expression vectors are mutually
inductive. It is now possible to define equations and hypotheses sets.

record Equation (X : Signature) : Set where
constructor =~
field
{T'} : VarVecX
{sort} : Sort &
{viva} : VarSet’
lhs : Expr X T vy sort
rhs : Expr X T v2 sort

record HypVec : Set where
constructor HyVec

field
x : Signature
{hyps} : FinSet

hypotheses : Vec (Equation X) hyps

We now move to the upper level of Figure 2, where corresponding data-types
are implemented. The complete code can, again, be found at our website.



record [Signature] (X : Signature) : Set; where -- code omitted
sem :V {Z} ([X] : [Signature] &) {T': VarVec £} {s} {v} ([p] : [Subst] " [Z])
(e : Expr X T'v's) — [Signature].types [X] s -- code omitted

record [Equation] -- code omitted
record [HypVec] -- code omitted

[Signature], [Equation] and [HypVec] map the reflection layer objects indicated
into the Agda layer, and provide soundness proofs. Function sem realises reflec-
tion layer terms, using an Agda layer signature [X] and substitution [p].

This implementation enables us to represent all elements of Waldmeister
input files in a well-typed way at the reflection layer, and to realise these elements
within Agda. Since Agda cannot run external program before compile-time, we
have written a Haskell module which interfaces with Waldmeister. It provides a
function which serialises a Waldmeister input file, as shown in Section 4, executes
the prover and parses the resulting Waldmeister proof output back into Agda.

To reconstruct Waldmeister proofs within Agda, we must provide data-types
for equational proofs at the reflection layer. First, the parsed proof output pro-
vided by Waldmeister must be translated into an inhabitant of a proof data-type.
Second, it must be proved that all inhabitants of this data-type are correct with
respect to heterogeneous equality.

At the core of proof reconstruction is an implementation of equational rea-
soning, as performed by Waldmeister. We need some notation and concepts from
term rewriting (cf. [19]). A substitution is a map p from variables to terms, which
extends to a function on terms. A term ¢ matches a term s (or s subsumes t) if
sp = t for some substitution p. We write t C s if s subsumes ¢. More specifically,
to denote the ternary relation sp =t between s, p and ¢, we write t &, s.

With subsumption we can model one-step rewrites of equational logic. Let
be a set of equations [; =~ r;. We write E'F s = ¢ if there is a substitution p, a
context C' and an equation [ ~ r € E such that s = C[lp] and ¢ = C[rp]. Hence

Ers='t & sC,ClAtC,Cr (1)

for some substitution p, context C' and [ =~ r € E. We extend this one-step
rewrite relation by inductively defining = as the transitive closure of =!. To
implement these concepts, we first provide a data-type for substitutions. The
expression Subst I'; I's v represents a substitution map from the variables in T’y
to expressions with variables in I'y. The finite subset v of I'; indicates all those
variables that are changed by the substitution. This now allows us to implement
the relation C,.

mutual
data _ [ C J{E} {1 T2} {v}(p:SubstT'1 Tav) : V{vi}{rva} {s1s2}
— Expr £ T'1 v1 s1 — Expr 3 'z v3 so — Set where
-- Code omitted

data _|[ C* ] -- Code omitted

The inhabitants of this data-type are proofs that two terms match under a given
substitution. If a user provides two terms and a substitution, this data-type



yields the proof obligations that the user must fulfill to establish the matching
relation. These obligations correspond to the inductive definition of terms. The
case of a term f(t1---t,) requires mutual induction, as defined by C*, over the
set of subterms. The complete code can be found at our website.

Using the subsumption data structure we can prove the following fact.

Lemma 1. sC,t = Vo.[s]o = [t](co[p]).

This lemma states that subsumption implies heterogeneous equality, where
the additional substitution o can be used for further instantiating the resulting
expression in equational proofs. The proof of this lemma has been formalised
in Agda. As an example, we show the Agda function type corresponding to the
lemma.

E—tO—E : V{Z}{Fl Fz}{[[zﬂ}{yl l/2}{51 Sg}(f : ExprZFQ 1] 52)
(e : Expr X Ty v1s1) (p : Subst Ty T'p full) — p [e C f]
— (V [o] = sem [X] [o] e =2 sem [X] (sem-subst {[X] = [X]} p [o]) T)

In the next steps we have implemented one-step equational reasoning with
and without contexts and n-step equational reasoning, using the subsumption
data-type. We have proved soundness of the resulting procedure within Agda.

Theorem 1. Rewriting implies hetereogeneous equality.

l.umvks=t=Vp.[s]o = [t]o.
2. E,.Lts=t=[F],[L] E [s] = [{]-

The Agda proofs can be found at our website. The antecedent of the first
statement expresses that s can be rewritten to ¢ using the equation v =~ v at
the reflection layer. Its left-hand side essentially states that the interpretation of
the reflection layer terms within Agda yield a valid equation. The interpretation
of the equation u ~ v is part of the proof state and therefore not visible on
the right-hand side. The second statement lifts the first one to sets E of equa-
tional axioms, sets L of additional equational hypotheses and n-step proofs. This
theorem provides the formal underpinning for proof reconstruction.

Although the data-types presented have been designed predominantly for
equational reasoning, they can nevertheless easily be extended to full first-order
logic by adding quantifiers, the usual boolean connectives and predicate symbols
on top of our existing Equation data-type. Our implementation shows how Agda’s
reflection layer can be used to achieve such extensions.

6 Proof Reconstruction

We now show how Waldmeister proofs can be reconstructed within Agda as part
of the type-checking process. Proof reconstruction can fail since Waldmeister can
fail, types can be overabstracted, or Waldmeister introduces constants which
have not been accounted for in Agda.



As shown in Section 4, a Waldmeister proof consists of a list of equational
steps, each augmented by an axiom number, a term position at which the axiom
is applied, its orientation (left-right or right-left), and the substitution used.
All these features have been implemented at the reflection layer in Section 5.
Execution of an individual rewrite from term e to term f proceeds in two stages
which correspond to the definition in Equation (1). Assume the equational proof
step e =! f is obtained by applying the equation u ~ v under the context g of
e, and using substitution p.

1. The function build-split uses the term position to split e = g[e] and verify
this equality.

2. The function build-F~! takes an equation, substitution and split term, and
rewrites e to f. A matching algorithm for computing subsumptions is used
by this function.

These one-step reconstruction functions are then used together in reconstruct.

reconstruct : V {E: HypVec} {T'} {vi v2} {s} {n} {L : Vec (Equation (X E)) n}
—{e: Expr (CE)Tvis}{f: Expr (XE)T vas}
— EqProof ET' L — Maybe (E,L, '+ e = f)
The type EqProof represents the raw input from Waldmeister which has been
reformatted by the Haskell module. A Waldmeister proof output may have been
subdivided into a number of lemmas and these are currently flattened out to
produced a single sequence of rewrites. reconstruct applies the one-step recon-
struction functions iteratively to yield the complete reflection layer proof.

Most first-order theorem provers support the TPTP format* as a standard
input syntax. Some of them also support TSTP® as a proof output standard.
For future implementations, Haskell modules supporting these standards should
be used instead of the current proprietary Waldmeister ones.

7 Examples

This section shows the Waldmeister integration at work. We have tested it on
simple examples about natural numbers (cf. Section 4), groups, Boolean algebras
and lists. The following code implements group theory.

Group : HypVec
Group = HyVec X-Group axioms

where

assoc = I'3,(a-0) - vy=a-(B8-7)
ident = I'lJe-ax«a
inv=Tlal axe

axioms = (assoc :: ident :: inv :: [])

As an example, we show one of the most basic facts.

4 http://www.cs.miami.edu/ tptp/
® http://www.cs.miami.edu/~tptp/TSTP/



ident-var : Group,[], T2 a! - (a-B)~f

ident-var = fromJust (reconstruct ((inji (# 0), false, eq-step ([] ")
(con (#2) (var (#0) =® [] %) =® var (#0) =° var (# 1)
=5 []1°):! (inj1 (# 2), true, eg-step (0 ' []") (var
(#0) =[] %) = (inji (# 1), true, eq-step ([]") (var
FD (1))

The first line states that a certain equation follows from the group axioms, with
no additional hypotheses and a two variable context. The second line shows how
the Waldmeister proof output, parsed into Agda, is reconstructed. The function
fromJust lifts a Maybe A type to an A type in the case that the proof is successfully
reconstructed, otherwise the proof does not type-check. Additional lemmas can
be found at our website. On such very simple lemmas, Waldmeister returned
almost instantaneously. Proof reconstruction required several seconds.

Proofs in Boolean algebra are more complex, and proof-search is more in-
volved. In our experiments, Waldmeister returned within seconds. But reflection
layer proofs tended to become very long, and their reconstruction sometimes
took several minutes. There are some theorems that Waldmeister could easily
verify, but where proof reconstruction failed, e.g., when Waldmeister chose to
introduce new undeclared constants for non-obvious reasons. Further discussion
can be found in our extended version [8].

Finally we show some simple proofs about lists. This is especially interest-
ing for two reasons. First, lists are two-sorted structures and it is shown that
Waldmeister can handle this situation. Second, proofs require induction, which
is beyond first-order logic.

‘List : HypVec
‘List = HyVec X-List axioms
where

++-nil = TL Y] ‘H#+ ara«

++-cons = I'3,(a “:8) ‘“H y=a (B ‘“H v)
rev-nil = T'0, ‘rev ‘[] = ]

rev-cons = I'2, ‘rev (a ‘= B) = ‘revf ‘H (a “:t ‘[])

axioms = (4+-nil :: ++4-cons :: rev-nil :: rev-cons :: [])

Lists are essentially monoids with respect to append and nil and we first show
that the empty list is indeed a right identity.

rident-nil : ‘List, [],T0F [] = ‘[] ‘“H‘[] = ]
rident-nil = fromJust (reconstruct ((inj; (# 0), true, eq-step ([]')
(con (#0) ([1%) = [1°) =" [1')
rident-cons : ‘List, [],[2F 8 ‘H ‘[]~ B : ]
= (a ‘wp) ‘4 )= (a ‘2 p)
rident-cons = fromJust (reconstruct ((inj1 (# 1), true, eq-step
([1) (con (# 4) ([]7) = con (# 5) ([]*) =:* con (# 0)
(11%) =* [1%)) ' (inj1 (# 4), true, eq-step (1 !
IRIGIERID)



The base case and the induction step can be tied together by a case split at the
Agda layer. The induction step goes beyond pure equational reasoning, but can
still be handled by Waldmeister. The implication in the proof goal is skolemised,
which yields constants, and the antecedent of the resulting ground formula is
then added to the list of axioms. This is captured in our implementation by
the derived type E,L,I' - H = s = t, where H contains the ground equations
resulting from the inductive hypothesis.

Additional lemmas are proved in a similar way. Previously proved lemmas
can be added as hypotheses to prove goals. Again, this is managed automatically
by Agda. Finally, we can automatically prove a classic.

rev-rev-nil : ‘List, [[,TOF [] = ‘rev (‘rev ‘[]) = ‘[]
rev-rev-nil =  -- proof omitted
rev-rev-cons : ‘List, ((I'2, ‘rev (a ‘H B) = ‘rev § ‘H ‘rev ) :: []),
I2F ((‘rev (‘rev B) = B) :: []) = (‘rev (‘rev (a 1 B))) = (a ‘iz B)

rev-rev-cons = -- proof omitted

As previously, Waldmeister was very efficient with these proofs. Proof recon-
struction succeeded within seconds on these examples, too.

8 Conclusions and Future Work

We have presented a framework for integrating external ATP systems into Agda.
Some parts of it are generic while others are specific to the Waldmeister imple-
mentation. The main purpose of this work is to explore how such integrations
could be achieved by providing a prototype for one particular ATP system. Initial
experiments show that our integration works, but should further be optimised
to make proof reconstruction faster and more powerful.

First, reflection is experimental in Agda. It has already been used for inte-
grating domain specific solvers and decision procedures [7], but does not suffice
for automatically constructing ATP input from a metavariable and a proof state.

Second, a simple command, integrated with Agsy [14], and like Isabelle’s
Sledgehammer could greatly simplify ATP invocation and proof representation.

Third, full first-order theorem provers should be integrated and syntax checks
(for Harrop formulae) could be used for applying them on safe fragments of
constructive logic. A theoretical framework for this has already been provided [1].

Fourth, proof reconstruction requires further optimisation. As an alternative
to the micro-step approach the unfailing completion procedure [2] underlying
Waldmeister could be implemented. The external approach mentioned in Section
3 should also be explored. A similar integration of SAT solvers into Agda is
currently undertaken [13]. Its main difference is that proof reconstruction is
sacrificed for the sake of efficiency in the tradition of provers such as PVS [18].

Fifth, functional program development methodology [3] has already been
integrated into Agda [16,12]. Automating it could lift program development in
dependently typed languages to a new level.
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