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Abstract 

 

A mathematical framework used to describe transformation toughening in zirconia-based 

ceramics is adapted to apply to transformation toughening in bulk metallic glass matrix 

composites. The method is applied to the Cu47.5Zr47.5Al5 bulk metallic glass, showing that the low 

volume change of transformation in this alloy leads to negligible toughening via the proposed 

mechanism. An alternative mechanism for toughening is presented, whereby shear bands 

propagate more easily in the early stages of advance. 

 

Keywords: Martensitic Phase Transformation; Bulk Metallic Glasses; Shape Memory Alloys; Ab 
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1. Introduction 

 

Bulk metallic glasses are a class of material that have attracted attention due to their 

exceptional strengths [1], however poor ductility has limited their industrial applications. Metallic 

glasses fail by shear localisation along a shear band resulting in catastrophic failure [2]. A 

leading method for increasing ductility is the formation of a composite containing a volume 

fraction of crystalline material [2]. This tends to lead to nucleation of multiple shear bands, and 

the particles inhibit propagation, leading to distribution of shear through multiple shear bands 

across the material and hence plastic flow. 

 

A series of recent work has focussed on alloys in the Cu-Zr-Al shape memory system, which 

undergo a thermoelastic martensitic transformation. Alloys cast almost entirely glassy but with a 

small volume fraction of nanocrystals in the B2 austenite structure show unusual ductilities, 

including plastic strain in compression of 16% [3]. Samples examined after deformation show 

closely spaced, wavy and diffuse shear bands, and twinned or transformed nanocrystals. The 

volume fraction of B19’ martensite phase has been shown to increase with deformation. 

A mechanism is proposed by Eckert et al [4] whereby under applied stress, particles nucleate in 

the matrix and twin or undergo a martensitic transformation. This transformation has a volume 

change component and hence exerts a compressive stress on the matrix, inhibiting shear 

transformation zone activation. This leads to toughening. 

 



We note, however, that the nature of a martensitic transformation in a shape-memory system is 

such as to produce minimal volume change. Indeed, work by Schryvers [5] shows a volume 

component of 0.137% in the transformation from B2 to B19’ in equiatomic CuZr. This appears 

very small, and would seem to call the proposed mechanism into question. 

 

There is not currently a mathematical framework presented in the literature for modelling 

transformation toughening in metallic glass composites. However, there exists a body of 

literature surrounding the transformation toughening behaviour in zirconia-based ceramics [6]. 

Developed in its original form by McMeeking and Evans [7], the method considers the surface 

tractions required to compress the transformed particle into its original space in the matrix in an 

Eshelby-type model. 

 

The original model considers only the Mode I case. Furthermore, the shape change component 

of the transformation strain is neglected – only the volume component is considered. This is due 

to self-accommodation of martensite variants usually resulting in negligible shape change. Later 

work on the subject recognised that shape change is important in nucleation of martensites 

even if it then contributes little to the stresses in the matrix. In zirconia, it should be noted, the 

volume change component is rather more significant. 

In order to adapt the model to shear banding in metallic glasses, a number of assumptions and 

adaptations must be made. Firstly, we model shear bands as Mode II cracks, a model found in 

prior literature [8]. This requires us to adapt the mathematics for the Mode II case. We then take 

into account the shape change component of the transformation. 

 



The objective of this adaptation is to develop a mathematical framework that will allow us to 

model the transformation toughening behaviour in these metallic glasses, and to determine 

whether the proposed mechanism can be supported despite the low volume change involved in 

the transformation. 

 

2. Calculations 

 

We begin by calculating the extent of the transformation zone, which is determined from the 

stress needed to cause a particle to transform and the stresses around the shear band tip. For 

this purpose, considering the full shape strain is valid since one full martensite variant must 

nucleate before other corresponding variants can form.  

 

Mathematics as explained by Evans and Heuer [9] are used. Details of the method used can be 

adapted from the original paper, and we will not reproduce the full working here. The paper uses 

Mode I expressions for the stresses around the crack tip, resulting in a value for the 

transformation radius rc of 

       (1) 

Where eT is the volume component of the transformation strain, eS is the shear component of 

transformation strain, Ep is the Young modulus of the particle, Em is the Young modulus of the 

matrix, ξ is the value of eS/eT, β is given by Ep/Em, and KI is the applied stress intensity factor at 

the crack tip (before transformation), and we define a plane polar co-ordinate system r, θ about 



the crack tip, with the plane defined as perpendicular to the shear band front – see Figure 1 

below. 

 

We instead use Mode II expressions for the stresses around the crack tip [10]: 

        (2) 

        (3) 

         (4) 

Where KII is the applied stress intensity factor at the shear band tip (before transformation). 

Using this adaptation we can determine a Mode II transformation zone radius of 

        (5) 

Where  is the free energy change per unit volume from parent to martensite phase. 

 

This gives us the transformation zone before the shear band begins to advance. Once it 

advances, we must consider several regions, as shown in Figure 2. We model as shown in [11], 

using Equation 5 for the region ahead of the shear band tip until the distance from the shear 

band plane reaches a maximum, w, which we call the zone height. From here, we consider 

straight zone sides at distance w from the shear band plane, and also take into account the 

shear band edges, for a shear band advance distance Δa. 

 



We now have a model for the transformation zone. In order to determine the toughening effect 

of this transformation zone, we adapt the work of McMeekings and Evans [7] applied in the 

mean field case. For full details of the method, consult their original paper, our approach follows 

their work closely. We use the above zone shape instead of the simpler expression given in the 

paper. We also work in the Mode II case; this means replacing the Mode I expressions for the 

weight function h [8] with 

      (6) 

Where  is Poisson’s ratio for the glass. We consider the case of the transformation zone 

around an extending crack, and hence an important parameter is the crack aspect ratio . 

 

The original paper suggests that the change in stress intensity factor caused by the 

transformation can be found via an integral given by 

         (7) 

Where n represents the zone normal and dS is the surface element around the edge of the 

transformation zone. Note that many of the explicit results during the working produce extremely 

lengthy expressions and we will not reproduce them all here. 

 

We calculate dS via  

           (8) 

And n via  



         (9) 

For calculating the transformation strain we have used experimental data for the the CuZr 

system obtained from a paper by Schryvers et al [5]. We obtain 

          (10) 

We integrate Equation 7 over the three main regions, as shown in Figure 2. The integral ahead 

of the crack tip is just given by calculating the above using Equation 5 for radius (and hence 

obtaining h, dS and n from Equations 6, 8 and 9), and then evaluating Equation 7 from  to  

(which is where the distance from the crack plane is at a maximum). 

 

For the zone sides, we give the radius as 

            (11) 

We can then calculate h from Equation 6, dS through equation Equation 8 and use . We 

calculate the contribution to stress intensity factor via Equation 7, evaluated from  to 

ArcTan[ . We calculate for a range of values of  - see Table 2 and Figure 3. 

 

We also calculate for a range of values of  the contribution from the crack sides. Here we 

can set dr=da,  and dS=da. We evaluate for the case  from a=0 to a=  . We 

tabulate also in Table 2 and Figure 3. 

 



We calculate the sum of these three terms to get the total contribution of the transformation 

zone to toughening. We use values for the material shown in the original work on this subject, a 

Cu47.5Zr47.5Al5 alloy. The material characteristics are shown in Table 1 [12] [13] 

. 

 

3. Discussion 

 

Figure 3 shows a number of clear trends in the contribution of transformation to toughening as 

the shear band advances. Important to note is that a negative value implies a reduction in stress 

intensity and hence toughening, a positive contribution favours propagation of the shear band. 

 

We can draw a number of observations from Figure 3. Firstly, the contribution from the volume 

strain alone is insignificant compared to that from the shape strain. Secondly, the shape strain 

contribution peaks rapidly with shear band advance and then rapidly decreases. These 

observations lead to a number of conclusions. 

 

Firstly, if there is no significant shape change component to toughening (such as is often 

assumed in the literature, due to variant self-accommodation), we have negligible toughening 

even at the steady-state value. If we input a sample initial applied stress intensity factor of 5 

MPa m1/2  and a crystalline volume fraction of 0.1 we get -0.2MPa m1/2 for the component 

caused by the shape strain and +1.12MPa m1/2 if we consider both components. As such, this 



model suggests volume change alone cannot be the mechanism behind toughening in the 

Cu47.5Zr47.5Al5 alloy. 

 

The question becomes rather more interesting if we allow the shape change to contribute, 

neglecting for the moment self-accommodation of variants. We then observe a significant 

contribution to the stress intensity factor at the shear band tip, but in such a manner as to make 

propagation easier. However, we also note that propagation is favoured significantly more 

during the early stage of shear band advance than when it grows longer. As such, we propose 

an alternate mechanism whereby propagation of new shear bands is favoured over extension of 

existing longer ones. This leads to propagation of multiple shear bands, distributing shear 

through the material and hence promoting ductility. 

 

We have so far considered the transformation zone as a region with a discrete boundary, with 

all particles transforming inside the zone and none without. As understanding of transformation 

toughening advanced, it became clear that considering the transformation zone as a whole and 

neglecting the reverse transformation [6] gives a subtly wrong estimate of the toughening. A 

case with a full-width transformation zone behind the shear band is known as “supercritical” and 

is what we have considered here. The “subcritical” case where some of the outer transformation 

zone is not fully transformed in the shear band wake, however, should in this case simply 

reduce the contribution to stress intensity factor as the crack advances further – IE increase the 

height of the peak and contribute to the proposed toughening mechanism. 

 



It should be noted that the model as proposed is a mean-field model; considering the particle-

containing region around the shear band to be a homogeneous region and averaging the effects 

of individual particles transforming. This should still give a reasonably accurate output in the 

general case. A further assumption to identify is that we have neglected the effects of the ends 

of the transformation zone, where the zone sides and the shear band edges are joined. 

However, this should be negligible with longer shear bands, and running the ahead-of -tip 

calculations from π to –π we obtain a value of zero – showing the contribution prior to shear 

band advance to be zero, and in fact suggesting a positive contribution from the region at the 

zone end as the shear band advances. 

Also worth considering is the impact of size effects on the toughening behaviour. Size effects in 

bulk metallic glasses can have a significant impact on plasticity, as observed in the recent 

review by Greer and de Hosson [14]. In this instance, perhaps most interesting is to consider 

particle size – we have assumed an ideal thermoelastic martensite and hence no interfacial 

energy term [15], but it now seems likely that the interfacial effects may play a significant part in 

the toughening behaviour, and this bears further investigation. We also however note that our 

approach may break down when particle size approaches the transformation zone size. 

 

  



4. Conclusions 

 

We establish a mathematical model for transformation toughening behaviour in the 

Cu47.5Zr47.5Al5 bulk metallic glass composite, based on the mathematics developed for use in 

zirconia-based ceramics and a model of shear bands as Mode II cracks. We demonstrate that 

considering volume change alone this mechanism cannot explain the unusual ductility of the 

composite, contributing only -0.2MPa m1/2 if we set an initial applied stress intensity of 5 MPa 

m1/2. We propose a mechanism whereby if shape change components are considered, ductility 

is enhanced via propagation of shorter shear bands being favoured over more mature longer 

ones (by 1.12MPa m1/2 with an initial applied stress intensity of 5MPa m1/2). This leads to 

propagation of multiple short shear bands and hence distribution of shear leading to ductility. 

 

The authors would like to thank the EPSRC (Engineering and Physical Sciences Research 
Council) for funding provided to the work. 
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