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Abstract 

An experimental study was conducted to investigate the structural stability 

of ethylene glycol-based titanium dioxide nanoparticle suspensions 

(nanofluids) prepared by two-step method. The effects of particle 

concentration, fluid temperature, shear rate and shear duration were 

examined. Particle size and thermal conductivity measurements in quiescent 

state indicated the existence of aggregates and that they were stable in 

temperatures up to 60°C. Shear stability tests suggested that the structure of 

nanoparticle aggregates was stable in a shear interval of 500-3000 s
–1

 

measured over a temperature range of 20-60°C. These findings show 

directions to resolve controversies surrounding the underlying mechanisms 

of thermal conduction and convective heat transfer of nanofluids. 
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Introduction 

Nanofluids are suspensions of nano-sized particles in liquids, where particle 

sizes are preferably below 100 nm. At modest particle concentrations, the 

thermal conductivity, forced convective heat transfer, and critical heat flux 

of nanofluids were reported to be superior to respective base liquids [1-8]. In 

the backdrop of conventional heat transfer technologies approaching their 

upper limits, nanofluids are seen as a potential contender for small- and 

large-scale thermal applications [9-12]. A number of attempts had been 

made in the past, and postulates were put forward to explain the underlying 

mechanisms. Although yet inconclusive, the nanoparticle aggregation in 

liquids is believed to be one of the principal mechanisms behind the 

enhanced thermal conductivity and convective heat transfer [13-16]. In 

either case, the importance of particle aggregation and their stability were 

underlined. 

On the other hand, the aggregation of nanoparticles is found to be the 

key mechanism behind the increase of nanofluid viscosity and shear thinning 

behaviour [14, 17, 18]. Recently, it was shown that the high shear viscosity 

of nanofluids could accurately be predicted by combining the conventional 

Krieger and Dougherty model and aggregation effects [18-20]. Those 

postulates were based on the assumption that, in the shear flow field, the 

aggregates will be stable because the hydrodynamic forces are insufficient to 

break the aggregates down to primary particles. However, the experimental 

evidences are insufficient to showcase the stability and particle structuring 

of nanofluids in flow conditions. 

In the present study, the ethylene glycol (EG)-based Titania (TiO2) 

suspensions are selected to investigate the stability of nanofluids in 

quiescent and shear flow fields. Also their thermal conductivities are 
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measured at various temperatures and compared with theoretical predictions. 

The experimental conditions were chosen resembling the possible industrial 

applications for nanofluids. Considering the bounded yet deep focus of the 

stability of nanofluids under different conditions, this article is reported as a 

letter without comparing the data with the other literature. 

 

Experimental 

Nanofluids were formulated using TiO2 nanopowder and EG. The dry TiO2 

nanopowder purchased from Degussa Corporation in Germany was claimed 

to be consisting of spherical particles of 25-nm diameter. Electron 

microscopy (EM) imaging such as in Figure 1 suggests that the particles 

were in the form of agglomerates. In order to manufacture a stable 

nanoparticle suspension, a sequence of processes were followed. Further 

details of formulation can be found elsewhere [7, 21]. The EM images of the 

nanofluid confirmed that the nanoparticles were well dispersed. Moreover, 

the light-scattering data collected using the Malvern Zetasizer-nano device 

showed that the suspended particles were in the order of around 130 nm in 

size. This is an indication of the formulation technique substantially 

reducing the aggregate size but failing to break them down to primary 

particles. This observation agrees with the recently concluded International 

Nanofluids Property Benchmarking Exercise (INPBE) [22]. These 

nanofluids were stable for 2 months without a visible separation, indicating 

the stability of aggregates in the long run. 

Measurements of thermal conductivity (k, W/mK) of TiO2–EG nanofluids 

were conducted using the state-of-the art Lambda meter device acquired 

from PSL Measurement Systems GMBH of Germany. This instrument 
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works on transient hot wire principle. For calibration with EG, the 

instrument reproduced the data up to 99% precision. 

Shear flow field was applied to the samples using a Bohlin rotational 

rheometer. The experimental conditions were as follows: shear rates 500, 

1000, 2000 and 3000 s
–1

; time durations 5, 10, 20 and 40 min; and 

temperatures 20, 30, 40, 50 and 60°C. These temperature and flow 

parameters were so chosen to suit possible industrial applications [19]. The 

shearing was preceded and followed by particle size measurements using 

Malvern Zetasizer-nano. The size measurements were repeated six times, 

and the reproducibility of data fell within error of 4%. In all instruments, the 

thermal equilibrium was ensured by leaving the samples at measuring 

temperature for a sufficient period of time before taking the readings. 

Results and discussion 

Thermal conductivity (k, W/mK) data for the samples are presented in 

Figure 2. The trends of k of the nanofluid and base liquid appear alike. This 

follows that the presence of nanoparticles at these concentrations has not 

altered the dynamics of the base liquid. Interestingly, this was the case even 

at 60°C, indicating quiescent flow fields. Also shown in Figure 2 are the 

percentage (%) enhancements of thermal conductivity. At any given 

temperature, the enhancement has systematically increased with loading. 

However for a given concentration, the enhancement appears to be fairly 

stable with temperature. This is a trend that agrees with the more recent 

literature on this area [23, 24]. Also noted from Figure 2 are the low particle 

loadings unable to cause noticeable enhancement. This observation 

contradicts a section of the old literature, while agreeing with majority of 

recent study including INPBE [22] participated by dozens of nanofluids 

research institutions. 
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The average enhancement for each concentration in Figure 2b is plotted in 

Figure 3 together with the predictions of classical Hamilton–Crosser (H–C) 

model based on well-dispersed particles [25] and modified H–C model [20] 

based on aggregated particles. The classical H–C model can be written as 
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/
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where k, k0, kp are, respectively, the thermal conductivities of the nanofluid, 

base liquid, and particle material, and n is the shape factor given by n = 3/ψ 

with ψ the surface area-based sphericity (ψ = 1.0 for spheres). 

Modified H–C model based on aggregated particles takes the form of [20] 
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where ka is the thermal conductivity of aggregates which is estimated by the 

Bruggeman model for spherical particles [26]: 
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 (3) 

Here, φa is the effective particle volume fraction given by φa = φ(aa/a)
3-D

 

according with the fractal theory, and φin is the solid volume fraction of 

aggregates given by φin = (aa/a)
D-3

. Also a and aa are the radii of primary 

nanoparticles and aggregates, respectively [27], and D is the fractal index 

having a typical value of 1.8 for nanofluids [20]. From Figure 3, the 

conventional H–C model underpredicts the measurements by a considerable 

margin can be seen. However, the modified H–C model that takes into 

account the aggregates of nanoparticles agreed well with the experimental 

data. 
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Overall view of Figures 2 and 3 suggests that (i) the aggregation of 

nanoparticles is a principal mechanism that drives the thermal conductivity 

enhancement and (ii) the aggregates are stable in quiescent flow fields even 

at temperature as high as 60°C. Independence of the experimental data on 

temperature further suggests the weak or negligible effect of particle 

Brownian motion on reported enhancement. 

Featured in Figures 4 and 5 are the studies on particle size in shear flow 

fields. All samples have the measured particle sizes considerably larger than 

the primary size (25 nm) reconfirming the existence of the aggregates. Yet, 

the average particle diameter (d) exhibits a narrow fluctuation between 126 

and 132 nm, which falls within the boundaries of experimental error. 

Moreover, the shear rates and shear durations shown on Figure 4 had been 

unable to break the aggregates. The aggregates were therefore sufficiently 

stable under these conditions. 

Figure 5 illustrates the dependence of the measured particle sizes on the 

measuring temperature and particle concentration. At any given 

concentration, a temperature increase of threefold (from 20 to 60°C) has not 

registered a notable size change. Here, the indication is the temperature 

stability of aggregates. Furthermore, a concentration increase by 16 folds 

(from 0.5 to 8 wt%) has caused only a modest increase in size which again 

falls within the experimental error. 

Conclusions 

Experiments were conducted to study the dependence of shear stability of 

nanofluids on temperature, particle loading and shear rate. Observed weak 

dependence of thermal conductivity enhancement on temperature supports 

the claim of particle aggregation as a principal mechanism behind the 

enhancement. Moreover, the aggregates in quiescent flow fields were stable 
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in temperatures up to 60°C. The data on shear stability show that the 

aggregates are sufficiently stable over a range of rigorous shear rates and 

temperatures. The observations of thermal conductivity and particle size 

complement each other in terms of predicting the former from the latter. A 

comparison of the present findings with the literature data is currently 

underway and will be reported in future. 
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Figure 1. Titania particles as received. 

Figure 2. Thermal conductivity of TiO2–EG nanofluids. 

Figure 3. Measured and predicted thermal conductivity. 

Figure 4. Average particle sizes measured at 20°°°°C. 

Figure 5. Average particle size after 40 min of shearing at 3000 s
–1

. 
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