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1. Introduction

1.1. Statement of the results. Let G be a commutative algebraic group defined
over the algebraic closure Qalg of Q in C, let LG be its Lie algebra, and let expG :
LG(C) → G(C) be the exponential map on the Lie group Gan deduced from G
after extension of scalars to C. Further, let x be a point in LG(Qalg) and assume
that

(HX)Qalg : for any proper algebraic subgroup H/Qalg of G, x /∈ LH(Qalg).
The classical Lindemann-Weierstrass theorem then states that ifG is an algebraic

torus, the field of definition of the point y = expG(x) ∈ G(C) satisfies

tr.deg.(Qalg(y)/Qalg) = dim(G).

One may wonder under which conditions on x such a result extends to more general
groups G. However, the answer is known (and with the same hypothesis) only
when G is isogenous to a power of an elliptic curve with complex multiplication
(Philippon, Wüstholz; cf. [16], Theorem 6.25).

In the present paper we study the analogous problem where Qalg is replaced by
the algebraic closure Kalg of the function field K = C(S) of a smooth algebraic
curve S/C. Here is a typical corollary of our main theorem.

Let π : B → S be a semi-abelian scheme of constant toric rank, with generic fiber
B/K and Lie algebra LB/K, let A/K be the maximal abelian variety occuring as
a quotient of B, and let (A0, τ ) be the K/C trace of A/K, where we assume for
simplicity that A0 is included in A. By base change to a finite cover of S, we may
assume that it is also the Kalg/C-trace of A/Kalg, and we will just call it the C-
trace, or the constant part, of A. Further, let B0 be the pull-back of A0 to B. This
is a semi-abelian variety, which is defined over K and does not in general descend to
C; we call B0 the semi-constant part of B. Finally, let B̃ be the universal vectorial
extension of B, with generic fiber B̃/K. Consider the exponential morphisms of

analytic sheaves attached to the group schemes Ban, B̃an over San:

expB : LBan −→ Ban , exp
B̃
: LB̃an −→ B̃an.

Further, let x be a point in LB(K). Restricting S if necessary, we may assume

that x extends to a section x ∈ LB(S) and lift it to a section x̃ of LB̃(S), for

which we set y = expB(x) ∈ Ban(San), ỹ = exp
B̃
(x̃) ∈ B̃an(San). Abbreviating

these analytic sections as y = expB(x), ỹ = expB̃(x̃), and making use of the same
notations over all covers of S, we will prove:
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Corollary 1.1. Let B/Kalg be a semi-abelian variety, and let x be a point in
LB(Kalg). Assume that

(HB0): the semi-constant part B0 of B is defined over C;
(HX/B)Kalg : for any proper semi-abelian subvariety H of B, x /∈ LH(Kalg) +

LB0(C).

Further, let x̃ ∈ LB̃(Kalg) be a lift of x. Then, the fields of definition of the
points y = expB(x), ỹ = expB̃(x̃) satisfy

tr.deg.(Kalg(ỹ)/Kalg) = dim(B̃),

and in particular tr.deg.(Kalg(y)/Kalg) = dim(B).

(We recall that by rigidity, all abelian subvarieties H of B are defined over Kalg.)
Consider for instance the case where B = A is an abelian variety, so that

(HB0) is automatically satisfied. When A is a power of an elliptic curve, Corol-
lary 1.1 says that if ℘ is an elliptic function with a non-constant invariant j ∈
C(z) and zeta function ζ, and if x1(z), ..., xn(z) are Z-linearly independent alge-
braic functions, then the 2n analytic functions defined on some open domain of C
by ℘(x1(z)), ..., ℘(xn(z)), ζ(x1(z)), ..., ζ(xn(z)) are algebraically independent over
C(z). In the opposite case where j ∈ C, this holds only if x1, ..., xn are linearly
independent, modulo C, over the ring of multipliers of ℘. When, as in the latter
case, the full abelian variety is constant (A = A0), such results follow from Ax’s
work on the Schanuel conjecture; cf [2], Theorem 3, [19], [4], and in the elliptic
case, [7].

Remark 1.2. (i) A similar result holds for the exponential morphism of the formal

group ˆ̃B of B̃ at the origin; cf. Appendix, Remark G.6. Namely, assuming that
the section x̃ ∈ LB̃(S) vanishes at a given point s0 of S, and denoting by Ŝs0 the
formal completion of s0 in S, we can deduce from our methods a direct proof that
ˆ̃y = exp ˆ̃

B
(ˆ̃x) ∈ ˆ̃

B(Ŝs0) has transcendence degree dim(B̃) over K. Note that this

formal setting is the framework used by Ax in the constant case; cf. [2], Theorem
3. In an analogous way, one can replace in this corollary C by the p-adic field Cp,
with a suitable convergence condition on the point x.

(ii) (Several variables.) Let S′/C be an algebraic variety of dimension n ≥ 1,
and let K ′ = C(S′) be its field of rational functions. As is often the case in
complex algebraic geometry, Corollary 1.1. over the one-dimensional function field
K/C implies the same statement for any semi-abelian variety B′ over K ′ whose
semi-constant part B′

0 is constant. See Theorem 5.3 of Section 5.4 for a precise
formulation of this generalization and for the reduction of its proof to Corollary
1.1. See also Remark 1.5 (ii) below for a different approach to this generalization.

As in Ax’s initial work on the toric case, Corollary 1.1 will follow from considera-
tion of the differential relations or equations satisfied by (x, y) such that exp(x) = y.
But contrary to Ax’s setting, the ambient semi-abelian variety B will not be con-
stant here, and we will in general only be able to find the appropriate differential
equations on the universal vectorial extension B̃ of B (and its Lie algebra). Our
main theorem, on solutions ỹ of ∂ℓnB̃(ỹ) = ∂LB̃(x̃), is Theorem 1.4 below. The
inductive nature of the proof (passing to quotients) will force us into the more
general category of almost semi-abelian D-groups, and our main technical result is
Theorem 1.3 below. More precisely, and referring to the following sections of the
paper for the underlying notions, we will study the following problem.
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Now let K = Kalg be the algebraic closure of a function field in one variable
over C, let ∂ be a non-trivial derivation on K, let U be some universal differential
extension of K, and let Kdiff be a differential closure of K in U . More will be said
about Kdiff and U at the beginning of Section 2. For now we just mention that
Kdiff and K have the same field of constants, namely C.

Let G/K be a connected commutative algebraic D-group (cf. [9], [31] and Section
2 below); i.e., G is a connected commutative algebraic group over K, equipped with
an extension to OG of the derivation ∂, which respects the group structure of G.
Denoting Lie algebras by L, we write

∂ℓnG : G → LG

for the corresponding logarithmic derivative on G (cf. Section 2). This is a “first
order differential algebraic” homomorphism which takes G(U) onto LG(U), and
likewise takes G(Kdiff ) onto LG(Kdiff ), but will be far from surjective at the
level of K-points. The kernel of ∂ℓnG, denoted G∂ when the D-group structure
on G is assumed, is a “differential algebraic group” defined over K, and for any
differential extension field K ′ of K (including Kdiff and U), we can speak of the
group G∂(K ′) of its K ′-points. We will write

∂LG : LG → LG

for the canonical connection, contracted with ∂, which ∂ℓnG induces on LG and
which we can again view as a differential algebraic endomorphism of LG, surjective
at the level of U-points. This is discussed in detail in the Appendix of this paper.
For instance, when G is the universal vectorial extension of an abelian variety A,
∂LG coincides with the dual of the standard Gauss-Manin connection onH1

dR(A/K).
Again we write (LG)∂ for the kernel of ∂LG, namely the space of vectors horizontal
for the connection ∂LG.

We consider the differential relation

(∗) ∂ℓnG(y) = ∂LG(x),

where (x, y) ∈ (LG × G)(U), and proceed to compute the transcendence degree
of K(y) over K under the assumption that x is K-rational. As will later become
apparent, this is the natural algebraic description of the “Lindemann-Weierstrass
case” of the Schanuel conjecture: with some abuse of notation, the rough idea is
that whenever expG(x) is well-defined, we have

∂ℓnG(expG(x)) = ∂LG(x)

(see the proof of Corollary 1.1 at the end of this Introduction and Section G of the
Appendix), so that up to addition by elements x0 ∈ (LG)∂(U), y0 ∈ G∂(U),

∂ℓnG(y) = ∂LG(x) ⇔ y − y0 = expG(x− x0).

In the present paper, we do not discuss the case where y is K-rational and x
is the unknown, nor the general case where both x and y are unknown. These
would respectively correspond to the functional analogues of the Grothendieck and
Schanuel-André conjectures; cf. [4].

We make the necessary assumption that our algebraic D-group G admits no non-
zero vectorial quotient, and we thereby restrict ourselves to almost semi-abelian
D-groups, as defined in Section 3. These are the quotients

G = B̃/U
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by a vectorial D-subgroup U of the universal extension B̃ of a semi-abelian variety
B (the latter being endowed with its unique D-group structure). Furthermore, we
will assume that B satisfies Hypothesis (HB)0 of Corollary 1.1 and will rename
this hypothesis as

(HG)0: the semi-constant part B0 of the maximal semi-abelian quotient B of G
is actually constant.

Let B(0) be the constant part of B, i.e., the maximal semiabelian subvariety of B
isomorphic to one defined over C. In general, B(0) is contained in B0, and hypothesis
(HG)0 means that they coincide. In particular, it is automatically satisfied if the
maximal abelian quotient A of B is traceless (in which case B(0) = B0 is the toric
part of B) or if B is the product of the abelian variety A by a torus. Our main
technical result can then be stated as follows.

Theorem 1.3. Let G be an almost semi-abelian D-group, defined over K, which
satisfies Hypothesis (HG)0, and let x be a point in LG(K). Assume that

(HX)K : x /∈ LH(K)+(LG)∂(K) for any proper algebraic subgroup H/K of G.
Let y ∈ G(U) be a solution of the differential equation ∂ℓnG(y) = ∂LG(x). Then

tr.deg.(K(y)/K) = dim(G).

We will give (see Section 5.3) an example showing that the (HG)0 hypothesis in
Theorem 1.3 cannot be dropped. On the other hand, Theorem 5.2 shows that hy-
pothesis (HG)0 can be dropped, but at the expense of strengthening the hypothesis
(HX)K to (HX): x /∈ LH(U) + LG∂(U) for any proper algebraic subgroup H/K
of G. However we tend to prefer the (HX)K hypothesis because, as witnessed by
Corollary 1.1, the results it yields are closer in spirit to the number theoretic case.

The proofs of Theorem 1.3 and these other results will be given in Section 5 of
the paper. In [4] it was suggested that differential Galois theory in the most general
form may be useful in this function field Lindemann-Weierstrass context. Under an
additional assumption of “K-largeness” on the algebraic D-group G (which actually
implies (HG)0), such a Galois-theoretic proof of Theorem 1.3 is in fact possible,
and is given in Section 6.

WhenG = B̃ is the universal extension of a semi-abelian varietyB as in Corollary
1.1, Theorem 1.3 yields our main result:

Theorem 1.4. Let B/K be a semi-abelian variety, and let x be a point in LB(K).
Assume that

(HB0): the semi-constant part B0 of B is defined over C;
(HX/B)K : for any proper semi-abelian subvariety H of B, x /∈ LH(K) +

LB0(C).

Further, let x̃ ∈ LB̃(K) be a lift of x, and let ỹ ∈ B̃(U) be a solution of the
differential equation ∂ℓnB̃(ỹ) = ∂LB̃(x̃). Then,

tr.deg.(K(ỹ)/K) = dim(B̃).

Since the the almost semi-abelian D-groups of Theorem 1.3 are quotients of such
D-groups B̃, it is conversely clear that Theorem 1.4 implies Theorem 1.3 (details
are given below).

1.2. Organisation of the proofs. The proof of Theorem 1.3 (and variants) in
Section 5 has a number of ingredients and draws on several sources. On the one
hand there is differential algebraic geometry (and model theory) which provides
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the notions of algebraic D-group, logarithmic derivative, etc., in which our results
are phrased in the main body of the paper, as well as the powerful “socle theorem”
which is closely related to the function field Mordell-Lang conjecture in character-
istic 0 and in the present context facilitates an inductive proof. Then there are
results originating with Ax dealing with the case of G defined over C. Finally, from
algebraic geometry we make use of the Manin-Coleman-Chai theorem of the ker-
nel, as well as the Griffiths-Schmid-Deligne theorem of the fixed part and Deligne’s
semi-simplicity theorem. To be able to draw on these various sources we need to
know at least the compatibility of the different languages and constructions. Among
the issues is the relation between the logarithmic derivative on the universal ex-
tension Ã of an abelian variety A defined over K and the Gauss-Manin connection
on H1

dR(A/K) = dual of L(Ã). So our rather extensive appendix, Exponentials
on Algebraic D-groups, is devoted to clarifying some of these issues, although they
are probably well-known. A discussion of the “theorem of the kernel” also appears
there.

In Sections 2 and 3 we introduce and discuss algebraicD-groups, differential alge-
braic groups, D-modules, and almost semiabelian D-groups, as well as logarithmic
derivatives, in the context of Kolchin’s differential algebraic geometry. Section 3
contains a few new observations. Section 4 presents the main tools (including the
“socle theorem”) and special cases which will be used in the proof of the main
theorem (Theorem 1.3 above). As already stated, the proof of the main theorem,
plus a variant as well as a (counter)example, are given in Section 5, while Section
6 provides another proof in the special case where the algebraic D-group G is K-
large, based on differential Galois theory in place of the socle theorem. As for the
Appendix, its main results have been gathered in a Conclusion before Section J.

We conclude this Introduction by discussing the mutual relations between The-
orem 1.3, Theorem 1.4 and Corollary 1.1, in particular showing how to deduce
Corollary 1.1 from Theorem 1.3.

Theorem 1.3 ⇔ Theorem 1.4
Since in the projection B̃ → B̃/U = G transcendence degrees decrease at most

by the dimension U of the kernel, Theorem 1.3 on a general G is equivalent to
its special case for B̃. Since Hypothesis (HB0) is just a renaming of (HG0), it

remains, given a point x ∈ LB(K) and a lift x̃ of x to LB̃(K), to check that x
satisfies hypothesis (HX/B)K of Theorem 1.4 with respect to LB if and only if x̃

satisfies the corresponding hypothesis, say (HX̃)K , of Theorem 1.3 with respect to

LB̃. Now, we will show in Lemma 4.2(i) (see Corollary H.5 (ii) of the Appendix in
the case B is an abelian variety) that under (HB0), the universal vectorial extension

B̃0 ⊂ B̃ of B0, which is then clearly defined over C, satisfies

(LB̃)∂(K) = LB̃0(C).

Furthermore, B̃ is an essential extension of B. That is to say, any proper algebraic
subgroup of B̃ projects onto a proper algebraic subgroup of B.

So, suppose that there exists a proper algebraic subgroup H ′/K of B̃ with pro-

jection H on B, such that x̃ lies in LH ′(K)+LB̃0(C). Projecting to B, we deduce
from (HX/B)K that H fills up B, and H ′ cannot be proper. Conversely, suppose
that x lies in LH(K) + LB0(C) for some proper semi-abelian subvariety H of B,

with inverse image H ′ in B̃. Then H ′ is a proper algebraic subgroup of B̃ over K
satisfying x̃ ∈ LH ′(K) + (LB̃)∂(K), which contradicts (HX̃)K .



LINDEMANN-WEIERSTRASS THEOREM FOR SEMI-ABELIAN VARIETIES 497

Theorem 1.4 ⇒ Corollary 1.1
We go back to the notation before the statement of this corollary, but now denote

by K = C(S)alg the algebraic closure of the field C(S).

So, let ỹ := exp
B̃
(x̃) ∈ B̃(San) be the image of x̃ under the exponential mor-

phism of the group scheme B̃an/San. By one of the compatibilities proven in the

Appendix (cf. Proposition G.1), its logarithmic derivative ∂ℓnB̃ , extended to B̃/S,
satisfies

∂ℓn
B̃
ỹ = ∂ℓn

B̃
(exp

B̃
x̃) = ∂LB̃

x̃.

Viewing the field of meromorphic functions on San as a subfield of U , we have thus
constructed a solution ỹ ∈ B̃(U) of the differential equation ∂ℓnB̃ ỹ = ∂LB̃x̃ with

x̃ ∈ B̃(K). Theorem 1.4 then implies that the transcendence degree ofK(ỹ) = K(ỹ)

overK is equal to dim(B̃). As for the last statement of the corollary, it again follows

from the fact that in the projection from B̃ to B, transcendence degrees can at most
decrease by the dimension of the kernel.

Notice that contrary to B̃, the semi-abelian variety B admits in general no D-
group structure, so that the relation y = expB(x) cannot be expressed directly on
B in differential algebraic terms. In other words, even for the study of the point
y, lifting to B̃ is forced onto us in order to allow for the techniques of proofs of
Theorem 1.3.

Remark 1.5. (i) We are aware that statements such as Corollary 1.1 can often be
proved by purely analytic means, by using the order of growth of exp

B̃
(x̃) at the

essential singularities given by the poles of the rational section x̃ ∈ LB̃(K). But
as mentioned in Remark 1.2, the scope of our methods is broader. Corollary 1.1 is
merely an illustration, while the true object of study of this article is the differential
relation (∗) in differential fields.

(ii) (Several variables.) In parallel with Remark 1.2 (ii) and the material in
Section 5.4, let us mention that another approach to generalizing our results to
function fields of higher-dimensional varieties is to directly adapt the differential
algebraic Theorem 1.3 and so also Theorem 1.4 to the several variables context. So
now K ′ = C(S′) is a function field in n ≥ 1 variables, which we equip with a set
∆ = {∂1, ..., ∂n} of commuting derivations such that C is the field of ∆-constants of
K ′. The notion of an algebraic D-group over K ′, which already appears in [9], will
now be with respect to ∆ rather than a single derivation, and the commuting of
the ∂i will be reflected in suitable integrability requirements on the “D-structure”
and on the system of PDE’s generalizing (∗). We intend to come back to this in a
later work, but expect the proof of the corresponding Theorem 1.3 to go through
with essentially no new ingredient.

2. Differential algebraic preliminaries

The context here is the differential algebra or differential algebraic geometry of
Ritt and Kolchin, as developed in Kolchin’s books [20], [21]. We refer to Buium’s
books [9] (especially Chapter 5) and [10], to the second author’s paper [31] and to
Malgrange’s monograph [24] for the specific notions needed for the current paper,
although we will give a brief account in this section.

We fix a universal differential field (U , ∂) of characteristic 0 in which all differen-
tial fields we discuss are assumed to embed. We denote by C the field of constants
of U , by K an algebraically closed differential field (differential subfield of U), by



498 DANIEL BERTRAND AND ANAND PILLAY

CK its field of constants and by Kdiff a differential closure of K. Of course in
our main applications K will have transcendence degree 1 over CK = C. Here is
a quick description of U and differential closures: a differential field L is said to
be differentially closed if any finite system of differential polynomial equations over
L in unknowns x1, ..., xn which has a common solution in some differential field
extending L already has a solution in L. Differentially closed fields exist. More
precisely, fix an uncountable cardinal κ. Then U will be a differentially closed field
of cardinality κ with the following property: whenever L1 < L2 are differential
fields of cardinality < κ and f : L1 → U is an embedding (of differential fields),
then f extends to g : L2 → U . In our context, κ is assumed to be strictly greater
than the cardinality of our base differential field K. A differential closure of K is a
differentially closed field extending K with the property that it embeds over K into
any differentially closed field containing K. Again a differential closure of K exists
and is unique up to isomorphism over K. So Kdiff denotes a differential closure of
K inside U .

The geometric objects of Kolchin’s theory are “differential algebraic varieties”,
which are given locally as common solution sets in Un of finite systems of differ-
ential polynomial equations. They form a category whose morphisms are easily
defined and will be termed “differential”. Furthermore, we say that a differential
algebraic variety X is defined over K if its defining equations have coefficients in
K. One can then view X as a functor from the category of differential K-algebras
to sets. Likewise one has the notion of a differential algebraic group. However, the
differential algebraic groups we consider will all be given explicitly as differential
algebraic subgroups of algebraic groups (which is no loss of generality; see Corollary
4.2 of [29]). If X is a differential algebraic variety (in particular if it is an algebraic
variety) defined over a subfield of U , we will often identify X with its set X(U) of
U-points.

2.1. The twisted tangent bundle. If X ⊆ Un is an affine algebraic variety and
a ∈ X, we can apply ∂ to the coordinates of x to obtain a point ∂(x) ∈ Un.
This depends of course on the chosen embedding X ⊆ Un, but it can be viewed
in an intrinsic way as a (differential rational rather than rational) section of a
certain twisted tangent bundle T∂(X) of X, which we now describe. We assume X
smooth, (geometrically) irreducible, and defined over K. If X ⊆ Un is affine, then
T∂(X) = {(a, u) ∈ U2n : a ∈ X and

∑

(∂f/∂xi)(a)ui + f∂ = 0 for f ranging over
generators of I(X)}. Here f∂ is obtained from f by applying ∂ to the coefficients of
f . For arbitrary X, take a covering by open affines Uj and piece together the T∂(Ui)
using the transition maps in the obvious way, to obtain T∂(X). So if X is defined
over CK , then T∂(X) coincides with the tangent bundle T (X) of X. In general
the definition shows T∂(X) to be a torsor (over X) under T (X). For X affine one
sees from the Leibniz rule that if a ∈ X, then (a, ∂(a)) ∈ T∂(X). In the general
case this makes sense too, and with abuse of notation we call ∂ : X → T∂(X) the
corresponding (differential regular) section. If s : X → T∂(X) is a regular section,
defined over K, then we obtain a (finite-dimensional) differential algebraic variety
(X, s)∂ = {a ∈ X : ∂(a) = s(a)}, defined over K. Finite-dimensionality means the
following: Suppose X ⊆ Un is an affine differential algebraic variety defined over K.
We call X finite-dimensional if there is a positive integer m such that for any point
a ∈ X, the differential field K〈a〉 generated by K and a has transcendence degree at
most m over K. So if X is an algebraic variety (i.e., with no additional differential
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equations) and not a point, then X is infinite-dimensional. On the other hand,
clearly our (X, s)∂ above is finite-dimensional, as for a ∈ (X, s)∂ , K〈a〉 = K(a).

In Sections A and B of the Appendix, a geometric account of these and the next
notions is given when the base K is replaced by a curve S over C, and ∂|K by a
vector field on S. In fact (like T ) T∂ is a functor: if φ : X → Y is a morphism over
K (of smooth irreducible varieties), then T∂(φ) : T∂(X) → T∂(Y ) is given in local
coordinates by Tφ+ φ∂ .

2.2. Algebraic D-groups and logarithmic derivatives. If G is now a con-
nected algebraic group defined over K, then because T∂ is a functor, T∂(G) (also
denoted T∂G) can be naturally equipped with the structure of an algebraic group
over K, and the canonical projection π : T∂(G) → G is a homomorphism of alge-
braic groups whose kernel is canonically isomorphic to the Lie algebra LG of G.
Indeed, this kernel is (T∂G)e, the fibre of T∂G above the identity e of G, which
we have seen is a principal homogeneous space for T (G)e = LG over K. Now
the identity element of T∂G, that is the K-rational point (e, ∂(e)), gives rise to an
identification of T∂Ge and LG. (See Section 2 of [31].)

By an algebraic D-group (or just a D-group) over K, we mean a pair (G, s)
where G is an algebraic group over K and s : G → T∂(G) is a regular section
defined over K which is also a homomorphism. Algebraic D-groups are objects of
algebraic geometry. Giving G the structure s of an algebraic D-group over K is
equivalent to extending the derivation ∂|K to a derivation of the structure sheaf
of G over K which respects the group operation, and this is how they were first
defined by Buium [9].

We will restrict our attention to commutative algebraic groups G. In this case
T∂(G) is also commutative, and we will write its group law using additive notation.
One can check that ∂ : G → T∂(G) is also a homomorphism, so if (G, s) is an
algebraic D-group, then ∂ − s (where − is meant in the sense of the group T∂(G))
is a differential regular homomorphism from G to LG, which we call the logarithmic
derivative associated to (G, s) and which is written as ∂ℓn(G,s) or ∂ℓnG when s is

understood. Consistent with earlier notation we write (G, s)∂ , or just G∂ , for the
kernel of this logarithmic derivative. (G, s)∂ is a (finite-dimensional) differential
algebraic group. If (G, s) is defined over K, then for any differential field F con-
taining K, we have ∂ℓn(G,s) : G(F ) → LG(F ). For F = U or Kdiff , this map is
surjective.

Two special cases of an algebraic D-group should be familiar. The first is when
G is defined over CK and s : G → T (G) is the 0-section. Then the corresponding
logarithmic derivative reduces to the classical one of Kolchin, so for example if G
is a torus, it is just ∂(g) · g−1. Moreover, G∂(U) is just G(C).

The second is when G = Gn
a . Then LG = G and T (G) = G × G. A regular

section s defined over K is of the form x �→ (x,Ax), where A is an n×n matrix over
K, and we write x ∈ G as a column vector. Hence the corresponding logarithmic
derivative is x �→ ∂(x)−Ax from G to G. This is precisely a D-module structure on
Un or on Kn if we restrict to K-points, in other words a linear differential system.
Indeed, a D-module defined over K is by definition a K-vector space V (that is, a
commutative unipotent group over K as we are in characteristic 0) together with
an additive homomorphism DV : V → V satisfying, with ∂, the Leibniz rule. The
algebraic group V is isomorphic to some Gn

a over K, so the D-module structure is
as above the logarithmic derivative for some algebraic D-group structure on Gn

a .
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2.3. D-modules and the connection ∂LG on LG. Here we discuss theD-module
structure induced on the Lie algebra of an algebraic D-group (G, s), which yields
our map ∂LG referred to in the Introduction. This is a rather delicate aspect of
the paper, in terms of compatibilities, and much of the Appendix is devoted to it.
Here we give an “algebraic” definition based on Section 5 of [32] and point out some
equivalences. First suppose X to be a smooth irreducible affine variety over K with
coordinates x = (x1, ..., xn). Recall from Section 2.1 that the tangent bundle of X is
defined by equations for X together with df · y = 0 for f ranging over generators of
the ideal of X (where df · y =

∑

i=1,...,n(∂f(x)/∂xi)yi = 0 represents the (vertical)

differential dG/Kf of f). On the other hand the twisted tangent bundle of X is

defined by equations defining X together with df(x) ·y+f∂(x) for f generating the
ideal of X. So we choose (x, u) as coordinates of T (X) and (x, y) as coordinates
of T∂(X). Likewise let (x, u, y, v) be coordinates for T (T∂X) and (x, y, u, v) co-
ordinates for T∂(T (X)). A straightforward computation using the formulas above
yields that the map taking (x, y, u, v) to (x, u, y, v) gives an isomorphism between
T (T∂X) and T∂(T (X)) defined over K. By gluing, this extends to arbitrary smooth
varieties over K. We obtain (see [32], Lemma 5.1):

Lemma 2.1. Let G be a commutative algebraic group over K. Then there is
a functorial isomorphism between the commutative algebraic groups T (T∂G) and
T∂(T (G)) (over the natural projections to T∂(G)) which also yields a functorial
isomorphism between L(T∂G) and T∂(LG).

Suppose now that (G, s) is a commutative algebraic D-group over K. Then from
s : G → T∂G we obtain (differentiating at the identity and setting dG/K,e = L) a
homomorphism Ls : LG → L(T∂G) which, via the identifications of Lemma 2.1,
gives a (regular) homomorphic section Ls : LG → T∂(LG), that is, a D-group
structure on LG, all defined over K. The corresponding logarithmic derivative
on LG is ∂ − Ls : LG → LLG = LG, namely ∂ℓn(LG,Ls), or ∂ℓnLG when Ls is
assumed. This is the D-module structure on LG that we are interested in, and
we will denote it ∂LG for simplicity. (LG)∂ will denote the kernel of ∂LG. For a
geometric account, see Sections C and D of the Appendix.

Remark 2.2. If G has dimension n and is defined over CK and s = 0, then (LG,Ls)
is isomorphic to (Gn

a , 0) and ∂LG = ∂ on Gn
a .

We point out two alternative algebraic descriptions of ∂LG. The first is as in [32],
Lemma 3.7 (iii) and the paragraph following it: we know that s : G → T∂G gives a
derivation, which we still call s, of the structure sheaf of G over K extending ∂|K.
Now, s acts on the local ring of G at the identity, and in fact preserves the maximal
ideal M. So s induces a D-module structure on the cotangent space M/M2 at
identity, and hence the dual connection on LG. This can be checked to coincide
with ∂LG, as mentioned in [32], Lemma 5.1 (ii).

Another description is via differentials of differential regular functions, as defined
by Kolchin [21], Section 2 of Chapter 8. We have the differential regular homomor-
phism ∂ℓnG : G → LG, which has a differential L∂ℓnG at the identity, a differential
regular homomorphism from LG to LG which again can be shown to coincide with
∂LG.
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2.4. Algebraic D-groups and differential algebraic groups. We recall some
results and facts from [23]. Suppose that (G, sG), (H, sH) are connected commuta-
tive algebraic D-groups defined over K and that h : G → H is a homomorphism of
algebraic groups defined over K. We will say that h is a homomorphism of algebraic
D-groups, if T∂h ◦ sG = sH ◦ h.

If H is an algebraic subgroup of the algebraic D-group (G, s), we say that H is
a D-subgroup if s|H : H → T∂H ⊆ T∂G. (Likewise for “D-subvariety”.)

From 2.7 of [23] we obtain (suppressing the mention of s sometimes) the easy

Fact 2.3. (i) Let h : G → H be a homomorphism of algebraic D-groups. Then
Ker(h) is an algebraic D-subgroup of G.

(ii) Conversely, if H is an algebraic D-subgroup of G, then G/H can be equipped
with the structure of a D-group such that the quotient map is a D-homomorphism.

From Fact 2.3 of [23] we have the deeper

Fact 2.4. (i) If G is an algebraic D-group, then G∂ is Zariski-dense in G. Con-
sequently, if (G, sG), (H, sH) are connected algebraic D-groups and h : G → H is
a homomorphism of algebraic groups, then h is a D-homomorphism if and only if
h(G∂) ⊆ H∂ .

(ii) Let G be a connected algebraic D-group. Then we have a bijection between
(connected) algebraic D -subgroups of G and (connected) differential algebraic sub-
groups of G∂ : namely, for H a D-subgroup of G, G∂ ∩ H = H∂ is a differential
algebraic subgroup of G∂ whose Zariski closure is H. Also, if H is a differential
algebraic subgroup of G∂ , then the Zariski closure of H in G is a D-subgroup whose
intersection with G∂ is precisely H.

We will also need the following easy fact (a converse statement for embeddings
is given in Corollary G.5 of the Appendix):

Lemma 2.5. Suppose that f : G → H is a homomorphism of algebraic D-groups.
Then Lf : LG → LH is a homomorphism of D-modules (where LG, LH are
equipped with D-module structures as in Section 2.3).

Note. Throughout Section 2.4, we can also specify fields of definition where appro-
priate. For example in Fact 2.3 (i) if h is defined over K, so is Ker(h), and in Fact
2.3 (ii) if G,H are defined over K, so is G/H.

3. Almost semi-abelian D-groups

We recall that we work in characteristic 0, in the context of a universal differential
field U and with a small differential subfieldK. We maintain our general assumption
that K is algebraically closed, but it is not always needed. Although much of what
we say is implicit or explicit in the literature (such as [9] and [26]), we may give
proofs for the convenience of the reader.

3.1. Almost semi-abelian varieties and D-groups. Recall that an abelian va-
riety A has a “universal vectorial extension”, which we denote by Ã throughout the
paper, and which admits the following characterization: there is an exact sequence
of commutative connected algebraic groups,

0−→WA−→Ã
π

−→A−→0,
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such that WA is unipotent (i.e., a vector group) and such that for any extension

f : G → A of A by a vector group there is a unique homomorphism h : Ã → G
such that π = f ◦ h.

Moreover, if A is defined over K, so is Ã. In fact WA is the dual of H1(A,OA)

and so Ã has dimension 2dim(A). See [28] for a detailed presentation.

Likewise any semi-abelian variety B has a universal vectorial extension B̃ with
the same universal property as above. In fact if B is an extension of the abelian
variety A by the algebraic torus T , then B̃ is B ×A Ã, which is an extension of B
by WA. Again if B is defined over K, so is B̃.

Lemma 3.1. Let G be a commutative connected algebraic group defined over K.
The following conditions are equivalent:

(i) G has no non-zero homomorphisms to Ga;
(ii) there exists a semi-abelian variety B/K and a unipotent subgroup U/K of

B̃ such that G is isomorphic to B̃/U ;
(iii) the group Tor(G) of torsion points of G is Zariski-dense in G.

Proof. (i) ⇒ (ii): by Chevalley’s theorem, G is an extension of its maximal semi-

abelian quotient B by a unipotent group, say V . Let h : B̃ → G be given by
the universal properties of B̃. So U = Ker(h) is unipotent. Let H = h(B̃). So H
projects onto B, and thus G/H is unipotent (a subgroup of V ). As we are assuming

G has no unipotent quotients, G = H, and G = B̃/U as required.

(ii) ⇒ (iii): since Tor(B) is Zariski dense in B, and since B̃ is an essential

extension of B, Tor(B̃) too is Zariski dense in B̃, and the same property is satisfied

by the quotient G of B̃.
(iii) ⇒ (i): suppose that f is a surjective homomorphism from G to Ga. Then

Tor(G) < Ker(f).

Definition 3.2. We will call G almost semi-abelian (asa) if it satisfies the equiva-
lent conditions of Lemma 3.1.

Remark 3.3. Inspired by Brion’s concept of anti-affine groups [6], we could alterna-
tively say that G is anti-additive. We refer the reader to the first part of Hypothesis
(H) of Section I of the Appendix for a Betti version of Condition (iii) (which we
could have phrased in ℓ-adic terms).

For the rest of this section we consider D-structures on asa groups. By an almost
semi-abelian D-group, we mean an algebraic D-group (G, s) such that G is almost
semi-abelian.

Lemma 3.4. (i) If G is asa, then G has at most one structure of a D-group.
Moreover, if G is defined over K, then so is the D-structure, if it exists.

(ii) If B is semi-abelian, then B̃ has a (unique) structure of D-group.
(iii) If B is semi-abelian and defined over K, then B has the structure of a

D-group if only if B descends to CK .

Proof. (i) If s1, s2 were distinct rational homomorphic sections G → T∂G, then
s1 − s2 would be a non-zero rational homomorphism from G to its Lie algebra. By
condition (i) of Lemma 3.1, this gives the first part. If (G, s) is a D-structure on
K, so is (G, σ(s)) for any automorphism of the field U fixing K pointwise. So from
uniqueness, s is defined over K.
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(ii) Let π : B̃ → B, and τ : T∂B̃ → B̃. So π ◦ τ : T∂B̃ → B has kernel a vector

group, and thus there is a rational homomorphism s : B̃ → T∂B̃ such that

(∗) π ◦ τ ◦ s = π.

We claim that s is a section of τ , i.e., that τ ◦s = id. Otherwise, by (∗), τ ◦s− id

is a non-trivial rational homomorphism from B̃ to ker(π). As the latter is a vector

group, this contradicts B̃ being asa.
For part (iii) we simply quote Buium ([9], Theorem 3 of the Introduction). When

B is an abelian variety A over C(S), this reflects the fact that by its very definition
(cf. Section A of the Appendix), the class in H1(A, TA) of the TA-torsor T∂A is
given by the Kodaira-Spencer map κ(∂) whose vanishing amounts to A descending
to C.

By virtue of Lemma 3.4 (i), we can and will talk about an almost semi-abelian
D-group G without explicitly mentioning s.

Lemma 3.5. Suppose G is an asa D-group. Then G∂ is the “Kolchin closure” of
Tor(G), namely the smallest differential algebraic subgroup of G containing Tor(G).

Proof. Since the homomorphism ∂ℓnG takes values in a vector group, its kernel
G∂ contains Tor(G). Suppose for contradiction that there is a proper differential
algebraic subgroup H of G∂ containing Tor(G). By Fact 2.4 (ii), the Zariski closure
H of H would be a proper (D-)subgroup of G, contradicting the Zariski-denseness
of Tor(G) given by Lemma 3.1 (iii).

Corollary 3.6. If G is an asa D-group, then any rational homomorphism f : G →
H from G to a commutative algebraic D-group (H, s) is a D-homomorphism. In
particular, any rational homomorphism between asa D-groups is a D-homomor-
phism.

Proof. We use Fact 2.4 (i). By the same argument as above, the kernel (H, s)∂

of ∂ℓnH,s contains Tor(H). Hence f−1((H, s)∂), a differential algebraic subgroup
of G, contains Tor(G). By the previous lemma, f−1((H, s)∂) contains G∂ , so
f(G∂) ⊆ H∂ .

Note the special case of Corollary 3.6 when f is an embedding:

Corollary 3.7. If H is an asa D-group and is an algebraic subgroup of the com-
mutative algebraic D-group (G, s), then H (with its unique D-group structure) is a
D-subgroup of (G, s).

Also, Corollary 3.6 together with Lemma 3.1 and Lemma 3.4(ii) yields:

Corollary 3.8. Let G be an asa D-group, let B be its maximal semi-abelian quo-
tient, and let U be a unipotent subgroup of B̃ such that the algebraic groups G and
B̃/U are isomorphic. Then, U is a D-subgroup of B̃. Note that if G is defined over

K, so are B̃ and U .

Let us note in passing that the class of almost semi-abelian D-groups is closed
under quotienting by algebraic D-subgroups, but not of course under D-subgroups.
Finally, we clearly obtain from Corollary 3.6 that if B is a semi-abelian variety,
then its universal vectorial extension B̃, equipped with its unique D-structure, is
also universal in the category of D-group extensions of B by vector groups: namely,
if (G, s) is an algebraic D-group, and G is, as an algebraic group, an extension of
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B by a vector group, then there is a unique morphism of D-groups from B̃ to G
satisfying the appropriate commutative diagram.

The ♯-point functor on algebraic groups.
For the sake of completeness we tie up these notions with the ♯-point functor,

which will make a brief appearance in Section 6 of the paper. Note that here we
do not require D-group structures. For G an arbitrary connected commutative
algebraic group (over U), we say that “G♯ exists” if the intersection of all the
Zariski-dense differential algebraic subgroups of G is still Zariski dense in G, and
we then denote it by G♯. Recall that if G is almost semi-abelian (not necessarily a
D-group) and if B denotes the semi-abelian “part” of G, then we have a canonical

surjective homomorphism of algebraic groups π : B̃ → G, and moreover B̃ has a
canonical D-group structure.

Proposition 3.9. Suppose that the algebraic group G is almost semi-abelian.
(i) Then G♯ exists and is the Kolchin closure of Tor(G). It also equals π(B̃∂).

(ii) Moreover, let U1 be the maximal D-subgroup of B̃ contained in the (unipo-
tent) subgroup W := Ker(π). Then π induces an isomorphism of differential alge-

braic groups between (B̃/U1)
∂ and G♯.

Proof. (i) By Lemma 4.2 of [30], which is due originally to Buium, any Zariski-dense
differential algebraic subgroup of G must contain Tor(G), but Tor(G) is Zariski-

dense. As by Lemma 3.5, B̃∂ is the Kolchin closure of Tor(B̃) and π takes Tor(B̃)
onto Tor(G); it is easy to conclude the rest of part (i).

Notice that G♯ = G∂ when we further assume that G is a D-group. However, in
the general case under study here, the differential algebraic group G♯ need not be
defined by first order equations.

(ii) W ∩ B̃∂ is a (connected) differential algebraic subgroup of B̃∂ , so by Fact

2.4 (ii) its Zariski closure is a (connected, unipotent) D-subgroup U1 of B̃, and U∂
1

is precisely W ∩ B̃∂ . Then (by the surjectivity of ∂ℓnU1
) (B̃/U1)

∂ is canonically

isomorphic to B̃∂/U∂
1 = B̃∂/W ∩ B̃∂ , which is isomorphic to G♯ under π.

Note in particular that if B is a semi-abelian variety, then B♯ is canonically
isomorphic to (B̃/UB)

∂ , where UB is the maximal unipotent D-subgroup of B̃. For
instance, consider the case where B = A is a simple abelian variety defined over
K, which does not descend to CK (equivalently, by simplicity, whose CK-trace is

0), and let UA be the maximal unipotent D-subgroup of Ã; so, UA is contained

in the kernel WA of Ã → A. Since A is not constant, Lemma 3.4 (iii) shows that
UA is strictly contained in WA. However, UA need not vanish, as witnessed by the
following example, which was shown to us by Y. André: take a non-constant type
IV abelian variety A of even dimension g = 2k ≥ 4, such that Q⊗End(A) is a CM

field of degree g, acting on LÃ by a CM type of the form {r1 = s1 = 1, r2 = ... =
rk = 2, s2 = ... = sk = 0}. Then, the g-dimensional K-vector space LWA ≃ WA

is generated by two lines in LÃ respectively contained in the planes where F acts
via the complex embedding σ1, σ1, and by the planes where it acts via σ2, ..., σk,
whereas UA is generated only by the latter planes, and therefore has dimension
g − 2 > 0 over K.

Remark 3.10. If B is a semi-abelian variety over K, then it is convenient to have
some notation for the algebraicD-group B̃/UB . Let us call it B. With this notation,

Proposition 3.9 (ii) gives a canonical isomorphism (over K) between B
∂
and B♯.
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The reader might think it natural to restrict our attention in Theorem 1.3 to D-
groups of the the form B. However, our proofs will be of an inductive nature and
involve taking D-quotients. Just as with the discussion about B̃ after Remark 1.2,
this will of necessity force us into the general class of asa D-groups.

3.2. Isoconstant D-groups. One usually says that an algebraic group G/K is
isoconstant if there is an algebraic group H/CK such that G and H become iso-
morphic over an extension of K. Since K is algebraically closed, they then are
automatically isomorphic over K.

Definition 3.11. Let (G, s) be a commutative algebraic D-group defined over the
algebraically closed differential field K. We will say that (G, sG) is isoconstant if
there is an algebraic group (H, sH) such that H is defined over C and sH = 0,
and there is an isomorphism f (over U) of algebraic D-groups between (G, sG) and
(H, sH).

So, the prefix “iso” here refers to differential, rather than algebraic, extensions of
the (algebraically closed) base K. Once isoconstancy holds, we can actually insist
that the data (H, sH) and the isomorphism f of this definition be defined over
Kdiff , whereby (as CK = CKdiff ) H will be over CK . But again, the isomorphism
need not be defined over K, as is shown by considering D-modules (cf. Remark
3.14 below). However, for asa D-groups, we do have rigidity:

Lemma 3.12. Suppose G is an asa D-group defined over the algebraically closed
field K, and suppose that G is isoconstant. Then G is isomorphic over K to a
constant D-group (H, 0).

Proof. By isoconstancy, and because K is algebraically closed, the algebraic group
G is isomorphic over K to an algebraic group H defined over CK . But then H is
asa, and by Corollary 3.6 this isomorphism is also one of D-groups.

If (G, s) is an algebraicD-group, it is not hard to see that it has a unique maximal
connected isoconstant D-subgroup. For the next lemma we need to know that the
image of any isoconstant algebraic D-group (G, s) under a D-homomorphism f is
also isoconstant. This can be seen in various ways, one of which is as follows: we
may assume G defined over C and s = 0. By Fact 2.3 (i), Ker(f) is a D-subgroup of
G, but (Ker(f))∂ is clearly a subgroup of G(C) and by Fact 2.4 (i) is Zariski-dense
in Ker(f). Hence Ker(f) is defined over C and it is easy to conclude the argument.

Lemma 3.13. Let G be an almost semi-abelian D-group defined over the alge-
braically closed field K. Let S be the maximal isoconstant connected D-subgroup of
G, let A be the abelian “part” of G, and let UA be the maximal unipotent D-subgroup
of Ã. Then

(i) G/S has no toric part and is therefore a quotient of Ã.

(ii) If S = {0}, then A is an abelian variety with CK-trace 0, and G = Ã/UA.

(iii) Moreover, all the objects (S, Ã, etc.) and isomorphisms are defined over
K.

Proof. (i) The toric part of G is by Corollary 3.7 a D-subgroup so it is contained
in S.

(ii) First of all G has no toric part, so it is a quotient of Ã by a unipotent
D-subgroup U . As any commutative unipotent D-group is isoconstant, our as-
sumption on G forces U to be the maximal unipotent D-subgroup of Ã. Now, we
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may work up to isogeny and assume A to be of the form A0 ×A1, where A0 is over
CK and A1 has CK-trace 0. Then Ã = Ã0 × Ã1. But Ã0 is a constant D-group,
as is its image in G (by the paragraph preceding this lemma). So A0 = 0, and we

see that G must be the quotient of Ã1 by its maximal unipotent D-subgroup, as
required.

(iii) S is defined over K by uniqueness. The rest is clear.

Remark 3.14. Let (G, s) be a (commutative) unipotent D-group over K. Then
(G, s) is isoconstant.

Proof. This of course belongs to the theory of linear differential equations. Identi-
fying G with Gn

a , s has the form x �→ (x,Ax) for A an n × n matrix over K. We
can find a basis {v1, ..., vn} of G (as a vector space over U) which is simultaneously
a basis of the C-vector space (G, s)∂ . Now, v1, ..., vn can be chosen from Kdiff (but
not always from K) and can generate the Picard-Vessiot extension for the linear
differential system ∂(−) = A(−). With respect to the basis {v1, ..., vn}, s becomes
0, and so over K(v1, ..., vn), (G, s) is isomorphic to (Gn

a , 0).

4. Further ingredients and special cases

Here we present the key ingredients for the proof of Theorem 1.3.

4.1. The socle theorem. Proposition 4.1 below follows from Corollary 3.11 of
[32] (also appearing in the language of D-groups as Corollary 2.11 in [23]). The
latter generalizes and has its origin in what is often called the “socle theorem”
of Hrushovski. This “socle theorem” is actually a combination of Proposition 4.3
of [17], with the validity of the Zilber dichotomy in the theory of differentially
closed fields of characteristic 0. In fact in the case at hand, what is needed can
probably be extracted from Hrushovski’s results. In any case the relevant statement
concerns commutative connected finite-dimensional differential algebraic groups or
equivalently commutative, connected groups of finite Morley rank B definable in
the differentially closed field U . By the algebraic socle, as(B), of B we mean the
maximal connected definable subgroup of B which is definably isomorphic to a
group of the form C(C) for C some algebraic group over C. If X is a differential
algebraic subset of B, its stabilizer StabB(X) is defined to be {g ∈ B : g+X = X}.
The result says that

(∗) if X is an irreducible differential algebraic subset of B such that StabB(X)
is finite, then some translate of X is contained in as(B).

It should be mentioned that this result is quite powerful, and together with the
kind of material in Section 3 quickly yields a proof of the function field Mordell-Lang
conjecture in characteristic 0. Now if B = G∂ for G an algebraic D-group, then
it follows from Fact 2.4 (ii) that as(B) = H∂ , where H is the maximal connected
isoconstant D-subgroup of G as introduced before Lemma 3.13. Bearing this in
mind, Proposition 4.1 below is simply a principal homogeneous space version of the
socle theorem (∗) above.

Proposition 4.1. Let G be an almost semi-abelian D group over K. Let Y ⊂ G be
a translate (coset) of G∂ and Z be an irreducible differential algebraic subset of Y .
Let S < G∂ be the stabilizer of Z (with respect to the action of G∂ on Y ). Suppose
that S is finite. Then Z is contained in a coset Z ′ of H∂, where H is the maximal
isoconstant D-subgroup of G. Moreover, if Y, Z are defined over K, so is Z ′.
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4.2. On the semi-constant part and descent of (HX)K . K will again denote
an algebraically closed differential field. Suppose B is a semi-abelian variety over
K, with 0−→T−→B

π
−→A−→0 the canonical short exact sequence. Let A0 < A be

the CK-trace of A (the maximal abelian subvariety of A isomorphic to an abelian
variety over CK) and let B0 = π−1(A0). As in the Introduction, we call B0 the semi-
constant part of B. More generally, suppose G is an almost semi-abelian variety
with semi-abelian part B; in particular, G = B̃/U for some unipotent subgroup

U of B̃. We denote B by Gsa and define the semi-constant part of G to be Gsa
0 ,

namely B0. In this setting, our hypothesis (HG)0 on the almost semi-abelian group
G can be stated as follows:

(HG)0, the semi-constant part B0 = Gsa
0 of G, is an isoconstant algebraic group.

In other words, the semi-abelian variety Gsa
0 is isomorphic (and then, automati-

cally over K) to an algebraic group defined over CK . It is clear that this hypothesis
(HG)0 is preserved under quotients.

We will describe concretely (LG)∂(K) under the assumption (HG)0 and con-
clude that the hypothesis (HX)K is then preserved under quotients.

From now on, we assume that the algebraically closed differential field K has
transcendence degree 1 over its field C of constants. We will make use of two
classical results from Deligne’s Hodge II [15], which we now explain. Let A be an

abelian variety over K, and let Ã be its universal vectorial extension, equipped with
its unique D-group structure. From Section 2.3 this provides LÃ with a connection
∂LÃ. In Section H of the Appendix, we check that this connection is the dual of
the Gauss-Manin connection on H1

dR(A/K). Write A up to isogeny as A0 × A1,

where A0 descends to C and A1 as C-trace 0. Then Ã = Ã0 × Ã1. We will assume
that A0 is already over C, thus so is Ã0. As the D-group structure on Ã0 is trivial,
so is the corresponding connection on LÃ0. Consequently, (LÃ0)

∂ = LÃ0(C). The
above mentioned results translate in the present setting as follows (see Corollary
H.5 of the Appendix):

(i) (Semi-Simplicity.) The D-module LÃ is semi-simple, i.e., a direct sum of
simple D-modules over the algebraically closed field K (Deligne; cf. [15], II, 4.2.6).

(II) (Theorem of the fixed part.) A horizontal vector of ∂LÃ which is invariant

under the monodromy lies in LÃ0 (Griffiths-Schmid-Deligne; cf. [15], II, 4.1.2). In

other words, (LÃ)∂(K) = LÃ0(C).

Lemma 4.2. (i) Let B be a semi-abelian variety over K. Assume that its semi-

constant part B0 is defined over C, and let B̃0 ⊆ B̃ be the universal vectorial
extension of B0. Let U be a unipotent D-subgroup of B̃, let G be the asa D-group
B̃/U , and let U0 = B̃0 ∩ U . Then, (LG)∂(K) = L(B̃0/U0)(C).

(ii) Let G be an asa D-group over K satisfying (HG)0. Let x ∈ LG(K) be such
that for no proper algebraic subgroup H of G over K is x ∈ LH(K)+(LG)∂(K). Let
G′ be a quotient of G by a D-subgroup defined over K, so it is itself an asa D-group.
Let x′ ∈ LG′(K) be the image of x under the corresponding projection LG → LG′.
Then for no proper algebraic subgroup H ′ of G′ over K is x′ ∈ LH ′(K)+(LG′)∂(K).

Proof. (i) Note first that U0 is aD-subgroup of the constantD-group B̃0, so it is also

defined over the constants and has trivial D-group structure. Hence (L(B̃0/U0))
∂

is the set of constant points of L(B̃0/U0). Let T and A = A0 × A1 be as usual for

B. Identifying U with a unipotent D-subgroup of Ã, we have the exact sequence

0 → LT (C) → (LG)∂(Kdiff ) → (L(Ã/U))∂(Kdiff ) → 0.
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Let x ∈ (LG)∂(K), and let x be its image in (L(Ã/U))∂(K). By (I) above, x

lifts to a point ξ ∈ (LÃ)∂(K). By (II) above the latter space is precisely (LÃ0)(C).

Hence x ∈ L(Ã0/U0)(C). This now implies that x lifts to a point ξ ∈ L(B̃0/U0)(C).

But x, ξ ∈ (LG)∂(K) and have the same image in (L(Ã/U))∂ . Hence their difference

lies in LT (C), which is contained in L(B̃0/U0)(C). Thus, already x ∈ L(B̃0/U0)(C),
and (i) is proved.

(ii) Let G = B̃/U and G′ = B̃′/U ′ (with B,B′ semi-abelian and U,U ′ unipotent

D-subgroups of B̃, B̃′, respectively). The hypothesis (HG)0 says that the semi-
constant part B0 of B is isoconstant. As B′ is a quotient of B, the semi-constant
part B′

0 of B′ is also isoconstant. Assume, as we may, that B0 is already defined

over C, and set U0 = B̃0 ∩ U,U ′
0 = B̃′

0 ∩ U ′. It is clear that under the relevant

quotient map f : G → G′, B̃0/U0 maps onto B̃′
0/U

′
0. As both the latter groups are

defined over C, we see that f maps (B̃0/U0)(C) onto (B̃′
0/U

′
0)(C). By part (i) of

this lemma, it follows that f maps (LG)∂(K) onto (LG′)∂(K).
Now let x, x′ be as in the statement of part (ii) of the lemma, and suppose

towards a contradiction that x′ = u′ + z′ with u′ ∈ LH ′(K) for some proper
algebraic subgroup H ′ of G′ defined over K and that z′ ∈ (LG′)∂(K). By what we
have just observed, z′ lifts to a point z ∈ (LG)∂(K). Then x − z ∈ LG(K) and
f(x− z) = u′ ∈ LH ′(K). Hence x− z ∈ LH(K), where H := f−1(H ′) is a proper
algebraic subgroup of G defined over K, contradicting our hypothesis on x. Lemma
4.2 is proved.

4.3. Special cases: Ax and the theorem of the kernel. We give two special
cases where Theorem 1.3 holds (and where (HG)0 is not mentioned but automati-
cally holds). The first is a special case of Ax’s theorem, as slightly generalized in [4],
although there are other direct proofs (see, e.g. [19]). Again K is an algebraically
closed differential field of transcendence degree 1 over its field C of constants.

Proposition 4.3. Suppose that G is an isoconstant asa D-group over K, x ∈
LG(K), and y ∈ G(U) such that ∂ℓnG(y) = ∂LG(x). Assume that x /∈ LH(K) +
(LG)∂(K) for any proper algebraic subgroup of G defined over K. Then

tr.deg(K(y)/K) = dim(G).

Proof. By Lemma 3.12 we may assume that G is defined over C, in which case ∂ℓnG

is Kolchin’s logarithmic derivative, ∂LG is just ∂ : LG → LG, and so (LG)∂(Kdiff )

= LG(C). The semi-abelian part B of G is defined over C, and G = B̃/U for some

unipotent subgroup U of B̃ over C
We may assume that y lies in G(Kdiff ). Let x̃ ∈ LB̃(K) be a lift of x, let

ỹ ∈ B̃(Kdiff ) be a solution of ∂ℓnB̃(−) = ∂LB̃ x̃ and let y be the projection of y
to B. We first check that the relative hull By of y fills up B, i.e., that there is no

proper algebraic subgroup H of B (over C) such that y ∈ H(U)+B(C). Otherwise,
the projection x of x to LB(K) would satisfy ∂LB(x) = ∂ℓnB(y) ∈ LH(U), so
x ∈

(

LH(U) +LB(C)
)

∩LB(K) = LH(K) + LB(C), and if H denotes the inverse

image of H in G, x would lie in LH(K) + LG(C), contradicting (HX)K .

Now by Proposition 1b of [4], tr.deg(K(ỹ)/K) = dim(B̃). Let y′ be the image of

ỹ under the canonical projection from B̃ to G. Then, tr.deg(K(y′)/K) = dim(G).
Now both y, y′ are in G(Kdiff ), and ∂ℓnG(y) = ∂ℓnG(y

′) = ∂LGx. Hence y − y′ ∈
Ker(∂ℓnG)(K

diff ) = G(C). So tr.deg(K(y)/K) = dim(G), as required.
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The next special case is fundamental and depends on Manin’s theorem of the
kernel, in a stronger form due to Chai [12]. A direct proof of this result is given in
Section K of the Appendix (see Remark K.2 for a discussion of Chai’s full sharpen-
ing). We take G to be an almost abelian D-group over K; namely, for some abelian

variety A over K, G is a quotient of Ã by some unipotent D-subgroup V . As usual,
we have 0 → WA → Ã → A → 0 over K, and we denote by UA the maximal
unipotent D-subgroup of WA. So, G = Ã/V , with V ⊂ UA. It follows that WA/V
is the unipotent part of G, and we write it as WG. WG can be identified with its
Lie algebra LWG, which is itself contained in LG.

With the above notation, Chai’s theorem reads as follows (cf. Theorem K.1):

Proposition 4.4. Suppose A has C-trace 0. Suppose that x ∈ LG(K) and y ∈
G(K) are such that ∂ℓnG(y) = ∂LG(x). Then x ∈ LWG(K).

Notice that conversely, given x ∈ LWG(K), there does exist a point y ∈ G(K)
such that ∂ℓnG(y) = ∂LG(x), namely y = x itself, viewed as a point in WG ⊂ G.
Indeed, Corollary G.4 of the Appendix shows that ∂ℓnG and ∂LG coincide on WG ≃
LWG.

5. Proofs of the main results

Throughout this section K is an algebraically closed differential field of tran-
scendence degree 1 over its field of constants which is assumed to be C.

5.1. Proof of Theorem 1.3. We recall that G is an almost semi-abelian D-group
over K satisfying (HG)0 (its semi-constant part is constant). We take x ∈ LG(K)
satisfying (HX)K : x /∈ L(H)(K) + (LG)∂(K) for any proper algebraic subgroup
H of G over K. Given any y ∈ G(U) satisfying ∂ℓnG(y) = ∂LG(x), we must prove
that tr.deg(K(y)/K) = dim(G).

Our proof is of a differential algebraic nature. We work in U ; that is, we identify
(differential) algebraic varieties and groups with their pointsets in U . We first
recall the notion of “generic points” of differential algebraic varieties. For X an
irreducible finite-dimensional differential algebraic variety, defined over K, by a
generic point of X over K we mean a point α ∈ X such that tr.deg(K〈α〉/K) is
maximum possible. If X is of the form (G, s)∂ for some algebraic D-group (G, s)
defined over K, then for α ∈ G∂ , K〈α〉 = K(α), and clearly the maximum possible
tr.deg(K(α)/K) equals dim(G) (as G∂ is a differential algebraic subvariety of G
which is Zariski-dense in G). Likewise, if X is a translate of G∂ inside G and is
defined over K, then max.{tr.deg(K〈α〉/K) : α ∈ X} = dim(G).

We now begin the proof proper.
Let dim(G) = n. Let a = ∂LG(x) ∈ LG(K), and let Y ⊆ G be the solution set of

∂ℓnG(−) = a. So Y is a coset (translate) of G∂ = Ker(∂ℓnG) in G, defined over K.
By the discussion of genericity above, for generic y ∈ Y (overK), tr.deg(K(y)/K) =
n. Our desired conclusion is that for all y ∈ Y , tr.deg(K(y)/K) = n. We claim
that this is equivalent to saying that Y has no proper differential algebraic subsets
defined over K. Let us briefly explain the equivalence. The differential equations
defining Y in G give, for all y ∈ Y , a rational control of ∂y in terms of y. Hence
differential algebraic subvarieties of Y defined over K have the form Z ∩ Y for
Z algebraic subvarieties of G defined over K, and our desired conclusion that Y
meets no proper algebraic subvariety of G defined over K is equivalent to Y having
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no differential algebraic subvariety defined over K. (This is is course related to a
version of Fact 2.4 (ii) for subvarieties rather than algebraic subgroups.)

So we will prove:

Lemma 5.1. Y has no proper irreducible differential algebraic subset defined over
K. (Or in model-theoretic language the formula “y ∈ Y ” isolates a complete type
over K.)

Proof. Globally the proof proceeds by induction on n. If n = 1, then G is either
Gm or an elliptic curve E. In either case (owing to Lemma 3.4 (iii)) G descends to
C, and so we finish by Proposition 4.3.

So let us assume n > 1. We will suppose that Z is a proper irreducible differential
algebraic subset of Y , defined over K, and look for a contradiction. This will be a
somewhat involved case analysis, reducing to the special cases discussed in Section
4.3.

Let S := {g ∈ G∂ : g + Z = Z} < G∂ be the stabilizer of Z. Then S is a
differential algebraic subgroup of G∂ defined over K. By Fact 2.4 (ii), S = S ∩G∂ ,
where S is the Zariski closure of S and is an algebraic D-subgroup of G defined
over K. Note that S is a proper subgroup of G, for otherwise S = G∂ and Z = Y .

Case I. S is infinite.

Let G′ be G/S (in fact it will be enough to quotient by the connected component
of S). Let π : G → G′ be the canonical K-rational surjective homomorphism. So
G′ is an almost semi-abelian D-group, defined over K, with dimension positive,
and < n and π is a homomorphism of D-groups, inducing a surjective K-rational
homomorphism Lπ from LG → LG′, which is also a homomorphism of D-modules
by Lemma 2.5. It follows that π(Y ) is the solution space of the equation ∂ℓnG′(−) =
a′, where a′ = Lπ(a). Note also that ∂LG′(x′) = a′, where x′ = Lπ(x) ∈ LG′(K).
By Lemma 4.2 the hypothesis (HX)K holds for x′. By the induction hypothesis,
π(Y ) has no proper differential algebraic subset defined over K. As π(Z) is a
differential constructible subset of π(Y ), defined over K, it follows that π(Z) =
π(Y ). This implies that Y ⊆ Z + S. As Z ⊆ Y , Y is a principal homogeneous
space for G∂ and S = S ∩G∂ , it follows that Y = Z + S. This contradicts S being
the stabilizer of Z and Z being a proper differential algebraic subset of Y . So Case
I leads to a contradiction.

Case II. S is finite.

Let H denote the maximal connected isoconstant D-subgroup of G (which is
defined over K). By Proposition 4.1, Z is contained in a coset (i.e., an orbit) Z ′ of
H∂ , and Z ′ is defined overK. We again have aK-rational surjective homomorphism
π : G → G/H of D-groups, with Lπ : LG → L(G/H) a surjective homomorphism
of D-modules. Again, Lπ(x) = x′ ∈ L(G/H)(K) and ∂L(G/H)(x

′) = a′ = Lπ(a) ∈
L(G/H)(K). But now π(Z) = y′ is a point in π(Y ) = {solutions of ∂ℓnG/H(−) =
a′} since Z ⊂ H, and this point is K-rational since π(Z) = π(Z ′) and Z ′ is defined
over K. Moreover, the hypotheses (HG)0 and (HX)K remain valid for G/H and
x′ (using Lemma 4.2).

We have three subcases:
(a) H = G.

This means that G itself is an isoconstant D-group, and we contradict Proposition
4.3.
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(b) H is a proper non-zero subgroup of G.
So dim(G/H) is both positive and < n, and we can use the induction hypothesis.
Since tr.deg(K(y′)/K) = 0, we have a contradiction.

(c) H = {0}.

By Lemma 3.13 (ii) G = Ã/UA, where A is an abelian variety over K with C-trace

0 and UA is the maximal unipotent D-subgroup of Ã. Moreover, y = y′ ∈ G(K)
and x ∈ LG(K) satisfy ∂ℓnG(y) = ∂LG(x). By Proposition 4.4, x ∈ WG(K) =
LWG(K), where WG is a proper algebraic subgroup of G defined over K. This
contradicts the hypothesis (HX)K .

We have shown that all cases lead to a contradiction. So Lemma 5.1 is proved,
as is Theorem 1.3.

5.2. Dropping (HG)0. We give a promised version of Theorem 1.3.

Theorem 5.2. Let G be an asa D-group over K, x ∈ LG(K) and assume that
(HX): for no proper algebraic subgroup H of G defined over K is x ∈ LH(Kdiff )

+ (LG)∂(Kdiff ).
Then for any y ∈ G(U) such that ∂ℓnG(y) = ∂LG(x), tr.deg(K(y)/y) = dim(G).

Proof. So note that there is now no restriction on the semi-constant part of G. But
the “arithmetic” hypothesis (HX)K on x has been strengthened to the differential
algebraic hypothesis HX. The proof is identical to that of Theorem 1.3 above,
except that the stronger hypothesis (HX) is easily seen to descend under quotients
by D-subgroups, while as already noted, there is no (HG)0 assumption in the
special cases covered by Lemmas 4.3 and 4.4 (in fact it is automatically true there.)

We take the opportunity of this discussion to point out that under either con-
dition (HX)K or (HX), we must consider all proper algebraic subgroups H of G,

not just its algebraic D-subgroups. For instance, if G = Ã for some non-constant
elliptic curve A/K, so that (LG)∂(K) = 0, and if 0 �= x ∈ LWA(K), then, y = x,
viewed as a point of WA ⊂ G, satisfies ∂ℓnGy = ∂LGx, in view of Corollary G.4
of the Appendix (see also the remark following Proposition 4.4). We then have
tr.deg.(K(y)/K) = 0 < dim(G), although since UA here vanishes, x lies in the Lie
algebra of no proper D-subgroup of G.

5.3. A counterexample. We give the simplest possible example showing that
in Theorem 1.3, the (HG)0 hypothesis cannot be dropped in general. Let K =
C(z)alg, let E be an elliptic curve defined over C and let B be a non-constant
extension of E by Gm, defined over K (such extensions are given by K-rational

points on the dual Ê of E, not lying in Ê(C)). We take as our asa D-group the

universal vectorial extension G = B̃ of B, and recall from Corollary 3.7 (or from

Fact H.3 of the Appendix) that LG is an extension of LẼ by LGm in the category
of D-modules over K.

Let x be a non-zero point in LE(C), which we lift to a point x̃ ∈ LẼ(C) and
finally to a K-rational point x ∈ LG(K) of LG. Then:

Claim I. G does not satisfy (HG)0. Indeed, its semi-constant part Gsa
0 is B itself,

which is not isoconstant.

Claim II. If y ∈ G(Kdiff ) satisfies ∂ℓnG(y) = ∂LG(x), then tr.deg(K(y)/K) ≤ 1.
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Proof. Let ∂LG(x) = a ∈ LG(K). Then the image of a under the projection to LẼ
is ∂LẼ(x̃) = 0. Hence the solution set of ∂ℓnG(−) = a in G(Kdiff ) projects onto

the solution set of ∂ℓnẼ(−) = 0 in Ẽ(Kdiff ), which is precisely Ẽ(C). Since the

fibers of the projection G → Ẽ are one-dimensional, the claim follows.

Claim III. (LG)∂(K) = (LGm)∂(K) (= LGm(C)).

Proof. Since Gm is the maximal constant subgroup of B, this follows from the
extension to mixed Hodge structures of the theorem of the fixed part, as given in
[33], Prop. 4.19.

Claim IV. x satisfies (HX)K .

Proof. The only proper algebraic subgroups H of G are Gm, Ga and Gm ×Ga. So
if x ∈ LH(K) + (LG)∂(K), then by Claim III x ∈ L(Gm × Ga), so it could not
project to a non-zero element of LE. This contradicts the choice of x.

Claims II and IV show that Theorem 1.3 is in general false without the (HG)0
hypothesis. On the other hand, Theorem 5.2 remains valid: since x̃ ∈ (LẼ)∂ , the
point x in this example lies in LGm(Kdiff )+ (LG)∂(Kdiff ), and therefore violates
hypothesis (HX).

5.4. Extension to several variables. As promised in Remark 1.2 (ii), here we
show how Corollary 1.1 implies its own extension to function fields K ′ in several
variables. For the sake of clarity, we repeat our notation in this new setting.

Let S′ be a smooth connected algebraic variety over C, and let K ′ = C(S′) be
its field of rational functions. Let π : B′ → S′ be a semi-abelian scheme of constant
toric rank, with generic fiber B′/K ′ and Lie algebra LB′/K ′, let A′/K ′ be the
maximal abelian quotient of B′, and let (A′

0, τ ) be the K
′/C trace of A′/K ′, where

we assume for simplicity that A′
0 is included in A′ and is equal to the K ′alg/C-trace

of A′/K ′alg. Further, let B′
0 be the pull-back of A′

0 to B′, which we again call the

semi-constant part of B′. Finally, let B̃′ be the universal vectorial extension of
B′, with generic fiber B̃′/K ′. We consider the exponential morphisms of analytic

sheaves exp
B̃′ : LB̃′an −→ B̃′an over S′an and a point x′ in LB′(K ′), extended to

x′ ∈ LB′(S′) and lifted to a section x̃′ of LB̃′(S′), for which we set ỹ′ = exp
B̃′(x̃′) ∈

B̃′an(S′an). Abbreviating this analytic section as ỹ′ = expB̃′(x̃′) and making use
of the same notations over all covers of S′, we have:

Theorem 5.3. Let B′/K ′alg be a semi-abelian variety, and let x′ be a point in
LB′(K ′alg). Assume that

(HB′
0): the semi-constant part B′

0 of B′ is defined over C;
(HX′/B′)K′alg : for any proper semi-abelian subvariety H ′ of B′, x′ /∈LH ′(K ′alg)

+ LB′
0(C).

Further, let x̃′ ∈ LB̃′(K ′alg) be a lift of x′. Then, the field of definition of the
point ỹ′ = expB̃′(x̃′) satisfies

tr.deg.(K ′alg(ỹ′)/K ′alg) = dim(B̃′).

Proof. We will show the existence of an algebraic curve S in S′, with function field
K = C(S), such that the restrictions B = B′

|S of B̃′ and x = x′
|S of x′ to S satisfy

the hypotheses of Corollary 1.1. Since the exponential morphisms commute with
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specialisation, and since transcendence degrees cannot increase under specialization,
Corollary 1.1 will then imply that

tr.deg.(K ′(ỹ′)/K ′) ≥ tr.deg.(K(ỹ′
|S)/K) = dim(B̃′);

hence the required equality.

Let s be a point in S′(C). The fiber B′
s of B′/S′ is a semi-abelian variety

over C whose maximal abelian quotient A′
s is by hypothesis the fiber at s of the

abelian scheme A′/S′. The fiber (B′
0)s of the semi-constant part B′

0/S
′ of B′/S′

is the pull-back to B′
s of A′

0, viewed as an abelian subvariety of A′
s. Because

of hypothesis (HB′
0), we may thereby identify (B′

0)s with B′
0. We denote by

κs : TsS
′ → H1(A′

s, TA
′
s) (resp. κ : Der(K ′/C) → H1(A′/K ′, TA′/K ′)) the

Kodaira-Spencer map attached to the abelian scheme A′/S′ at the point s (resp.
at the generic point of S′). Similarly, we denote by dsx

′ : TsS
′ → LB′

s (resp.
dx′ : Der(K ′/C) → LB′/K ′) the differential of x′ : S′ → LB′ at s (resp. at the
generic point of S′). The curve S to be constructed will be attached to a point
(σ, ∂σ) ∈ TS′(C) chosen in a certain dense open subset Ω of TS′, which we now
define in three steps.

First, consider the subset Ω1 ⊂ S′(C) formed by the points s ∈ S′(C) satisfying:
• Ω1: for any semi-abelian subvariety H/C of B′

s/C, there exists a semi-abelian
subscheme H′/S′ of B′/S′ such that H′

s = H.
By a standard argument (see [1], Lemma 4), the set Ω1 is the complement of a

countable union of analytic (and in fact algebraic, by [11]) subvarieties of S′an of
positive codimensions. (Recall that B′

s/C has at most countably many semi-abelian
subvarieties H.) Notice that by flatness, the extension H′ of H to S′ is unique.

Second, given our section x′ of LB′/S′, we attach to each proper semi-abelian
subscheme H′/S′ of B′/S′, with generic fiber H ′/K ′, a subset ∆H′ of TS′(C),
defined as follows: fix a decomposition of the K ′-vector space LB′ as (V0)K′ ⊕V1⊕
V2 ⊕ V3, where V1 := (LB′

0)K′ ∩ LH ′, while V0 is a C-subspace of LB0 generating
over K ′ a complement of V1 in (LB′

0)K′ , V2 is a complement of V1 in LH ′, and V3

is a complement of the sum (LB′
0)K′ + LH ′ of the previous ones in LB′. Notice

that since H ′ �= B′, V0 and V3 cannot both be {0}. Withdrawing a hypersurface
in S′, we may assume that these spaces extend to vector bundles over S′, and for
each s in the remaining open part of S′(C), we denote by x′

i(s) the corresponding
components of x′(s) ∈ LB′

s. We then set

∆H′ = {(s, ∂s) ∈ TS′(C),x′
3(s) = 0 and dsx

′
0(∂s) = 0}.

This set is an algebraic subvariety of TS′, which cannot fill up the (connected) space
TS′; otherwise we would get dx′

0(Der(K ′/C)) = 0 and x′ ∈ V1(K
′)+V2(K

′)+V0(C)
at the generic point of S′. Hence x′ ∈ LH ′(K ′)+LB′

0(C), contrary to the hypothesis
(HX′/B′)K′ which x′ satisfies. Consequently, the subset of TS′(C),

• Ω0 := TS′(C) \
⋃

H′ �=B′ ∆H′ ,

is the complement of a countable union of algebraic subvarieties of TS′ of positive
codimensions. Indeed, B′ has at most countably many semi-abelian subschemes
H′.

Finally, let κ1, ..., κh be the components of κ corresponding to the various iso-
typical factors of the abelian scheme A′/S. Withdrawing a hypersurface from S′,
we can assume that for all s ∈ S′(C), the rank of κs, hence of each of the κi,s,
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is maximal (i.e., equal to its generic rank). To each s, we then attach the subset
Ω2,s ⊂ TsS

′(C) formed by the vectors ∂s ∈ TsS
′(C) satisfying:

• Ω2,s: for each i = 1, ..., h, such that κi �= 0, we have κi,s(∂s) �= 0.
This set is the complement of a finite union of linear subspaces of TsS

′(C), each
of positive codimension since the corresponding Kodaira-Spencer map κi does not
vanish at s. Notice for later use that the indexes i such that κi = 0 correspond to
the isotypical factors of the K ′/C-trace A′

0 of A′.
We now define Ω as the subset of TS′(C) formed by the couples (σ, ∂σ) ∈ Ω0 such

that σ ∈ Ω1 and ∂σ ∈ Ω2,σ. Since TS
′(C) is a Baire set, Ω is dense, hence not empty.

We fix a point (σ, ∂σ) in Ω, as well as an arbitrarily chosen smooth algebraic curve
S ⊂ S′ passing through σ in the direction of ∂σ. Then the restriction B = B′

|S of

B′/S′ to S is a semi-abelian scheme over S, and we claim that B and the restriction
x = x′

|S of x′ to S satisfy the hypotheses of Corollary 1.1. As usual, we write B

and x for their values at the generic point of S, and we let K = C(S).
• (HB0): Ω2,σ ensures that the Kodaira-Spencer map attached to the restric-

tions to S of the non-constant factors of A′/S′ at σ do not vanish along TσS = C∂σ.
Therefore, the K/C-trace of the maximal abelian quotient A/K of B/K coindices
with A′

0, and the semi-constant part B0 of B/K coincides with B′
0, which is constant

by hypothesis (HB′
0). So, B/K satisfies hypothesis (HB0) of Corollary 1.1.

• (HX/B)Kalg : consider a proper semi-abelian subscheme H/S of B/S. It
specializes at σ to a semi-abelian subvariety H of Bσ = B′

σ, which Ω1 ensures to
extend to a semi-abelian subscheme H′/S′ of B′/S′, necessarily inducing H over
S. Assume for a contradiction that x(S) lay in LH(S) + LB0(C) = LH′(S) +
LB′

0(C). Specializing this relation at σ, where x(σ) = x′(σ), dσx0(∂σ) = dσx
′
0(∂σ),

we deduce that x3(σ) and dσx0(∂σ) would vanish and that (σ, ∂σ) would belong to
the prohibited set ∆H′ . Hence, x ∈ LB(K) does satisfy hypothesis (HX/B)Kalg

of Corollary 1.1, and this concludes the proof of Theorem 5.3.

6. K-largeness and a differential Galois-theoretic proof

We will make an additional assumption, K-largeness, on our asa D-group G
over K, and obtain the conclusion of Theorem 1.3, replacing the use of the “socle
theorem” (Proposition 4.1) by rather softer tools. At the time of writing we are
aware that the K-largeness hypothesis is very strong, but nevertheless as such
Galois-theoretic methods were the initial motivation of this paper (cf. [4], Remark
1), it seems appropriate to include this material. More to the point, the proof
of Theorem 1.3, which these methods provide in this case, is the exact copy of
Kolchin’s classical proof of the Ostrowski theorem and of its multiplicative analogue
(cf. Section 2 of [22]), and this suffices to justify their insertion here.

6.1. K-large algebraic D-groups. We begin in our general context, where K is
an arbitrary (small) algebraically closed differential subfield of U , all in character-
istic 0. For (G, s) an algebraic D-group defined over K, we say, following [31], that
(G, s) is K-large if G∂(Kdiff ) = G∂(K). This makes sense for arbitrary D-groups,
but we will restrict to the case where G is commutative and use additive notation.

Here are some examples, still with K arbitrary. A constant algebraic D-group
(G, s = 0) is automatically K-large (and even CK-large). A unipotent D-group,
although isoconstant, is K-large if and only if the corresponding D-module is com-
pletely solvable over K, while if A is an abelian variety over K with A = Ã/UA as in
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Remark 3.10, T is a torus, and G is of the form T ×A, then G is K-large. In other
words, the sharp points of an abelian variety A always satisfy A♯(Kdiff ) = A♯(K).
For the latter fact, it is enough to consider a simple abelian variety A, in which
case the statement that A♯(Kdiff ) = A♯(K) is precisely Lemma 2.2 of [27] (which
depends on work of Hrushovski and Sokolovic). On the other hand, it follows
from Proposition 6.1 below that over K = C(z)alg, the algebraic D-group G/K
considered in Section 5.3 is not K-large.

We now establish a relationship between the hypothesis (HG)0 and K-largeness,
in a quite general setting, using model-theoretic methods. Recall from Remark 3.10
the notation B for B a semi-abelian variety: B is the quotient of B̃ by its maximal
unipotent D-subgroup UB .

Proposition 6.1. Let K be an (algebraically closed) differential field. Assume
that CK has infinite transcendence degree and that K is the algebraic closure of a
differential field which is finitely generated (as a differential field) over CK . Let B
be a semi-constant semi-abelian variety over K, i.e., such that the abelian part of
B descends to CK . Then the following are equivalent:

(i) B is constant, i.e., descends to CK .
(ii) The algebraic D-group G = B is K-large.

Proof. (i) implies (ii) is immediate: we may assume that B is defined over CK . But

then B̃ is defined over CK and its uniqueD-group structure is the trivial one. Hence
UB coincides with the maximal unipotent subgroup WB of B̃, and G := B̃/UB = B
with the trivial D-group structure. But then G∂(Kdiff ) = G∂(CKdiff ) = G(CK) =
G∂(K).

(ii) implies (i). There is no harm in assuming that both T and A are defined
over CK (where T,A are the toric, respectively abelian, parts of B). We have our

exact sequence 0 → T → B̃ → Ã → 0 of D-groups, and note that Ã is defined
over CK and has trivial D-structure, while G = B is obtained by quotienting B̃ by
its maximal unipotent D-subgroup UB . Note that UB identifies with a unipotent
D-subgroup of Ã and is thus defined over CK . Then A♭ := Ã/UB is also defined
over CK , has trivial D-structure, and sits in the exact sequence of D-groups

(†) 0 → T → G → A♭ → 0.

From (†) we obtain the exact sequence 0 → T ∂ → G∂ → (A♭)∂ → 0 of differential
algebraic groups, from which, computing points inKdiff , we finally derive the exact
sequence of groups

(††) 0 → T (CK) → G∂(Kdiff ) → A♭(CK) → 0.

Let K0 be a finitely generated differential field contained in K over which G
is defined and such that K = (CK .K0)

alg. We now use the language of “generic
points” over K0, as discussed at the beginning of Section 5.1.

We will first show that we can find a generic point of G∂ over K0 which is also a
Kdiff -rational point. Let m = dim(G). We will use the exact sequence (††) above,
together with the assumption that CK has infinite transcendence degree and K0 is
finitely generated. Namely, we first choose a point of A♭ which is generic over K0

and is CK-rational. Let b ∈ G∂(Kdiff ) project to a. Now let c be a generic point
of T over K0, a, b, such that c is CK-rational. Finally, let d be the sum of b and
c. Then d ∈ G∂(Kdiff ), and it is straightforward to verify that tr.deg(K0(d)/K0)
equals m. So d is a generic point of G∂ over K0 which is also Kdiff -rational.
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As G is K-large, d ∈ G∂(K), and so d is in the algebraic closure in the model-
theoretic sense of (the finitely generated) K0 together with a finite tuple of elements
from CK . As every element of G∂ is a product of generic elements, it follows that
(in U) G∂ is contained (uniformly) in acl(C,K0) and so is definably isomorphic to
the group of C-points of an algebraic group defined over C. This implies (see Fact
2.6 of [23] for example) that G is isomorphic to an algebraic group over C and hence
over CKdiff = CK . The same is then true of B.

Recalling the notation at the beginning of Section 4.2 and in Remark 3.10, we
obtain:

Corollary 6.2. Let K be as in the previous proposition. Let G be an almost semi-
abelian D-group over K. Suppose that it is K-large. Then Gsa

0 descends to CK . In
other words, (HG)0 holds for G.

Proof. Note thatGsa
0 is aD-subgroup of aD-quotient ofG. Hence it is alsoK-large.

Now use Proposition 6.1.

6.2. Differential Galois theory. The point of K-largeness is that it allows a
Galois theory for equations of the form

(∗∗) ∂ℓnG(−) = a, where a ∈ LG(K).

Namely, suppose (G, s) is a K-large algebraic D-group and α ∈ G(Kdiff ) is a
solution of (∗∗). Let F = K(α), a differential subfield of Kdiff , and let Aut∂(F/K)
be the group of automorphisms of the differential field F which fix K pointwise. For
σ ∈ Aut∂(F/K), σ(α) is also a solution of (∗∗), so σ(α) − α ∈ Ker(∂ℓnG) = G∂

whereby σ(α) = α + ρσ for a unique ρσ ∈ G∂(Kdiff ) and by the K-largeness
assumption in fact ρσ ∈ G∂(K). As pointed out in [31], the map taking σ to
ρσ establishes an isomorphism between Aut∂(F/K) and a differential algebraic
subgroup of G∂(Kdiff ), which by Fact 2.4 (ii) is of the form H∂(Kdiff ) for H a D-
subgroup of G defined over K. Moreover there is a Galois correspondence between
differential fields in between K and F and D-subgroups of H defined over K (or
equivalently, by K-largeness, over Kdiff ).

With notation as above, here are some additional remarks taken from [31], to be
used below. Working in U and noting that H∂ acts on G, we see that the orbit of α
under H∂ coincides with its orbit under Aut∂(U/C.K) and is a differential algebraic
PHS for H∂ , defined over K. In particular, tr.deg(K(α)/K) = dim(H).

We can now give the promised Galois theoretic proof of Theorem 1.3 in the
K-large case.

Theorem 6.3. Let K be algebraically closed and of transcendence degree 1 over its
field of constants C. Let G be an almost semi-abelian D-group which is K-large.
Let x ∈ LG(K) and y ∈ G(U) be such that ∂ℓnG(y) = ∂LG(x). Assume x satisfies
(HX)K . Then tr.deg(K(y)/K)) = dim(G).

Proof. By Corollary 6.2, G satisfies (HG)0, so the theorem follows from The-
orem 1.3, but the present proof will avoid the difficult Proposition 4.1. Sup-
pose the conclusion fails, so it fails for some y in G(Kdiff), for which we as-
sume tr.deg(K(y)/K) < dim(G). Let the D-subgroup H of G be the differen-
tial Galois group of K(y)/K. As recalled above, Aut∂(K(y)/K) is isomorphic to
H∂(Kdiff ), and since dim(H) = tr.deg(K(y)/K), H is a proper D-subgroup of
G. Let G′ = G/H. The images y′, x′ of y, x under the projections G → G′ and
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LG → LG′ satisfy ∂ℓnG′(y′) = ∂LG′(x′). Also, by Corollary 6.2 and Lemma 4.2,
(HX)K is valid for x′ and LG′. But now, as the orbit of y underH∂ was defined over
K, y′ is K-rational, i.e., in G′(K). Furthermore, for any D-quotient G′′ of G′ de-
fined over K, these points y′, x′ project to rational points y′′, x′′ in G′′(K), LG′′(K)
still satisfying ∂ℓnG′′(y′′) = ∂LG′′(x′′) and (HX)K . Hence we may assume that G′

has no proper connected D-subgroups. In particular the maximal connected iso-
constant D-subgroup of G′ is either G′ itself or 0. Proposition 4.3 or 4.4 will then
give a contradiction.

Appendix: Exponentials on algebraic D-groups

By “the text”, we mean the main body of the present article.

A. Setting.

Let S be a smooth algebraic curve over C. In this appendix, we denote byK = C(S)
the field of rational functions on S, not its algebraic closure. Sometimes, we may
withdraw a finite set of points from S but still denote by S the resulting affine
curve. We write San for the Riemann surface attached to S(C). Finally, we fix
a nowhere vanishing vector field ∂ ∈ H0(S, TS) on S, which we identify with a
derivation of K, with constant subfield C.

We start with a commutative algebraic group G/K, geometrically connected
and with split maximal torus. Shrinking S if necessary, we fix a connected group
scheme π : G → S extending G over S, all of whose fibers have the same toric and
unipotent ranks. We denote by e its 0-section and by LG the pull-back e∗(TG/S)
of the relative tangent bundle of G over S. In other words, G is an algebraic
family {Gt, t ∈ S} of commutative algebraic groups over C, parametrized by S,
and LG is the algebraic family of their tangent spaces LGt at the origin. At the
generic point of S, we have the algebraic group G/K with (relative) tangent bundle
TG/K ≃ G× LG; this is denoted by T (G) in Section 2 of the text.

Remark A.1. We will also need to consider G as an analytic family Gan of complex
Lie groups over the Riemann surface San. We will drop the exponents an when the
context is clear. Moreover, for notational ease, several results below are written
at the generic point of S, but actually extend to S, i.e., can be “bold-faced”. We
can then “analyticize” them, i.e., add an both on the base and on the fiber spaces
under consideration.

The (total) tangent bundle TG of G sits in an exact sequence

0 → TG/S → TG → π∗(TS) → 0

of vector bundles over G, and is also a group scheme over TS. When t runs through
S, its fibers (TG)(t,∂t) yield a subgroup scheme T∂G over S, whose generic fiber is
called the twisted tangent bundle T∂G/K. A section y of G/S provides a section
dy of TG/TS, hence a section dy(∂) of T∂G/S, which in accordance with the text,
we denote by (y, ∂y) ∈ T∂G(K), or sometimes just ∂y, at the generic point of S.
Viewed over K, T∂G is a group extension of G by LG (in particular, there is a
canonical identification of LG with the fiber above e of T∂G; cf. Section 2.2 of the
text and [31], Section 2). The zero section of T∂G is de(∂), written (e, ∂e) ∈ T∂G
at the generic point of S.

Viewed over G, T∂G is a torsor under TG/K , and as such, is described by a

class in H1(G, TG/K). Assume now that π is proper. We can then consider the
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Kodaira–Spencer map κ : TtS → H1(Gt, TGt/C(t)) attached to the abelian scheme
G/S at the generic point t of S. By definition, its value κ(∂) at ∂ is the class of the
torsor T∂G. Actually, properness is not required to carry out this construction. In
the proper case, it is classical that κ(∂) vanishes if and only if the abelian variety
G/K descends to C. See Lemma 3.4 (iii) of the text for the semi-abelian case, and
Lemma 3.4 (ii) for counterexamples in the general case.

B. The functors T∂ , L on algebraic groups.

As explained in Section 2.3 of the text, T∂ and L are functorial: given a morphism of
algebraic groups f : G1 → G2, we have the twisted differential T∂f : T∂G1 → T∂G2,
with a commutative diagram over f : G1 → G2, and the (vertical) differential at e1
of f , namely Lf : LG1 → LG2. All this can be bold-faced, i.e., comes from group
schemes over S, where L now stands for dG/S,e.

We will sometimes apply to the algebraic group T∂G/K itself (and to its exten-
sion over S) what we are doing on G. The following identifications will be crucial.

Lemma B.1. Let G/S be a group scheme as above. There is a functorial iso-
morphism between the group schemes L(T∂G) and T∂(LG). More precisely, given
f : G1 → G2, we can identify T∂(Lf) : T∂(LG1) → T∂(LG2) with L(T∂f) :
L(T∂G1) → L(T∂G2).

Proof. This is a straightforward extension over S of Lemma 2.1 of the text, whose
proof can be viewed as the study of the functor T itself, i.e., of the total differential
df on TG1. In what follows, we often write these identifications only at the generic
point of S. Notice that the formula LT∂ = T∂L is compatible with the identification
of LG with (T∂G)e, so that the two LL’s which they provide coincide. Also, recall
that LLG is canonically isomorphic to LG (more generally, when V is a vectorial
group, we always identify V and LV , but we sometimes keep to the notation LV
to remove ambiguities).

For later use, we point out that

T∂f(y1, ∂y1) = (f(y1), ∂(f(y1)))

for any y1 ∈ G1, and that T∂f induces Lf on the fiber (T∂G1)e1 , identified with
LG1.

C. Algebraic D-groups and ∂ℓnG.

As in Section 2.2 of the text, we now assume that the group extension T∂G is
trivial, in other words, that its class in H1(G, TG/K) vanishes, and we let s be a
homomorphic section of T∂G → G, or equivalently, a vector field on G above ∂ such
that the corresponding derivation on OG respects the group structure of G. We
then say that (G, s) is a (commutative) algebraic D-group over K, and we denote
by ADG the corresponding category. The logarithmic derivative of (G, s) (which
should be indexed by s) is then defined by

∂ℓnG : G → (T∂G)e ≃ LG : y �→ ∂y − s(y).

Shrinking S if necessary, we can extend s to a section s : G → T∂G over S, and we
then set

∂ℓnG : G → (T∂G)e ≃ LG : y �→ dy(∂)− s(y).

When V is a vectorial group over K (i.e., V/S is a vector bundle), ∂ℓnV : V → V
and ∂ℓnV : V → V are the contractions with ∂ of connections in the usual sense.
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We are going to associate to the logarithmic derivative ∂ℓnG two (contracted
with ∂) connections on the vectorial group LG:

• an algebraic one: ∂LG (which is the one of the text itself);
• an analytic one: exp∗

G
(∂ℓnG) = ∂ℓnG ◦ expG;

this second one is actually defined on LGan, but see Remark G.6 for a formal
approach. We will compare them, in the case G has a unique structure of ADG,
to:

• the Gauss-Manin connection ∇LG,∂ (again, algebraic).
More precisely, withdrawing some points of S if necessary, the first one extends

over S, i.e., is the value at the generic point of S of a connection ∂LG on the vector
bundle LG, and we can look at it analytically, as one on LGan. Ditto for the third,
one of whose characterizations (see Sections H and I) comes from LGan. In this
analytic context, we will prove on the one hand that

∂LG = exp∗G(∂ℓnG),

and on the other hand that

∇LG,∂ = exp∗G(∂ℓnG),

so that ∂LG = ∇LG,∂ . All this is on (LGan)/San, but these are equalities, not just
isomorphisms. So, we will finally deduce that for any almost semi-abelian D-group
G,

∂LG = ∇LG,∂ on LG.

However, the relation with exp∗
G
(∂ℓnG) will also be useful for other parts of our

paper.

D. The connection ∂LG on LG.

As explained in Section 2.3 of the text, this is easy to define in view of Lemma
B.1, but we repeat the argument in order to specify which shrinking of S may
be necessary. The morphism of algebraic groups s : G → T∂G has a vertical
differential Ls : LG → LT∂G at the zero section e, which, under the identification
LT∂G = T∂LG, can be viewed as a section of T∂LG → LG. We have then defined

∂LG := ∂ℓn(LG,Ls)

as the logarithmic derivative of the ADG structure on LG defined by this section,
i.e.,

∂LG : LG → LLG = LG : x �→ ∂x− Ls(x).

This is a connection on the vector group LG/K.
Now, restricting S if necessary, we may assume that s extends to an OS-section

s of T∂G → G. Then Ls extends over the same base to an OS-homomorphism
Ls = dG/S,e(s) : LG → LT∂G. With the identifications of Lemma B.1 in mind,
the formula

LG ∋ x �→ ∂LGx = dx(∂)− Ls(x) ∈ LG

then defines (the contraction with ∂ of) a connection on the vector bundle LG,
which coincides with ∂LG at the generic point of S.

We point out that the description (given at the end of Section 2.3) of ∂LG as
the differential L∂ℓnG of ∂ℓnG at the identity, in the sense of Kolchin’s differential
algebraic geometry, could also be carried out in the present setting.
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Remark D.1. Let V be a vectorial subgroup of G. If V is an ADG subgroup of
(G, s), i.e., if s(V ) ⊂ T∂V ⊂ T∂G, i.e., if s induces a section sV of T∂V → V , the
differential LsV : LV ≃ V → LT∂V ≃ T∂V of sV can be identified with sV , and we
get

(∂LG)|LLV=LV = (∂ℓnG)|LV=V .

We will show in Corollary G.4 below that this relation still holds true when the
vectorial subgroup V is not an ADG subgroup of G.

E. The exponential map on Gan.

For each t ∈ S, we can consider the exponential map expGt
: LGt(C) → Gt(C) of

the connected Lie group Gan
t attached to Gt(C). Its kernel Pt is the Z-module of

periods of Gan
t . These patch into an exact sequence of analytic sheaves of abelian

groups over San :

(†) 0 → P → LGan → Gan → 0 ,

whose third arrow expGan induces expGt
above each t. Its kernel P will be described

in Section H. Following Remark A.1, we will drop the exponents an when the
exponential morphism is concerned. Typically, expG can only mean expGan , with
its source the analytic vector bundle L(Gan) = (LG)an over San.

Let us now collect some properties of this San-morphism expG : LGan → Gan.
Writing the group law on G additively, it is characterized by the joint conditions
that:

(i) ∀U ⊂ San, ∀x1,x2 ∈ LGan(U), expG(x1 + x2) = expG(x1) + expG(x2);
(ii) LexpG = idLG (under the usual identification LLG = LG).

Here, LexpG = dG/S,e expG means the vertical differential of expG along the zero
section e, which is still meaningful in the analytic setting.

So, we must repeat Sections A and B in their entirety in the context of analytic
sheaves of abelian groups over San. More precisely, the situation is as follows: we
have two (algebraic) group schemes G1,G2 and an analytic morphism φ : Gan

1 →
Gan

2 over San. We can then define T∂φ : T∂G
an
1 → T∂G

an
2 , Lφ : LGan

1 → LGan
2 , we

can again identify the San-sheaves T∂LG
an
i and LT∂G

an
i , and get LT∂φ = T∂Lφ.

A typical example will be given by

G1 = LG,G2 = G, φ = expG.

From (i) and (ii), we immediately deduce the well-known property:
(iii) ∀φ : Gan

1 → Gan
2 , we have φ ◦ expG1

= expG2
◦ Lφ,

and the important fact that
(iv) if V is a vectorial group scheme (= vector bundle) over S, then expV = idLV

in the usual identification LV = V.
If G1 is a subgroup of G2, property (iii) shows that expG1

is the restriction to
LG1 of expG2

. Consider in particular the exponential map expT∂G
: LT∂G → T∂G

of the group scheme T∂G. Its restriction to the Lie algebra LLG = LG of the
vectorial subgroup G1 = LG of G2 = T∂G is the exponential map expLG of LG.
By property (iv), we therefore have (the trivial, but crucial!):

Lemma E.1. For any algebraic group G,
(v) (expT∂G

)|LLG=LG⊂LT∂G
= expLG = idLG.

This property should not be confused with (ii). (Recall that we are indexing the
exponential maps by the groups, not by their Lie algebras.)
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F. The connection exp∗
G
(∂ℓnG) on LGan.

Let us make a preliminary comment on pull-backs of connections in the classical
case. Let V1, V2 be two vector spaces over K, let ∇2 : V2 → V2 ⊗ Ω1

K/C be a

connection on V2, and let f : V1 → V2 be a K-linear map. In general we cannot
define the pull-back ∇1 := f∗(∇2) of∇2 under f , but we can if f is an isomorphism.
Indeed, ∇1 := (f ⊗ 1)−1 ◦∇2 ◦ f is a connection on V1. Notice that it is the unique
connection such that f : (V1,∇1) → (V2,∇2) is a horizontal morphism.

Now let f : G1 → G2 be a morphism of commutative algebraic groups over
K, and let s2 : G2 → T∂G2 be an ADG structure on G2. In general, we cannot
define the pull-back of s2 or of ∂ℓnG2

under f , but we can if f is an isogeny
(i.e., a finite covering). Indeed, for any y1 ∈ G1 with y2 = f(y1), T∂f then
induces an isomorphism on the fibers (T∂G1)y1

→ (T∂G2)y2
, and we may set

s1(y1) =
(

(T∂f)y1

)−1
(s2(y2)) : G1 → T∂G1, thereby defining the unique logarith-

mic derivative ∂ℓnG1
:= f∗(∂ℓnG2

) : G1 → LG1 on G1 such that f is horizontal, in
the sense that

Lf ◦ ∂ℓnG1
= ∂ℓnG2

◦ f.

Indeed, (T∂f)(y1, ∂y1) = (f(y1), ∂(f(y1))), and L is the restriction of T∂ above
the zero section so that (Lf)(∂y1 − s1(y1)) = (T∂f)((y1, ∂y1) − (y1, s1(y1))) =
(T∂f)(y1, ∂y1)− (T∂f)(y1, s1(y1)) = (y2, ∂y2)− (y2, s2(y2)) = ∂(y2)−s2(y2) ∈ LG2.

Let us note for the record that the last paragraph also shows that if G1, G2 are
algebraic D-groups and f : G1 → G2 is a D-homomorphism (homomorphism of
algebraic D-groups), then

Lf ◦ ∂ℓnG1
= ∂ℓnG2

◦ f.

The construction above extends word for word over S, and it can therefore be
bold-faced and analyticized. Now, more generally, we can consider an analytic
morphim φ : Gan

1 → Gan
2 . As soon as φ is a covering (not necessarily finite, but

with discrete kernel), the same construction applies, and parallel with s1, we obtain
an analytic section σ1 : Gan

1 → T∂G
an
1 , hence an analytic logarithmic derivative

∂ℓnGan
1

:= φ∗(∂ℓnG2
) : Gan

1 → LGan
1

on Gan
1 such that Lφ ◦ ∂ℓnGan

1
= ∂ℓnGan

2
◦ φ.

Since expG is an analytic covering, we may apply the latter construction to the
situation G1 = LG,G2 = G, φ = expG. We thereby obtain (the contraction with
∂ of) an analytic connection on LGan :

exp∗G(∂ℓnG) : LGan → LGan,

under the usual identification of the vector bundles LLG = LG over S.
The horizontality of φ (worked out in the algebraic setting of f in the previous

section), applied to the present case φ = expG, gives

LexpG ◦ exp∗G(∂ℓnG) = ∂ℓnG ◦ expG,

and since LexpG = idLG by property (ii), we eventually have

Lemma F.1. exp∗
G
(∂ℓnG) = ∂ℓnG ◦ expG.
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G. exp∗
G
(∂ℓnG) = ∂LG.

Let G be an arbitrary commutative algebraic D-group. So, a section s : G → T∂G
is fixed and extended to s : G → T∂G as usual. Given a local section x ∈ LGan(U),
we proceed to compute exp∗

G
(∂ℓnG)(x) = ∂ℓnG ◦ expG(x) and will show:

Proposition G.1. Let G/K be an algebraic D-group. Then, exp∗
G
(∂ℓnG) = ∂LG.

However, we will not bold-face everything in this section (not speaking of the
already dropped exponents an), in the hope that the context is clear.

It is at this point that we need the exponential map of the algebraic group T∂G
itself (more properly, the exponential morphism of the analytic family T∂G

an).
So, we have expT∂G

: LT∂G
an → T∂G

an, abbreviated as expT∂G. By the ana-
lytic version of Section B, we may identify its source with T∂LG

an. Our proof of
Proposition G.1 will in particular make use of Lemmas E.1 and F.1.

By definition,
∂LG(x) = ∂x− Ls(x),

while
∂ℓnG(expG(x)) = ∂(expG(x))− s(expG(x)).

By property (iii), s(expG(x)) = expT∂G(Ls(x)) ∈ T∂G, and we claim (see Lemma
G.3 below) that ∂(expG(x)) = expT∂G(∂x) ∈ T∂G. So,

∂ℓnG(expG(x)) = expT∂G(∂x)− expT∂G(Ls(x)) = expT∂G

(

∂x− Ls(x)
)

.

But ∂x− Ls(x) = (x, ∂x)− (x, Ls(x)) is a point of T∂LG = LT∂G lying in the Lie
algebra LLG of the vectorial subgroup LG of T∂G. By property (v) in Lemma E.1,
we therefore have

expT∂G

(

∂x− Ls(x)
)

= idLG

(

∂x− Ls(x)
)

= ∂x− Ls(x) = ∂LG(x),

and the proposition is established.

Remark G.2. This computation, where we lift questions on G to T∂G and then
use the vectorial properties of its subgroup LG, is reminiscent of methods from
universal vectorial extensions. But notice that our algebraic D-group G is already
(essentially) a universal extension.

It remains to show that

Lemma G.3. For any algebraic group G and any x in LG, we have ∂(expG(x)) =
expT∂G(∂x) ∈ T∂G.

Proof. We already know (by the analytic version of the last relation in Section B)
that ∂(expG(x)) = (T∂expG)(∂x). We must now prove that

T∂expG = expT∂G.

Since T∂expG is a group morphism, we are reduced, in view of the properties (i)
and (ii) characterizing the exponential morphism expT∂G of T∂G, to check that

LT∂expG = idLT∂G.

By the analytic version of Lemma B.1, LT∂expG = T∂LexpG, and LexpG = idLG by
property (ii) for expG. So, the LHS is T∂idLG. Now, the RHS is idLT∂G = idT∂LG,
and the requested identity

T∂idLG = idT∂LG

actually holds true for any algebraic group, not necessarily of the type LG.
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Corollary G.4. Let V/K be an arbitrary vectorial subgroup of G, identified with
its Lie algebra LV ⊂ LG and with LLV ⊂ LLG. Then

(∂LG)|V = (∂ℓnG)|V .

In particular, V is an ADG subgroup of G if and only if it is a ∂LG-submodule of
LG.

Proof. In view of property (iv) of the exponential map expV = expG|LV , we deduce
from Proposition G.1 that indeed,

∂LG(v) = ∂ℓnG(expG(v)) = ∂ℓnG(v)

for any v ∈ V . Notice that contrary to Remark D.1, this formula was not immedi-
ately clear. In our paper, it will replace the role of Remark 1.4 of [9], p. 64. It also
clarifies the role of hypothesis (H) at the end of Section I.

The last sentence of Corollary G.4 can be stated in greater generality, as follows.

Corollary G.5. Let H/K be a connected algebraic subgroup of G with Lie algebra
LH. Then, H is an ADG subgroup of G if and only if LH is a ∂LG-submodule of
LG.

Proof. Left to right, which is a special case of Lemma 2.5 of the text, it is clear from
the definition of ∂LG with sections. For right to left, notice that expH = expG|LH ,
so that for any local section y := expG(x),x ∈ LH of H over a small disk U
in S, ∂ℓnG(y) = ∂LG(x) ∈ LH(U). Therefore, for any y ∈ H, ∂ℓnG(y) lies in
LH ≃ (T∂H)e, and s(y) = ∂y − ∂ℓnG(y) does lie in T∂H.

Remark G.6. In both Sections D and E, we used only the properties of the exponen-
tial morphism of the formal group scheme Ĝ = formal completion of G along the
zero section e. This formal exponential is again entirely characterized by proper-
ties (i) and (ii) of Section D. Consequently, the whole development of these sections

goes through, with Gan replaced by Ĝ. The complex-analytical properties of expG,
reflected in the study of the full exact sequence (†), are needed only in the next
sections.

H. Gauss-Manin: ∇LG,∂ = exp∗
G
(∂ℓnG).

Given a connected commutative algebraic group G/K, we extended it to a group
scheme G/S and considered in Section E the exponential sequence

(†) 0 → P → LGan → Gan → 0 .

Recall now from Section A that we are assuming that the fibers Gt, t ∈ S(C),
have constant toric and unipotent ranks, which amounts to their having constant
topological type. This can always be achieved by removing a finite set of points
from S. Under this assumption, the kernel P of (†) is a local system over San,
dual to the local system R1π∗(Z) formed by the Betti cohomology groups of the
fibers Gt. For any open U ⊂ San, the sections in P(U) ⊂ LGan(U) are killed
by the exponential morphism expG. In particular, as soon as G is an algebraic D-
group, Lemma F.1 shows that they are horizontal sections of the analytic connection
exp∗

G
(∂ℓnG) = ∂ℓnG ◦ expG. In view of Proposition G.1, the local sections of P

are therefore horizontal for the connection ∂LG:

∀U ⊂ San, ∀λU ∈ P(U), ∂LG(λU ) = 0.
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Now, assume that LGan is locally generated over OSan by P. There then exists
at most one connection on LGan killing P. So, any connection on LGan killing P
will coincide with exp∗

G
(∂ℓnG) = ∂LG. This is the principle, borrowed from [24],

on which the whole present section is based.
We are now going to define the Gauss-Manin connection ∇LG on LG when G

is an almost semi-abelian D-group. The definition is that of [8] when G is the
universal vectorial extension of a semi-abelian variety, and the general case follows
by taking a quotient. As in the text, we will use the following notation. We write
B for the maximal semi-abelian quotient of G, and B̃ for the universal vectorial
extension of B. Therefore, B is an extension of an abelian variety A/K by a torus
T , which we have assumed to be split over K. Recall from Lemma 3.4 (ii) that

B̃ carries a unique structure of an algebraic D-group. By definition of an almost
semi-abelian D-group (cf. Section 3.1 of the text), there exists a canonical vectorial

subgroup V of B̃, which is an algebraic D-subgroup of B̃, and such that G = B̃/V .
We endow G with the quotient ADG structure, which is actually the unique ADG
structure one can put on G; see again Lemma 3.4. So, ∂ℓnB̃ and ∂ℓnG are well
defined.

In these conditions, the topological hypothesis made on the fibers of the group
scheme G/S implies that B/K can be continued to an extension B/S of an abelian
scheme A/S by the constant torus T = T × S. In other words, the one-motive
M = [0 → B] is smooth over S in the sense of Deligne [15], III, 10.1.10. Then,

[0 → B̃] is the universal vectorial extension of M , and the vector bundle LB̃ is its de

Rham realization TdR(M); see [15], loc. cit., also [3]. Finally, we denote by P̃ ⊂ LB̃

and P ⊂ LB the kernels of the exponential exact sequences of the sheaves B̃an and
Ban over San. In particular, P is the Betti realization TZ(M) of the one-motive
M .

Since the exponential maps have no kernel on vectorial groups, the local sys-
tems P,P , P̃ are isomorphic as abstract ZSan -sheaves. Tensored with OSan , they
all define the same vector bundle, say P ⊗ OSan , which, as said above, carries a
unique connection ∇ = idP ⊗ dSan/C (equivalently ∇, ∇̃) relative to which they are
horizontal. Now, by [8], Facts 2.2.2.1 and 2.2.2.2, we have:

Fact H.1. The natural map

P̃ ⊗ OSan → LB̃an

is an isomorphism of vector bundles over San, and there exists an algebraic connec-
tion ∇LB̃

on the OS-module LB̃ = TdR(M) such that ∇̃ and ∇LB̃an coincide under

this isomorphism (i.e., such that ∇LB̃
kills the local sections of P̃). We define the

Gauss-Manin connection ∇LB̃ on LB̃ as the connection induced by ∇LB̃
at the

generic point of S.

This fact reflects the horizontality of the canonical pairing “integration of forms
against cycles” between TZ(M) = P ⊗ OSan , endowed with ∇, and the vector
bundle H1

dR(B/S) ≃ TdR(M)∗ formed by the de Rham cohomology groups of the
fibers of the semi-abelian scheme B/S, endowed with the algebraic Gauss-Manin
connection, as originally defined in [18]. For a slightly different presentation, see
[1] and [33].

Fact H.2. When B = A is an abelian variety, ∇LÃ
reduces to the dual of the

classical Gauss-Manin connection on the de Rham cohomology group H1
dR(A/S),
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as described in [15], II, [14]. Notice that part (ii) of the corollary below, restricted
to the study of ∇LÃ

, is the only property of Gauss-Manin connections needed in
the text (see Section 4.2, (I), (II)).

NB: in this proper case B = A, the connection ∇p described by Buium in [9],
Chapter 3.1, Remark 1.4, p. 64, coincides with the above ∇LÃ,∂ . For an extension

to the general case, see [9], Chapter 3.2, Theorem 2.2 (3).

Fact H.3. In the general case, ∇LB̃
is an extension, in the category of D-modules

over S, of ∇LÃ
by ∇LT (the latter one is a direct sum of copies of the trivial

D-module (OS , d)). In other words, LT is stable under ∇LB̃
.

This merely means that the Gauss-Manin connection respects the weight filtra-
tion of the smooth one-motive M . This standard fact from [8], 2.2.2.1, reflected on

each fiber B̃t by [15], III.10.1.8, can in fact also be deduced from Corollary 3.7 of
the text, combined with (the easy side of) Corollary G.5 above.

By the definition in Fact H.1, ∇LB̃
kills the local system P̃ ⊂ LB̃an. The

principle recalled earlier therefore implies

∇LB̃,∂ = exp∗
B̃
(∂ℓn

B̃
).

Finally, the vectorial subgroup V of B̃ such that G = B̃/V is by hypothesis a D-

subgroup of G. By Remark D.1 (or the easy side of Corollary G.5), V = LV ⊂ LB̃
is stable under the connection ∂LB̃, i.e., under exp∗

B̃
(∂ℓnB̃) (see Section G), i.e.,

under ∇LB̃ (by what has just been proved). We may therefore define the algebraic

Gauss-Manin connection ∇LG on LG = LB̃/V as the quotient connection induced

by ∇LB̃ (and everything can be bold-faced). Since ∇LG kills the image P of P̃ in
LGan, and since P still generates LGan locally, the principle again gives:

Proposition H.4. Let G/K be an almost semi-abelian D-group. Then exp∗
G
(∂ℓnG)

= ∇LG,∂ on LGan.

At long last:

Corollary H.5. Let G/K be an almost semi-abelian D-group, let B be its maximal
semi-abelian quotient, let T be its toric part, and let A0 be the K/C-trace of its
maximal abelian quotient A. Then:

(i) ∂LG coincides with the Gauss-Manin connection ∇LG,∂ .
(ii) Assume that B = A× T . Then:
(I) the connection ∂LG on LG is semi-simple;

(II) its K-rational horizontal vectors lie in the image LG0(C) of LÃ0(C)×LT (C)
in LG.

(iii) In all cases, T is an ADG subgroup of G.

Proof. Combining Propositions G.1 and H.4, we get (i). Assertion (ii), which
only requires Fact H.2, then follows from the semi-simplicity theorem of [15], II,
Théorème 4.2.6, and from the theorem of the fixed part of loc. cit., Corollaire 4.1.2.
As for (iii), it of course directly follows from Corollary 3.7 of the text, as pointed
out in the proof of Lemma 3.13 (i). But notice that it also follows from Fact H.3,
together with the less obvious side of Corollary G.5.

Remark H.6. In the general case where B is a non-isotrivial extension, the first
part of assertion (ii) of this corollary does not hold, i.e., ∇LG is not semi-simple:
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this can be deduced from the version of Manin’s theorem of the kernel studied in
Section J, applied to the dual of A. The theorem of the fixed part of [33] provides
an analogue of the second part of (ii), as illustrated by Claim III of Section 5.3 of
the text.

I. Almost semi-abelian D-groups: An analytic approach.

Here we give a different approach to Section H, which still relies on Fact H.1 to deal
with universal extensions (and marginally on Fact H.3), but which may be nicer
as it defines ∇LG directly on LG, with no prior analysis of G. Let G/K be any
commutative algebraic group, not necessarily an ADG. By Chevalley’s theorem, it
is a vectorial extension of its maximal semi-abelian quotient B. So, G is a push-out
of the universal vectorial extension B̃ of B, but not necessarily a quotient of B̃.

Consider the natural map

j : P ⊗OSan → LGan.

We know that P ⊗OSan carries a unique connection ∇ killing the local system P.
By Fact H.1 of the previous section, combined with the isomorphism P ≃ P̃, we
know that ∇ ≃ ∇̃ “is” the algebraic Gauss-Manin connection ∇LB̃

on LB̃ (which
we again denote by ∇ below). The discussion now goes as follows.

• Assume that j is an isomorphism, i.e., both that ZS-linearly independent
periods are OS-linearly independent and that LGan is locally generated by P.
Then G = B̃, and we just set ∇LG := ∇. Notice, as in Malgrange’s lecture notes
[24], that this hypothesis holds if and only if the fibersGt ofG/S are all analytically
isomorphic to Cn/Zn ≃ (C)∗n, i.e., that analytically, they are all isomorphic to a
torus (Gm)n. Of course, they will not be so algebraically if B has a non-trivial
abelian part (as in Serre’s classical counterexample).

• Now, merely assume that j is surjective, i.e., that LGan is locally generated
by P, and consider the kernel V = Ker(j) of j. This OSan -module is in general not
stable under ∇. For instance, if G = A is proper, V is the first step of the Hodge
filtration (cf. [15], II. 4.4.2 and also III. 10.1.3.1), and ∇(V) ⊂ V if and only if A is
constant. But assume further that V is a sub-∇-module, i.e., that

• (H) Im(j) = LGan and ∇(Ker(j)) ⊂ Ker(j).
Then, we can define ∇LGan as the quotient connection which ∇ induces on

LGan = (P ⊗ OSan)/V = LB̃an/V . We do not yet know whether ∇LGan is alge-
braic.

Let us now show that it is, thereby allowing us to write it ∇LG at the generic
point of S (and finally, to call it the Gauss-Manin connection on LG). More pre-
cisely:

Proposition I.1. (i) under (H), the connection ∇LGan comes from an algebraic
connection ∇LG on LG;

(ii) (H) holds only if (and if) G is an almost semi-abelian D-group.

Proof. i) From Fact H.3 and the well-known fuchsianity of the Gauss-Manin con-
nection in the proper case as in Fact H.2, we deduce that ∇ too is a fuchsian
connection. The ∇-stable OSan -module V is therefore algebraic, i.e., of the form
Van, for some OS-submodule V of LB̃. So, the quotient connection is indeed al-
gebraic. Let us temporarily denote by V ′ the K-vector subspace that V defines at
the generic point of S, so that LG = LB̃/V ′.

ii) First, the surjectivity of j implies that G admits no Ga factor, i.e., is a

quotient B̃/V (rather than just a push-out) of B̃ by some vectorial subgroup V/K
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of B̃. From the relation LG = LB̃/V ′, we deduce that LV = V ′. In particular,
LV is stable under ∇ = ∇LB̃ , which is equal to ∂LB̃ by the main principle of the
previous section. Now, the less immediate part of Corollary G.5 (in fact, here, of

Corollary G.4) implies that V is an algebraic D-subgroup of B̃. Therefore, G is
indeed an almost semi-abelian D-group.

The converse implication is easier; see the previous section. Our point here is that
the algebraic notion of an almost semi-abelian D-group is entirely described by the
analytic hypothesis (H), whose first assumption can be viewed as a transcendental
analogue of Lemma 3.1 (iii) of the text.

Conclusion.

Given an algebraic D-group G/K, with logarithmic derivative ∂ℓnG, we have con-
structed four connections (contracted with ∂) on its Lie algebra LG, and they all
coincide:

• the purely algebraic ∂LG, as used in the text;
• the differential-algebraic L∂ℓnG (not used);
• the analytic (and actually formal) exp∗G(∂ℓnG) = ∂ℓnG ◦ expG;
• the purely algebraic ∇LG,∂ (if G is an almost semi-abelian D-group).
In what follows, as well as in the text itself, we identify them using only the

notation ∂LG, which we call the logarithmic derivative of LG.
The next sections of the Appendix are of a different nature. As seen in the

text, our main theorem, Theorem 1.3, relies in an essential way on the Manin-
Coleman-Chai theorem of the kernel. Although this result is well documented in
the literature (see [25], [13], [12]), the topic is delicate (see [13], [5]), and it seemed
useful to provide the reader with a self-contained proof of what we need. We have
taken the opportunity of this exercise to rewrite the results in the language of
logarithmic derivatives.

J. Manin’s theorem.

In this section, we present a weak version of Manin’s theorem of the kernel, in
preparation for the next section on Chai’s sharpening, as needed in the last step
of both proofs of our main theorem; see Proposition 4.4, Section 5.1 and Section 6
of the text. The proof given here is essentially the analytic one of Coleman [13],
Theorem 1.4.3, which, at this point, is close to Manin’s initial proof [25].

From now on, we restrict ourselves to the proper case of an abelian scheme over
S, as in Fact H.2 of Section H. So, an abelian variety A/K is given and extended
to an abelian scheme π : A → S. We have its 0-section e and the pull-back
LA = e∗(TA|S) of the relative tangent bundle of A over S. As in the introduction
to the paper, we let (A0, τ ) be the K/C trace of A/K. After base change to a finite
cover of S, we may assume that it is also the Kalg/C-trace of A/Kalg and that τ is
an embedding. We denote by A0 := A0 × S the abelian subscheme of A extending
A0.

As in Section H, the kernel of the exact exponential sequence of analytic sheaves
over San,

(†A) 0 → P → LAan −→ Aan → 0,

is a local system P of Z-modules of rank 2g = 2dimA over San, which can be
identified with the dual of the local system R1π∗(Z) formed by the Betti cohomology
groups of the fibers At.
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Since π is proper, any point y of A(K) extends uniquely to a section y ∈ A(S),
and we will freely use the transition from normal to bold-face characters. On the
Lie algebra level, a point x of LA(K) extends to a section of LA only over a Zariski
open, but still dense, subset of S (which depends on x).

Lemma J.1. Let x ∈ LAan(San). Assume that y := expA(x) ∈ Aan(San) actually
lies in A(S). Then, y is infinitely divisible in A(S). In particular, there exists a
positive integer d such that d.y lies in A0(C).

Proof. (Manin-Shafarevich) The last statement follows from the functional Mordell-
Weil theorem, according to which the group A(K)/A0(C) is finitely generated, or

more directly, from the study of the Néron-Tate height ĥ on A attached to an ample

divisor. Namely, since y is infinitely divisible in A(K), its height ĥ(y) vanishes,
while the divisible hull A0(C)

div of A0(C) in A(Kalg) is precisely the set of points
with zero height. We now prove the first statement.

Let m be an arbitrary positive integer. Then 1
mx is again a section of LAan

over San, and we can consider the analytic section ym := expA( 1
mx) of Aan over

San. Since mym = expA(m. 1mx) = y, y is divisible by m in Aan(San). Moreover,
ym has moderate growth at the points at infinity of S, since its coordinates are
algebraic over K = C(S). So ym actually lies in A(S) and y is infinitely divisible
in A(S), as was to be shown.

Now let Ã be the universal vectorial extension of A, endowed with its unique
ADG structure, and let ∂ℓnÃ, ∂LÃ be the corresponding logarithmic derivatives on

Ã, LÃ. As in the text, we denote by WA ≃ H1(A,OA)
∗ the maximal vectorial

subgroup of Ã. It is defined over K and may be viewed as vector subspace of LÃ,
but it is not usually a D-submodule of LÃ.

Proposition J.2 (Manin-Coleman). Let x̃ ∈ LÃ(K), and let ỹ ∈ Ã(K) with
projection y ∈ A(K). Assume that ∂ℓnÃỹ = ∂LÃx̃. Then there exists a positive

integer d such that d.y ∈ A0(C); in particular, x̃ ∈ LÃ0(C) +WA(K).

Proof. Shrinking S if necessary, we may assume that x̃, ỹ extend to sections x̃, ỹ of
LÃ, Ã. Then, ∂ℓn

Ã
ỹ = ∂LÃ

x̃. By the main result of Section G, ∂ℓn
Ã
(exp

Ã
(x̃))

= ∂LÃ
x̃, so that

∂ℓn
Ã

(

ỹ − exp
Ã
(x̃)

)

= 0.

In other words, ỹ − exp
Ã
(x̃) lies in the kernel Ã∂ of ∂ℓnÃ, and we could continue

by projecting it to a point y0 in the differential algebraic subgroup A♯ of A defined
in Proposition 3.9 of the text. But y0 is a priori not defined over the differential
closure Kdiff of K, only over the field of meromorphic functions on San, and we
cannot appeal to the description of A♯(Kdiff ) given at the beginning of Section 6.
So we go back to complex analysis.

By the surjectivity of the sheaf morphism exp
Ã

from the analogue (†) of (†A)

for Ã, there exists a covering of San by disks U , and sections λU ∈ LÃan(U) such

that ỹ|U = exp
Ã
(λU ). Two λU , λU ′ differ by an element in the kernel P̃(U ∩ U ′)

of (†), allowing us to define a cocycle {φU,U ′ := (λU − λU ′)} ∈ H1(San, P̃). In
view of Proposition G.1, ∂ℓn

Ã
(exp

Ã
(λU )) = ∂LÃ

λU . The relation ∂ℓn
Ã
ỹ = ∂LÃ

x̃

then implies that ξU := λU − x̃|U lies in C-vector space of horizontal sections of
∂LÃ

over U . But since ∂LÃ
= ∇LÃ

is the Gauss-Manin connection, this space
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(LÃ)∂(U) coincides with (P̃ ⊗ C)(U); cf. Facts H.1 and H.2. So, for each U ,

∃λU ∈ LÃ(U), ∃ξU ∈ (P̃ ⊗ C)(U) such that ξU := λU − x̃|U .

Since x̃ is a global section over San (in fact, even over S), λU − λU ′ = ξU − ξU ′ ,
and the cocycle φ has trivial image under the natural map

H1(San, P̃) → H1(San, P̃ ⊗ C) = H1(San, P̃)⊗ C.

This implies that φ is a torsion point in H1(San, P̃). In other words, on refining
the covering {U} of San if necessary, there exist a positive integer d and sections

ξ1U ∈ P̃(U) such that on all intersections U ∩ U ′,

d.λU − d.λU ′ = ξ1U − ξ1U ′ .

In particular, the sections x̃1
U := d.λU − ξ1U glue into a global section x̃1 in

LÃan(San), and since the ξ1U ’s lie in the kernel of exp
Ã
, we finally obtain

exp
Ã
(x̃1) = exp

Ã
(d.λU ) = d.ỹ.

Let x1 ∈ LAan(San),y ∈ A(S) be the images of x̃1, ỹ under the natural projec-
tions. Since the exponential morphisms commute with these projections, we obtain
expA(x1) = d.y, and these sections exactly satisfy the hypotheses of the previous
Lemma J.1. Consequently, a multiple by a positive integer of d.y, hence also of y,
lies in A0(C), and the main part of the proposition is proved.

Recall the notation WA above. To prove the last sentence and connect back with
the running hypothesis (HX)K of the paper, we note:

Lemma J.3. Let A/K be an abelian variety, let F be a differential extension of

K with F ∂ = C, and let x̃, ỹ be F -rational points on LÃ, Ã, projecting onto points
x, y in LA,A. Consider the following properties:

(i) there exists a positive integer d such that d.y ∈ A0(C);

(ii) there exists a positive integer such that d.ỹ ∈ Ã0(C) +WA(F );
(iii) x lies in LA0(C);

(iv) x̃ lies in LÃ0(C) +WA(F ).
Then, (i) ⇔ ii) and (iii) ⇔ (iv). Moreover, if ∂ℓnÃỹ = ∂LÃx̃ and if F = K,

they all hold true.

Proof. (ii) ⇒ (i) and (iv) ⇒ (iii) are obvious, since A = Ã/WA. For (i) ⇒ (ii),

notice that any point y′ = d.y in A0(C) lifts to a point ỹ′ ∈ Ã0(C), which will
differ from the given F -rational lift d.ỹ by an F -rational point in WA. Ditto for
(iii) ⇒ (iv). Finally, we have proved above that the two further assumptions
imply (i), and it remains to show, say, that under these assumptions (ii) ⇒ (iv).
Indeed, (ii), written as d.ỹ = d.ỹ0 + w, together with the differential relation,
the divisibility of vector spaces, and Corollary G.4 applied to WA, implies that
∂LÃx̃ = ∂ℓnÃỹ0 + ∂ℓnÃw = ∂LÃ(w), and x̃ − w is a horizontal vector of ∂LÃ,

rational over F = K, hence in LÃ0(C), in view of Corollary H.5 (ii).

K. Chai’s sharpening.

Let A/K be an abelian variety with universal extension Ã, endowed with its canon-
ical ADG structure. We again denote by WA ≃ H1(A,OA)

∗ the maximal vectorial

subgroup of Ã and by UA its maximal vectorial D-subgroup. They are defined over
K and can be viewed as vector subspaces of LÃ.
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As in Section 4.3 of the text, define an almost abelian D-group G as an almost
semi-abelian D-group with no toric part, i.e., such that B = A is an abelian variety.
So G is a quotient of Ã by a D-vector subgroup V ⊂ UA ⊂ WA, and G is endowed
with its unique ADG structure. Assuming for simplicity that A0 = {0} and setting
WG := WA/V , we now present Chai’s sharpening [12] of Manin’s theorem, in terms
of logarithmic derivatives.

Theorem K.1 (Chai). Let G/K be an almost abelian D-group such that the abelian
variety A is traceless. Let x ∈ LG(K), y ∈ G(K) satisfy ∂ℓnGy = ∂LGx. Then,
x ∈ LWG(K).

Proof. The proof given here is essentially the dual of the proof proposed by Chai
at the end of his paper [12]. Instead of using Cech cohomology as for Manin’s
theorem, we will describe the argument in terms of Galois cocycles. Since we need
only one disk U , even only one point t0 in San, to define them, we will not use
bold-face letters. We let the fundamental group π1 = π1(S(C), t0) act by analytic
continuation on the local sections near t0 of any local system over San. In parallel
with the kernel P̃ of exp

Ã
, we have the local systems P,P, respectively defined as

the kernels of the morphisms expG and expA; we recall from Section H that they
are all isomorphic. We denote by (LÃ)∂ ≃ P̃ ⊗C, resp. (LG)∂ , the vector spaces of
analytic solutions of ∂LÃ, resp. ∂LG, near t0 (an exponent an will be added when
the context is ambiguous). As usual, we identify V and the D-submodule LV of

LÃ. We have V ⊂ WA, A = Ã/WA, G = Ã/V, LG = LÃ/LV . Then

∂ℓnÃỹ = ∂LÃx̃.

Since A0 = 0, Manin’s theorem from the previous section then implies that x̃ ∈
WA(K), and the conclusion x ∈ WG(K)(= LWG(K)) will follow by projecting
modulo V . Notice that two lifts differ by an element of V (K), so that this assertion
must be independent of the choice of ỹ, in view of Corollary G.4. In fact, this
corollary shows that its truth depends only on the projection y of y to A, as it
should be.

Let λ̃ be a local section of LÃan such that ỹ = expÃ(λ̃), and more generally, let
Pỹ be the ZSan-local system formed by all the determinations of the logarithms of

all the multiples of ỹ in Ã(K). Denote by Γỹ the Q-Zariski closure of the image of

π1, acting on Pỹ ⊗ Q. Since expÃ is uniform on San and ỹ is K-rational, γλ̃ − λ̃

lies in P̃ for any γ ∈ π1. This expression defines a cocycle

χ ∈ H1(Γỹ, P̃ ⊗Q) : Γỹ ∋ γ �→ χ(γ) = γλ̃− λ̃ ∈ P̃ ⊗Q,

which represents the class of Pỹ ⊗ Q, viewed as an extension of the local system

QSan by P̃ ⊗Q.
Further, let N be the kernel of the representation P̃ ⊗Q ⊂ Pỹ ⊗Q of Γỹ. Since

(LÃ)∂ ≃ P̃ ⊗ C and since the connection ∂LÃ is fuchsian, its differential Galois
group is the extension ΓC to C of the quotient Γ = Γỹ/N . Also, it is a reductive
group, in view of the semi-simplicity given by Corollary H.5 (ii). On the other hand,
χ induces on the normal subgroup N of Γỹ a Γ-equivariant injective homomorphism

ξ = χ|N : N →֒ P̃ ⊗Q ⊂ (LÃ)∂ .

We now study the image ξ(N) ⊂ P̃ ⊗ Q of ξ. We will first show that it vanishes
and then deduce from the reductivity of ΓC a construction of the desired point
x̃ ∈ LÃ(K).
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To check that ξ(N) = {0}, it suffices to show that it is contained in (LV )∂ ⊂

(LÃ)∂ . Indeed, LV ≃ V is contained WA, which intersects P̃ ⊗Q only at {0}, since

in the projection from LÃ to LA = LÃ/WA, the local system P̃ maps isomorphi-
cally onto P (see Section I for the relation with the Hodge filtration). Now, to prove

that ξ(N) ⊂ (LV )∂ , consider the ADG projections p : Ã → G, Lp : LÃ → LG, let

λ = Lp(λ̃) ∈ LGan, and set

χLG(γ) := Lp(χ(γ)) = γλ− λ ∈ P.

Then, expG(λ) = p(expÃ(λ̃)) = y, and ∂ℓnGy = ∂ℓnG(expGλ) = ∂LGλ. But by

hypothesis, this is equal to ∂LGx, with x ∈ LG(K), so that λ′ := λ− x ∈ (LG)∂ is
a horizontal section of ∂LG. Since x is K-rational, γ(λ− λ′) = λ− λ′, and we get

∃λ′ ∈ (LG)∂ , ∀γ ∈ Γỹ, χLG(γ) = γλ′ − λ′.

(In other words, the image χLG of χ in H1(Γỹ, p(P̃) = P) vanishes in H1(Γỹ, (LG)∂

= j(P⊗C)), in the notation of Section I.) ButN acts trivially on (LÃ)∂ , hence on its
quotient (LG)∂ . Restricting χLG to N , we therefore obtain Lp(ξ(γ)) = γλ′−λ′ = 0
for all γ ∈ N . So ξ(N) does lie in Ker(Lp) = LV , and therefore N ≃ ξ(N) = 0.

Consequently, Γỹ coincides with Γ. In particular, the action of the differential

Galois group ΓC on (LÃ)∂ lifts to an action on the affine space of solutions of
the inhomogeneous equation ∂LÃ(−) = ∂ℓnÃỹ. Since ΓC is a reductive group, the

corresponding PHS under (LÃ)∂ is trivial, and the latter equation must admit

a K-rational solution x̃ ∈ LÃ(K). We now show that x̃ satisfies the required
conditions. On the one hand, ∂ℓnÃỹ = ∂LÃx̃ by construction. On the other hand,
the projection x′ of x̃ to LG satisfies ∂LG(x

′ − x) = ∂ℓnGy − ∂ℓnGy = 0. Since

∂LÃ is semi-simple, x′ − x lifts to a K-rational point of (LÃ)∂ , which vanishes in
view of the fixed part theorem in Corollary H.5 (ii) and our hypothesis that A is
traceless. So, x′ = x, and x̃ is a lift of x, as required.

Remark K.2. The fact that the D-submodule LV of LÃ is contained in LWA has
played a crucial role in the proof that N = 0. Chai presents in [12] a more general

version of his theorem, dealing with arbitrary non-zero D-submodules of LÃ. His
proof of this more general result actually requires an additional hypothesis, but the
statement can be shown to hold in full generality; cf. [5].

We conclude with an application to sharp points. Here, Kalg denotes the alge-
braic closure of the field K = C(S), endowed with the extension of the derivation
∂. Recall from the beginning of Section 6 of the text on Kalg-largeness that the
sharp points of an abelian variety A always satisfy A♯(Kdiff ) = A♯(Kalg). We now
turn to a description of the group A♯(Kalg) itself. The exponent div still denotes
the divisible hull.

Corollary K.3. Let A/Kalg be an abelian variety and let A0 be its Kalg/C-trace.
Then, the differential algebraic group A♯ satisfies A♯(Kalg) = A0(C)

div.

Proof. The result is clear if A = A0. By a standard argument, it remains to study
the case when A is traceless. By Proposition 3.9 of the text, the projection π from
G := Ã/UA to A induces an isomorphism of differential algebraic groups between
the kernel G∂ of ∂ℓnG and A♯. If y ∈ G(Kalg) satisfies ∂ℓnGy = ∂LGx with x = 0,
the previous Theorem K.1 (more properly, the lifting property we actually proved
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at the level of Ã), combined with the last sentence of Lemma J.3, implies that the
projection of y to A is a torsion point.

Acknowledgements

Both authors would like to thank the European model theory network, MOD-
NET. The 2006 meeting in Antalya was the starting point for this research project,
and subsequent MODNET meetings in Luminy (2007) and La Roche (2008) gave us
the opportunity to meet and continue the collaboration in person. We also thank
the referee for his comments on this paper, and in particular, for a question which
led to Remarks 1.2 (ii) and 1.5 (ii) above, and to Theorem 5.3 and the discussion
in Section 5.4.

References
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