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ABSTRACT

Magnetic flux in the solar photosphere forms concentrations from small scales, such as flux
elements, to large scales, such as sunspots. This paper presents a study of the decay process
of large magnetic flux tubes, such as sunspots, on a supergranular scale. 3D nonlinear resistive
magnetohydrodynamic numerical simulations are performed in a cylindrical domain, initialised
with axisymmetric solutions that consist of a well-defined central flux tube and an annular con-
vection cell surrounding it. As the nonlinear convection evolves, the annular cell breaks up into
many cells in the azimuthal direction, allowing magnetic flux to slip between the cells away from
the central flux tube (turbulent erosion). This lowers the magnetic pressure in the central tube
and convection grows inside the flux tube, possibly becoming strong enough to push the tube
apart. A remnant of the central flux tube persists with nonsymmetric perturbations caused by
the convection surrounding it. Secondary flux concentrations form between the convection cells
away from the central tube. The decay of the tube is dependent on the convection around it:
convection can remove flux from, add flux to, or change the shape of the central flux tube.

Subject headings: convection — magnetohydrodynamics (MHD) — Sun: interior — Sun: surface mag-
netism — sunspots

1. Introduction

The appearance of magnetic field on the visible
surface of the Sun ranges through many length
scales. Magnetic elements surface in the photo-
sphere and are convected to the edges of the con-
vection cells or granules. These elements have a
diameter of up to approximately 100 km, a field

strength of 1.5 kG and a lifetime of a few minutes
(Bello González et al. 2009; Zhang et al. 1998; de
Wijn et al. 2009). Where flux elements congre-
gate, as at the boundaries of granules and super-
granules, pores form that have diameters between
2 and 4 Mm and field strengths of approximately 2
kG (Bray & Loughhead 1964; Zwaan 1992). These
pores have lifetimes of typically less than a day
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(Keppens 2001). As magnetic flux accumulates in
a pore, it can grow large enough to form a sunspot
with a penumbra. Sunspots can be up to 50 Mm
in diameter and have life times of a few hours to
several weeks. When a sunspot disintegrates, its
flux remnants are convected to the polar regions
where they are observed as polar elements with di-
ameters of approximately 300 km, field strengths
of above 1 kG and lifetimes from several hours to
days (Tsuneta et al. 2008; de Wijn et al. 2009).
Excellent reviews on all aspects of sunspots are by
Solanki (2003) and Thomas & Weiss (2004).

Sunspot decay is often expressed in terms of
the temporal evolution of sunspot area. A lin-
ear decay rate indicates diffusive processes, while
a quadratic decay rate points to erosion of the
sunspot by the surrounding convection. Hathaway
& Choudhary (2008) looked at the decay rate of
sunspot groups and from this calculated the decay
rate per individual sunspot. They found that, on
average, each sunspot decayed at a rate indepen-
dent of the area of the spot, i.e. a diffusive pro-
cess. In contrast, Petrovay & Van Driel-Gesztelyi
(1997) looked at individual sunspots and found a
parabolic decay rate suggesting erosion by the tur-
bulent convection surrounding the spot. Obser-
vations of the outer penumbral boundary shows
fluctuations around an average position, indicat-
ing an interplay between convective motion and
the sunspot’s magnetic field (Kubo et al. 2008).

A reasonable approximation for the structure of
a pore is a cylindrical magnetic flux tube with in-
flowing convection surrounding it. Observations of
the Sun show patches of strong downflows around
the flux concentrations (Hirzberger 2003; Rimmele
2004; Stangl & Hirzberger 2005). Around the
edge of pores hair-like striations have been ob-
served with an azimuthal wavelength smaller than
the surrounding granular convection (Scharmer et
al. 2002; Berger et al. 2004). These striations
are believed to be magnetoconvective downflow
lanes. Needle-like structures have been observed
surrounding pores with an internal flow towards
the pore and a downflow at the end near the
flux concentration (Sankarasubramanian & Rim-
mele 2003). A pore growing in size due to accu-
mulated flux may evolve a rudimentary penum-
bral structure. This proto-penumbra is transitory
in nature and may oscillate between penumbral-
like filaments and elongated granules (Dorotovič

et al. 2002), decay (Sobotka et al. 1999) or evolve
into a fully developed sunspot penumbra (Kep-
pens & Mart́ınez Pillet 1996). The formation of
a fully formed penumbra around sunspots is usu-
ally abrupt, with a sudden change of the magnetic
field direction from vertical to inclined (Rucklidge
et al. 1995; Yang et al. 2003).

Unlike the flow surrounding pores, a sunspot
is surrounded by a moat cell that consists of a
surface flow that are flowing predominantly away
from the sunspot. The moat flow sometimes ex-
hibits azimuthal structure, with spoke-like lanes of
converging flow which have a higher average con-
centration of outwardly moving magnetic features
(Shine & Title 2001; Hagenaar & Shine 2005).
Hurlburt & Rucklidge (2000) found in a numer-
ical study of idealised axisymmetric flux tubes in
cylinders that a steady collar flow with converging
flow at the top of the convection cell is always es-
tablished around the flux tube. Following Parker’s
hypothesis (Parker 1979) that a sunspot is a clus-
ter of flux tubes held together by a collar flow,
they speculated that sunspots must also have a
collar flow. The well-known annular ring of inward
moving penumbral grains surrounding a sunspot
umbra (Thomas & Weiss 2004) may be explained
by three different mechanisms: the first is the
emergence of flux tubes through the photosphere
(Schlichenmaier et al. 1998); the second by moving
patterns caused by granular magnetoconvection in
an oblique magnetic field (Hurlburt et al. 1996);
and thirdly the presence of a collar flow around
the umbra. Observations that the inward radial
movement survives the breakup of the penumbra
in a decaying sunspot while the umbra stays intact
(Deng et al. 2007) support the presence of a collar
flow. Helioseismic measurements also support the
concept of a collar flow that ensures the integrity
of the umbral flux tube (Gizon & Birch 2005; Tong
2005; Zhao et al. 2010). Measurements of p-modes
show that underneath the Evershed flow in the
penumbra, there exist a converging flow as well
as a downflow up to a depth of approximately 3
Mm. Below these flows there is an outflow that ex-
tends to more than 30 Mm from the sunspot axis.
However, this result is ambiguous because the flow
does not appear in f-mode measurements, which
give only an outflow to a depth of at least 10 Mm
that corresponds to the moat flow on the surface
(Gizon & Birch 2005). In addition to this, Moradi
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et al. (2010) have shown that different methods of
helioseismology give different flow patterns in the
subsurface of a sunspot. As a result, the interac-
tion of solar acoustic waves with strong magnetic
flux concentrations is actively studied through ob-
servations (Braun & Birch 2008), numerical simu-
lations (Shelyag et al. 2009; Parchevsky & Koso-
vichev 2009) and analytical investigations (Gor-
dovskyy et al. 2009; Jain et al. 2009).

Numerical simulations of magnetoconvection in
the upper layer of the solar convection zone follow
two complementary strategies. The first is to in-
clude as many physical processes as are practical
given the numerical constraints. Ionisation, radia-
tive energy transfer and a numerical domain that
typically stretches from the temperature minimum
in the chromosphere down to a few Mm beneath
the visible surface of the Sun have been included
in models of three-dimensional (3D) granulation
in the quiet Sun (Stein & Nordlund 2006), two-
dimensional (2D) flux sheets in an initially unmag-
netised, stratified, convecting atmosphere heated
from below (Leka & Steiner 2001), 3D pores sur-
rounded by granulation (Cameron et al. 2007),
flux emergence of a semi-toroidal loop introduced
into a purely hydrodynamic background in statis-
tical equilibrium (Cheung et al. 2010), as well as
3D sunspot umbrae with their penumbrae embed-
ded in the surrounding granulation (Rempel et al.
2009a,b). The second strategic approach to nu-
merical simulations, which is the one we follow in
this paper, is to simplify the physics and explore
magnetoconvection in this parameter space. As
such, our upper domain boundary is 0.5 Mm be-
low the visible surface of the Sun. This allows us
to consider the interplay between magnetic field
and convection without the complications of sharp
gradients due to the stratification. It also means
that we cannot say anything about penumbral for-
mation.

The results presented in this paper is a general-
isation to three dimensions of 2D (axisymmetric)
nonlinear magnetoconvection (Hurlburt & Ruck-
lidge 2000). The axisymmetric results are char-
acterised by a magnetic flux tube at the central
axis, with uniform temperature and magnetic field
strength inside the tube. Around the flux tube
convection cells form concentric rings with the in-
ner ring converging onto the flux tube at the top
of the domain, forming a collar flow around the

flux tube. The magnetic flux bundle and the con-
vection rings around it are essentially time inde-
pendent. The larger the radii of the cylindrical nu-
merical domain, the more counter-rotating convec-
tion rings form around the central flux bundle. By
decreasing the aspect ratio of the cylindrical nu-
merical domain, time dependence was introduced
(Botha et al. 2006). For intermediate radii, a small
convection ring forming the collar flow establishes
itself around the top of the flux bundle, with a
dominating counterflow at its outside border. The
collar flow is periodically destroyed by the coun-
terflow and reforms. During this process the mag-
netic field expands radially in the absence of the
collar flow and is pushed back into a tight flux
bundle on the central axis upon the reformation
of the collar flow. Botha et al. (2008) showed that
when the numerical domain is rotated, a Rankine
vortex forms: the magnetic flux tube rotates as a
rigid body while sheared azimuthal flow (i.e. a free
vortex) forms in the surrounding convection cells.

In this paper the robustness of a magnetic flux
tube surrounded by 3D nonsymmetric convection
is presented. It is shown that a remnant of the
original flux tube persists in spite of these non-
symmetric perturbations, with secondary flux con-
centrations forming around the remnant. The
secondary concentrations form due to magnetic
flux escaping from the central flux bundle, and
their strength depends on an interplay between
the strength of the magnetic field in the simu-
lation and the vigour of the convection. In the
simulations we have used magnetic field strengths
of Q = 32, 100 and 250, where Q is the Chan-
drasekhar number. The numerical domain is a
cylindrical wedge with an aspect ratio varying be-
tween 3 and 6.

This study of 3D nonlinear convection was pre-
ceded by initialising the numerical simulations
with a time independent (nonlinear) 2D solution
and perturbing the plasma in the azimuthal di-
rection (Botha et al. 2007). The linear evolution
of these perturbations showed that steady and os-
cillating instabilities with a preferred azimuthal
number formed in the convecting flow close to the
outer edge of the flux tube. A concise summary
and expansion of these results are given in Section
4 before the discussion moves on to the nonlinear
magnetoconvection results that form the bulk of
this paper.
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The paper first discusses the model in the next
section, and then describes the design of the nu-
merical experiments and their initialisation (Sec-
tion 3). The evolution of the linear azimuthal
modes is summarised in Section 4, before the non-
linear results are presented in Section 5. In the
discussion we consider the influence of an increas-
ing Chandrasekhar number (Q) on the results, as
well as the effect of the azimuthal width of the
numerical domain (Section 5.1) and a changing
aspect ratio (Section 5.2). The paper concludes
with a discussion and short summary of the re-
sults (Sections 6 and 7).

2. Model

The initial temperature and density profiles in
the vertical (z) direction are given by the poly-
trope

T = T0(1 + θz), (1)
ρ = ρ0(1 + θz)m, (2)

with the 0 subscript defining the quantity at the
top of the box (z = 0), θ is the initial tempera-
ture gradient, and m is the polytropic index. The
equations for fully compressible, nonlinear three-
dimensional (3D) magnetoconvection are

∂ρ

∂t
= −∇ · (vρ) (3)

∂v
∂t

= −v · ∇v + θ(m+ 1)ẑ +
σζ0K

2Q

ρ
j× B

− 1
ρ
∇P +

σK

ρ

(
∇2v +

1
3
∇∇ · v

)
(4)

∂T

∂t
= −v · ∇T − (γ − 1)T∇ · v

+
γK

ρ
∇2T +

ζ0
ρ

∣∣∣ j
∣∣∣2 (5)

∂B
∂t

= ∇× (v × B) + ζ0K∇2B −∇ψ (6)

with the auxiliary equations

P = ρT, j = ∇× B. (7)

The variable ψ is introduced to enforce the condi-
tion ∇·B = 0 (Dedner et al. 2002), and it evolves
through

∂ψ

∂t
= −c2h∇ ·B − c2h

c2p
ψ, (8)

where ch and cp are constants. We use the follow-
ing notation: γ the ratio of specific heats; σ the
Prandtl number; ζ0 the magnetic diffusivity ratio
at z = 0; and Q is the Chandrasekhar number.
The dimensionless thermal conductivity K is re-
lated to the Rayleigh number R in the following
way:

R = θ2(m+1)
[
1 − (m+ 1)(γ − 1)

γ

]
(1 + θ/2)2m−1

σK2

(9)
R is a measure of the importance of buoyancy
forces compared to viscous forces in the middle of
the layer. All the other symbols have their usual
meaning. The physical quantities are dimension-
less, with the length scaled proportional to the
depth of the numerical domain, velocities scaled
proportional to the sound speed at the top of the
domain and temperature, magnetic field, density,
and pressure all scaled proportional to their ini-
tial values at the top of the numerical domain, so
T0 = 1 and ρ0 = 1.

The numerical implementation of the model
was developed specifically for these types of calcu-
lations (Hurlburt & Rucklidge 2000). The cylin-
drical grid is in the shape of a wedge with dimen-
sions

0 ≤ r ≤ Γ, 0 ≤ φ ≤ 2π/Mφ, 0 ≤ z ≤ 1, (10)

with z = 0 at the top of the domain. Sixth-
order compact finite differencing is used in the
vertical (r, z) plane and the domain has a spec-
tral azimuthal (φ) direction. The level of dealias-
ing is increased toward the central axis to main-
tain grid uniformity. For time evolution we use a
fourth-order modified (explicit) Bulirsch-Stoer in-
tegration technique. The number of grid points in
the radial direction is typically 64× Γ, in the ver-
tical direction 64, and in the azimuthal direction
between 64 and 512.

The boundary condition in the azimuthal di-
rection is periodic. At the central axis we im-
pose regularity conditions and the domain has a
slippery, perfectly conducting, thermally insulat-
ing outer wall. The way that we impose on-axis
regularity conditions constrains the value of Mφ

to be at least 4. Both the top and bottom bound-
aries are impenetrable, with a vertical magnetic
field and with their respective temperatures fixed.
The boundaries are described in detail in Botha et
al. (2006).
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3. Initialisation and design of numerical
experiments

All the numerical results in the paper were ob-
tained with the following parameter values: R =
105, σ = 1, ζ0 = 0.2, θ = 10, γ = 5/3 and
m = 1.495. The values of the Chandrasekhar
number Q, the azimuthal width Mφ and the radius
Γ were varied and will be reported throughout the
paper. These physical parameter values were cho-
sen to describe the solar convection zone from a
depth of approximately 0.5 Mm below the visible
surface of the Sun to a depth of approximately 6
Mm (Botha et al. 2006). The numerical domain is
a cylindrical wedge of one unit deep and a radius
of Γ ≥ 3, so that the simulations are on a super-
granular scale. It is worth pointing out that the
value of the Prandtl number used here is much
larger than the value of σ in the upper layer of
the solar convection zone. In axisymmetric simu-
lations we have used σ = 1 and σ = 0.3 (Botha et
al. 2008). The result was the same qualitatively,
displaying more vigorous convection in the case
of lower σ. The same was found for the 3D nu-
merical simulations presented in this paper. The
stronger convection forced smaller time steps and
denser numerical grids, so that we used σ = 1 for
expediency in all the results presented here.

The three-dimensional simulations are ini-
tialised with an axisymmetric, or two-dimensional,
solution as shown in Figure 1. It consists of a well
defined flux tube at the central axis with a convec-
tion cell around it, forming an annular collar flow
that contains the magnetic flux at the central axis.
This solution was obtained by starting 2D simula-
tions with a uniform field and a velocity perturba-
tion. Galloway, Proctor & Weiss (1978) showed
that for an incompressible Boussinesq fluid with
vertical top and bottom magnetic boundaries, the
magnetic flux is concentrated almost entirely at
the central axis. Previous numerical results show
that this is also true for compressible fluids, with
the width of the numerical box determining the
number of convection cells forming around the
flux bundle (Hurlburt & Rucklidge 2000). We
have taken care to allow only one convection cell
to form, by adapting the value of Q to the size
of the domain. The stronger magnetic field in the
case of higher Q values causes a wider flux bundle
to form at the centre, in this way allowing us to

regulate the remaining space in which convection
forms.

The linear phase of the 3D simulations were
started by perturbing the vertical component of
the velocity in the azimuthal direction. The per-
turbation took the form of a cosine wave with
wavelength equal to the azimuthal width of the
numerical domain. By changing the width of the
wedge, we were able to measure the growth rates of
different wavelengths (Botha et al. 2007). The so-
lution with the largest linear growth-rate was then
chosen to continue into the nonlinear regime. In
order to test the robustness of the nonlinear results
obtained in this manner, we also initialised 3D
simulations with a uniform vertical magnetic field.
Flux separation occurred and eventually these re-
sults were indistinguishable from the nonlinear re-
sults obtained as described above, provided that
certain conditions were met, as discussed in Sec-
tion 5.2.

4. Linear azimuthal evolution

In the linear phase the solution forms a static
axisymmetric standing wave inside the magnetic
flux tube, and one annular convection cell around
the tube, as shown in Figure 2(a). The density
profile of the solution is hardly perturbed from the
polytrope, because the atmosphere is close to adia-
batic, i.e.m is close to 1/(γ−1). In order to obtain
the location of the linear eigenmodes, we take the
azimuthal perturbation of the physical quantities,
as shown in Figure 2(b). It is clear that the linear
modes are situated at the edge of the magnetic
flux tube. This was confirmed by sampling the
data in the horizontal midplane of the numerical
domain. The azimuthal size of the linear modes
is related to the size of the magnetic flux tube.
Figure 3 shows that for small tube radii the linear
azimuthal lengths are short. As the tube radius in-
creases, its influence on the azimuthal length scale
decreases. The result is a well-defined length scale
in the limit of large radii. This is a geometric ef-
fect, with the azimuthal length of the local linear
mode dependent on the curvature of the tube ra-
dius that it samples.

The radius of the numerical domain has an in-
fluence on the growth-rate of the linear modes.
Figure 4 shows that for a larger radius, the max-
imum growth rate is higher when all other physi-
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cal parameters are kept the same. This is consis-
tent with the explanation that larger aspect ratios
allow the convection in the solution to be more
dominant, as discussed in Section 5.2. Botha et
al. (2007) determined that the eigenfunctions of
the linear modes forming around the magnetic flux
tubes are convective in nature. As in that pa-
per, we found linear modes with steady growth
and modes with oscillating growth. The steadily
growing modes tend to occur at low values of Mφ.
There is a suggestion in the data that the pe-
riod of the oscillating modes are shorter the more
they penetrate into the magnetic flux tube. How-
ever, difficulty in establishing the edge of the mag-
netic flux tube as well as the time dependence of
the solution prevented us from obtaining a scal-
ing law between mode penetration and oscillation
frequency.

5. Nonlinear azimuthal evolution

As the solution moves from the linear into
the nonlinear regime, the annular convection cell
around the magnetic flux tube breaks up into
many cells. The absence of a uniform collar flow
allows the magnetic field to expand into the areas
between the convection cells, which in turn lowers
the magnetic field strength near the central axis
(r = 0). Lower magnetic strength inside the flux
tube means that low levels of convection are al-
lowed to form, the maximum amplitude of which
depends on the magnetic field strength in the nu-
merical domain.

For Q = 32 the axisymmetric initial condition
is a narrow vertical flux tube at the central axis.
In this case a slight increase in tube radius al-
lows for a relatively large decrease in magnetic
field strength. It follows that after a small amount
of magnetic field has moved between the convec-
tion cells surrounding the central flux tube, con-
vection forms inside the tube that grows and be-
comes strong enough to break it up. The end re-
sult is magnetic flux between the convection cells
with only a flux tube remnant at the central axis.
This final state is shown in Figure 5 at a time
when the nonlinear magnetoconvection is well es-
tablished.

In the case of Q = 100, the axisymmetric ini-
tial condition consists of a central magnetic flux
tube that is wider than the case for Q = 32. As

soon as the annular convection cell around the flux
tube starts to break into many cells, magnetic flux
moves between the cells radially away from the
central axis. The relative change in the magnetic
field at the central axis is less than for Q = 32 and
weaker convection forms inside the flux tube. As
a consequence, it takes longer for the convection
to erode the magnetic field away from the central
axis. Eventually a steady nonlinear state forms
with magnetic flux between the convection cells
and with a reduced central magnetic flux tube.
Figure 6 shows the result for Q = 100 and Γ = 3.
As the solution evolves through time, the magnetic
flux is pushed around by the convection. In partic-
ular, the flux forming the central tube is buffeted
by strong irregular convection. This leads to the
central flux tube changing shape, with radial ten-
drils forming temporarily between the convection
cells surrounding the flux tube.

Figure 7 shows the result for Q = 250 when the
nonlinear magnetoconvection is well established.
Compared to the axisymmetric initial condition,
the radius of the magnetic flux tube is only slightly
larger when nonlinear magnetoconvection is estab-
lished. This means the weak convection forming
inside the flux tube is not strong enough to push
magnetic flux away from the central axis. The
edge of the magnetic flux tube is buffeted by the
convection around it, as in the case for Q = 100,
but fewer radial tendrils form between the convec-
tion cells and those that do form are weaker than
in the case when Q = 100. In order to see the
same breakup of the magnetic tube as for Q = 32,
one has to enlarge the radius of the numerical do-
main (Γ) so that the magnetic flux has more room
to disperse between the convection cells and in the
process lowers the magnetic field strength at the
central axis. The influence of a larger Γ is consid-
ered in Section 5.2.

A quantitative measure of the breakup of the
central magnetic flux tube is provided by defining
the radial profile of the magnetic field as

|B̄(r)| =
1

nz.nφ

nz∑ nφ∑√
B2

r +B2
φ +B2

z , (11)

where nz and nφ are the number of data points in
the vertical and azimuthal directions respectively.
This gives an indication of the size of the mag-
netic field in the radial direction, i.e. the magneti-
sation of the plasma as a function of the radius.
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Figures 5(d), 6(d) and 7(d) give the radial pro-
files of |B̄| = |B̄(r)| for Q = 32, Q = 100 and
Q = 250 respectively at different times during the
numerical simulations. All of them show a well-
defined magnetic flux tube at the central axis at
the axisymmetric initial condition. The annular
ring around the central flux tube breaks up into
many cells in the azimuthal direction for all val-
ues of Q. In the case of Q = 32 and Q = 100, two
concentric circles of cells form around the mag-
netic flux tube. This allows magnetic flux to move
between the cells in the radial direction and to
be captured between the cells at a radial posi-
tion of approximately r = 1.7. The value of the
magnetic field at these positions are similar for
Q = 32 and Q = 100, as shown in Figures 5(d)
and 6(d). These figures also show the relatively
large decrease of magnetic field at the central axis
for Q = 32 and the lesser decrease for Q = 100.
In the case of Q = 250 only one ring of convec-
tion cells forms around the magnetic flux tube.
Figure 7(d) shows that the magnetic flux tube ra-
dius increases slightly, as only a small amount of
flux moves between the convection cells. The mag-
netic field inside the flux tube decreases less than
in the case for Q = 100, so that weaker convec-
tion forms inside the flux tube and the tube stays
intact throughout the simulation run.

Where strong flows carve into the central mag-
netic tube, the magnetic field is pushed together
and the field strength experiences a local peak
value. This can be seen in Figure 7(a) forQ = 250.
At the edge of the flux tube, indentations into
the tube is caused by strong convection pushing
against the side of the tube. The magnetic field is
also stronger at these indentations than at the pro-
trusions between them, where the magnetic field
pushes into weaker convection flows.

The interplay between the central magnetic flux
tube and the convection surrounding it can be
seen in Figure 8, where the time evolution of
|B̄| = |B̄(r)| is shown for the different values of
Q. Figure 8(a) shows that for Q = 32 at time
600, the convection inside the magnetic flux tube
becomes strong enough to push a significant part
of the magnetic flux away from the central axis.
In contrast, Q = 250 in Figure 8(c) has a mag-
netic field that is strong enough to keep the mag-
netic flux tube intact, in spite of weak convection
that forms inside the flux tube. In the case of

Q = 100, Figure 8(b) shows that weak convec-
tion starts at time 550. Eventually the convection
grows strong enough to push magnetic flux away
from the central flux tube, so that at time 1000
the nonlinear magnetoconvection with Q = 32 and
with Q = 100 look similar.

The magnetic flux that escapes from the central
flux tube tends to congregate at strong downflows
between convection cells where the convection is
converging. In the region where the convection
dominates, this is between the convection cells
where strong downflows occur. Figure 9 shows
the region of convection in green, and the loca-
tions of strong magnetic field in blue. One clearly
observes the magnetic flux remnant at the central
axis through the absence of convection as well as
the magnetic field concentrated there. The down-
ward plumes in the convection can be seen with
their associated strong magnetic field concentra-
tions. It is noticeable that the magnetic field
strength in the plumes is maximum in the top half
of the numerical domain, while the downward ve-
locities reaches their maximum in the bottom half
of the domain. The chaotic convection near the
bottom boundary in Figure 9 is a consequence of
our impenetrable boundary condition and is not
relevant to the current discussion. Where the mag-
netic field peaks, either at the central axis or in the
downward plumes, an azimuthal current forms a
ring around the magnetic field concentration. This
is shown in the vertical planes of Figures 5, 6 and
7 for all values of Q.

Figure 10 shows the close relation between the
convection and the temperature in the solution.
Everywhere an upflow occurs, the plasma is hot
relative to the surrounding temperature. As a re-
sult, the temperature perturbation on every plane
shows clearly the forms of the convection cells, as
can be seen in the top part of the numerical do-
main. At the plumes, where strong downflow oc-
curs, the plasma is cool relative to the surround-
ing temperature. Figure 10 shows the downflows
together with their associated lower temperature
near the bottom of the domain.

The radius of the numerical domain allows two
concentric rings of convection cells to form in the
case of Q = 32 and Q = 100, shown in the verti-
cal planes of Figures 5 and 6. The cell closest to
the central axis has an upflow next to the mag-
netic flux tube, while the outer cell has an upflow
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next to the outer boundary. These strong upflows,
together with the strong downflows between the
convection cells, are observable in the 3D render-
ing of the vertical velocity component in Figure 10
for Q = 100. For Q = 250 only one ring of con-
vection cells forms, as can be seen in the vertical
planes shown in Figure 7.

In previous axisymmetric simulations of a cen-
tral flux tube surrounded by convection, an annu-
lar cell flowing towards the flux tube at the top of
the numerical domain was always present to keep
the flux tube intact (Hurlburt & Rucklidge 2000).
In the absence of this collar flow the magnetic flux
tube spread out radially until the collar flow was
restored (Botha et al. 2006). We observe the same
phenomenon in three dimensions. Figure 7 shows
one inward flowing collar cell that keeps the mag-
netic flux tube confined to the central axis, with
very little magnetic field present in the convection.
In contrast, the outward flowing cells of Q = 32
and Q = 100 in Figures 5 and 6 allow magnetic
flux to escape from the flux tube. It is interest-
ing that the flux tube is not completely destroyed
in these cases. A remnant of the tube is left at
the central axis, which becomes more prominent
as the value of Q increases.

The Alfvén speed in the model is defined as
c2A = σζ0K

2QB2/ρ. Figure 9 shows that the high-
est values of the magnetic field occurs at the top
of the downflows. This is true for both Q = 32
(Figure 5) and Q = 100 (Figures 6 and 9). Conse-
quently these are also the locations for the highest
values of cA in the numerical domain, since the
density increases as one moves downwards.

5.1. Effect of wedge width

The effect of the wedge width on the nonlinear
results is investigated by doubling the azimuthal
angle of the numerical domain from Mφ = 8 to
Mφ = 4 and then continuing the simulation run.
Figure 11 shows the result for Q = 32. In this
case the convection cells merge from two concen-
tric circles, each with eight cells in the azimuthal
direction, to one concentric circle consisting of four
cells in the azimuthal direction. Figure 12 shows
how initially part of the magnetic field is trapped
between the convection cells, which then moves
towards the central axis as the convection pat-
tern changes from two concentric circles to one.
Three instances from Figure 12 are plotted in Fig-

ure 11(d), with the final state showing that most
of the magnetic field are being pushed towards the
central axis.

The initial state of this simulation is similar
to that depicted in Figure 5. Here the convec-
tion forms two concentric circles of eight cells each
in the azimuthal direction, with orientation such
that the inner radial cells flow radially outward
and the outer cells radially inward at the top of
the domain, as can be seen in Figures 5(b) and
(c). During the simulation the inner cells become
weaker while the outer cells grow stronger (Figure
12). The final state in the wider wedge is shown in
Figure 11. Figure 11(c) shows the large convection
cells that formed, with strong flow moving inward
at the top of the domain. Figure 11(b) shows a
region on the boundary between the large convec-
tion cells. Here one finds weaker convection and
a magnetic field that is pushed between the two
cells away from the central axis, so that the width
of the central flux tube is larger here than at posi-
tions where the strong convection forces the mag-
netic flux against the central axis. This is clearly
visible in Figures 11(a), (b) and (c).

For Q = 100 and Q = 250 the number of cells in
the radial and azimuthal directions stays the same
when the numerical domain is widened. Figure 13
shows the simulation result when Q = 250. This
behaviour can be explained by considering the ge-
ometry of the solution. A convection cell natu-
rally wants to maintain a shape where its radial
size is approximately the same as its azimuthal
size. For low values of Q, the magnetic flux tube
has a small radius and the numerical domain con-
taining the convection a large one. In a narrower
wedge, as in Figure 5 for Q = 32 and Mφ = 8, the
size of convection cells is limited by constraints
in the azimuthal direction. This means that two
cells form in the radial direction, each of which has
approximately the same radial diameter as its az-
imuthal diameter. By doubling the wedge width,
as in Figure 11, this constraint is lifted so that the
azimuthal width becomes approximately the same
as the radial width of the convective area in the
numerical domain. Consequently one cell forms
that fit into the radial as well as the azimuthal
directions. For Q = 250 the magnetic flux tube
fills half the radius of the domain, while the other
half contains the convection (Figure 13). In this
case the radial width of one convection cell fits
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eight times into one full azimuthal rotation. As a
consequence, doubling the width of the numerical
domain has no effect on the number of cells form-
ing around the magnetic flux bundle. We conclude
that as long as the radial width of the convection
area (rc) is smaller or of equal size to the azimuthal
width of the numerical domain, i.e.

rc ≤ 2πrp
Mφ

, (12)

where rp is the radius of the magnetic flux tube,
then the width of the domain will not restrict the
formation of cells in the convection around the flux
tube.

5.2. Initial conditions and aspect ratio

In order to determine the influence of the design
of the numerical experiments (Section 3) on the
nonlinear results, we initialised the 3D numerical
domain with a uniform vertical magnetic field and
a velocity perturbation. For a radius of Γ = 3 and
a wedge width of Mφ = 8, the numerical results
are indistinguishable from the results described in
this paper (Figures 5, 6 and 7), provided that the
duration of the run is long enough for flux separa-
tion to occur and for the flux to migrate through
the convective region and accumulate at the cen-
tral axis.

To investigate the role of the radius of the nu-
merical domain, we doubled the radius to Γ = 6
and repeated the runs from an initial uniform ver-
tical magnetic field. These nonlinear final states
are shown in Figures 14 and 15. Nonlinear con-
vection forms within 200 time units after initiali-
sation, as can be seen in Figure 16. The number of
convection cells is determined by the ratio of their
radial and azimuthal widths being close to one.
This means that in the case of Mφ = 8 the limited
azimuthal width forces many convection cells to
form in the radial direction. In the case of Q = 32
the convection is strong enough for five concen-
tric circles of counter-flowing convection cells to
form around the central axis, with three downflow
regions between them, as shown in Figure 14(a).
For larger values of Q, the stronger magnetic field
causes this pattern to break up, as seen in Figures
14(b) and 15.

Flux separation occurs with magnetic flux con-
gregating at the downflow locations between con-
vection cells, as shown in Figures 14(a), 14(b) and

very clearly at midradius in Figure 15(b). Starting
from a vertical field, the magnetic flux is caught
between convection cells and never migrates to the
central axis. Hence at all times there is a substan-
tial amount of flux in the whole of the domain,
shown in Figures 14(c) and 14(d) for Q = 32
and Q = 250 respectively. This should be com-
pared with the cases for radius Γ = 3, shown in
Figures 5(d) for Q = 32 and 7(d) for Q = 250.
For the smaller radius fewer convection cells form
along the radial direction of the numerical domain,
which means the number of downflows between
cells in the convection where magnetic flux con-
gregates are less. However, the amount of flux at
a downflow location is approximately the same for
both Γ = 3 and 6, as can be seen when the peak
values of |B̄| = |B̄(r)| at downflows are compared
in Figures 5(d) and 14(c) for Q = 32 and Figures
7(d) and 14(d) for Q = 250.

It is worth comparing the start of simulations
with a uniform magnetic field for radii Γ = 3 and
Γ = 6. In both cases an initial central flux tube
forms that is short-lived in the case for Γ = 6 with
Q ≥ 100, as shown in Figures 16(b) and (c). The
turbulent flow erodes magnetic flux away from the
central axis and pushes the magnetic flux around
inside the numerical domain so that no central flux
tube forms during the simulations, as shown in
Figure 14(d) for Q = 250. The evolution of this
process can be seen in Figures 16(b) and (c). For
Q = 32 and Γ = 6 the initial central flux tube
survives longer, but eventually is eroded away by
strong convection cells that form next to it, as
shown in Figure 16(a). In contrast, for a radius of
Γ = 3 the central flux tube that initially forms is
much more resilient. This is because radially only
two convection cells form around it when Q = 32
(Figure 5) and Q = 100 (Figure 6), while only
one cell fits into the radius when Q = 250 (Figure
7). There are fewer opportunities for the magnetic
flux to move between convection cells away from
the central axis when compared to the case when
Γ = 6. The final states initialised with a uniform
magnetic field are indistinguishable from Figures
5, 6 and 7, in spite of the fact that the results in
these figures evolved from a central flux tube with
one annular convection cell around it, as shown by
Figure 8.

In the case of a vertical field initialisation with
radius Γ = 6, the majority of the magnetic flux
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does not migrate through the convective region to
congregate at the central axis, in contrast with a
vertical field initialisation with radius Γ = 3. This
can be seen when Figures 5(d) and 14(c) are com-
pared for Q = 32, as well as Figures 7(d) and
14(d) for Q = 250. The fact that more convection
cells form in the larger numerical domain when
Γ = 6 means that more magnetic flux is trapped
between the cells, rather than being pushed to-
wards the central axis. As the value ofQ increases,
the convection finds it more difficult to push mag-
netic flux around, so that time-dependent patterns
evolve. Thus one moves from strong convection
and a small magnetic flux concentration at the
centre for Q = 32, shown in Figures 14(a) and (c),
to a very strong magnetic field that completely
dominates the convection. We have done simula-
tions up to Q = 700 and this statement holds true
over the whole range of Q. This phenomenon was
also observed by Hurlburt & Alexander (2002).
Figures 14(b) and (d), together with Figure 15,
show the case when Q = 250. Here the interplay
is such that convection cells form between signif-
icant concentrations of magnetic flux throughout
the domain.

The prominent narrow peak in the magnetic
flux near r = 0 that forms towards the end of
the simulation in Figure 14(c) when Γ = 6 and
Q = 32, can be ascribed to a strong convection
cell that forms close to the central axis and that
pushes some of the magnetic flux against r = 0.
This is clearly visible in Figure 16(a) that shows
the time evolution of |B̄| = |B̄(r)|. In fact, Fig-
ure 16 shows that this process occurs repeatedly
throughout the numerical simulations for all val-
ues of Q. Convection cells form close to the cen-
tral axis, which erode some of the flux away from
the central axis while pushing the remnant closer
to the central axis. Comparing Figure 16 when
Γ = 6 with Figure 8 when Γ = 3, it is clear that
the erosion of the magnetic field caused by the con-
vection cells will prevent a flux bundle forming at
the central axis. However, this is only true when
the radius of the numerical domain is sufficiently
large for more than two concentric circles of con-
vection cells to form. In the case for Γ = 3, the
final state of a central flux bundle with convection
surrounding it was obtained with an initialisation
using an axisymmetric central flux tube (as in Fig-
ure 8) as well as an initialisation with a uniform

vertical field.

6. Discussion

This paper can be thought of as an exploration
of two physical processes: flux separation and tur-
bulent erosion. Flux separation occurs when tur-
bulent eddies expel magnetic flux to their bor-
ders where the flux concentration builds up (Weiss
1966), while turbulent erosion is the process when
convection cells push against magnetic flux con-
centrations and allow the flux to escape between
them away from the area of high concentration
(Simon & Leighton 1964).

The 2D axisymmetric solutions used as initial
conditions for the 3D numerical simulations pre-
sented here, have a well-defined magnetic flux tube
at the central axis with an annular convection cell
around it (Figure 1). Irrespective of the radius
of the domain, i.e. the number of counter-rotating
convection cells that fit into the domain, almost
all the magnetic flux in the solution gathers at the
central flux bundle (Hurlburt & Rucklidge 2000).
This final state is maintained indefinitely.

As soon as a third dimension is introduced to
the axisymmetric solution, the annular convection
cell breaks up in the azimuthal direction into con-
vection cells that have approximately equal radial
and azimuthal diameters (Figures 5, 6 and 7). The
dimensions of the convection cells were discussed
in Section 5.1. The convection cells that push
against the central magnetic flux tube push some
of the magnetic flux between them, which reduces
the magnetic pressure inside the flux tube. This
allows weak magnetoconvection cells to form in-
side the tube, which can grow strong enough to
break the flux tube up through flux separation
(Figure 8). A remnant of the original flux tube
remains at the central axis, while the rest of the
magnetic flux is captured between the convection
cells in the numerical domain.

Most of the magnetic flux between cells gather
at the locations of the strongest downflows (Fig-
ure 9). These downflowing plumes are well known
from Cartesian simulations of magnetoconvection
(Cattaneo et al. 2003). They exhibit strong mag-
netic flux concentrations in the top layers of the
numerical domain. The velocity increases as the
flow moves downward along the plume. The mag-
netic flux gathering at these locations are not
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strong enough to influence the convection pattern
around them. As a result, the flux concentrations
are easily manipulated and destroyed by the con-
vection surrounding them, similar to the final de-
struction of solar pores as observed by Sobotka et
al. (1999).

The central magnetic flux bundle is weakened
by flux slipping away from it between the convec-
tion cells that exist around the flux bundle. This
process is highly dynamic, with temporary finger-
like protrusions forming between the cells, to
be destroyed again when the magnetoconvection
pushes them back to the central axis. Petrovay &
Moreno-Insertis (1997) solved the 2D axisymmet-
ric diffusion equation with a diffusivity dependent
on the magnetic field, to show that a magnetic
flux tube decays from its outer edge to its cen-
tre, in the process forming a sharp gradient at
its edge. They also found that a fraction of the
magnetic flux tube always remains. This idealised
result will be true when small convection cells sur-
round a large magnetic flux bundle. In the results
we presented in this paper, eight convection cells
(Figure 5) as well as four convection cells (Figure
11) leave a flux bundle remnant at the central axis,
provided that the radius of the numerical domain
is small in order to limit the amount of convection
cells forming.

Unlike the idealised diffusion result of Petrovay
& Moreno-Insertis (1997), the decay of the central
flux bundle is not a steady process, but highly de-
pendent on the nonlinear magnetoconvection sur-
rounding the flux bundle. As convection cells form
inside the magnetic flux bundle, they push the flux
away from the central axis (Figure 8). The oppo-
site process occurs when convection cells are de-
stroyed next to the central flux bundle. In this
case the magnetic flux that was captured between
the cells is pushed towards the central axis, thus
increasing the radius of the magnetic flux bundle
(Figure 12). Thus the decay of the central mag-
netic flux tube is dominated by magnetoconvec-
tion (Figures 8 and 16) and we cannot fit a linear
or parabolic decay rate to these numerical results.
Another possible influence of the convection on the
magnetic structure occurs when weak convection
forms inside the magnetic flux bundle. If the con-
vection is too weak to destroy the integrity of the
flux bundle, it only increases the diameter of the
flux bundle slightly, as shown in Figure 8(c).

In this paper we also considered the question of
whether a central magnetic flux bundle will form
spontaneously when starting from a uniform ver-
tical magnetic field in a cylindrical (3D) numerical
domain (Section 5.2). For a radius of Γ = 3 the
final state is indistinguishable from the final state
when the numerical simulation is initialised with
an axisymmetric flux bundle at the centre. For
this radius some of the magnetic flux is captured
between the convection cells, but a significant pro-
portion of the flux is pushed to the central axis,
as shown in Figures 5(d), 6(d) and 7(d). How-
ever, when the radius is lengthened to Γ = 6, it
is more difficult to distinguish between flux that
is captured between the convection cells and flux
that forms the central bundle, as shown in Figures
14(c) and (d). Indications are that the magne-
toconvection continuously removes flux from the
central axis through new convection cells forming
at the edge of the flux bundle and pushing flux
away from the central axis through flux separa-
tion (Figure 16). For larger radii we expect that
even less magnetic flux will be available to form
a central axis, as more flux will be captured be-
tween convection cells that form in the numerical
domain.

7. Conclusion

This paper presents numerical simulations of
magnetic flux tubes in a 3D cylindrical domain,
solving the nonlinear resistive magnetohydrody-
namic equations. The simulations were initialised
with an axisymmetric (2D) solution consisting of
a central magnetic flux tube and one annular con-
vection cell around it. The solution was then per-
turbed with an azimuthal velocity perturbation.

Linear modes form in the azimuthal direction,
situated on the border between the central flux
tube and the convection cell. During the linear
stage of the developing azimuthal perturbation,
the wavelength of the fastest growing mode de-
pends on the radius of the central magnetic flux
tube. For small tube radii the wavelength is small,
while it increases as the tube radius increases.
However, the dependence of the mode length on
the tube radius decreases as the tube radius in-
creases, so that there exist a well-defined length
scale in the limit of large radii.

When the nonlinear three-dimensional convec-
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tion develops, the annular cell breaks up into many
cells. Magnetic flux slips between the cells away
from the central flux tube. This process is known
as turbulent erosion. The magnetic pressure in the
central tube becomes less and convection grows in-
side the flux tube that can become strong enough
to push the tube apart. A remnant of the cen-
tral flux tube persists, undergoing nonsymmetric
perturbations caused by the convection surround-
ing it. The size of the central tube remnant and
its perturbations both depend on the interplay be-
tween the magnetic field and the convection. For
Q = 32, strong convection forms at the edge of
the flux tube that pushes flux away from the cen-
tral tube. For Q = 100 weaker convection forms
inside the tube that takes longer to reached the
same final state as when Q = 32. For Q = 250
convection forms inside the flux tube that is too
weak to break the integrity of the tube.

The decay of the tube is dependent on the con-
vection around it. The convection can remove flux
from the tube when new convection cells form in-
side the flux tube, or add flux to the tube when
convection cells next to the flux tube are destroyed
and flux caught between the convection cells is
pushed back to the central tube. The convection
can also change the shape of the central flux tube
by pushing against the magnetic flux so that some
of the flux is pressed in between convection cells.
In this way during the simulations, finger-like pro-
trusions develop between the convection cells that
surround the central flux tube. These are time de-
pendent, forming and disappearing as the convec-
tion pattern around the central flux tube changes.

Secondary flux concentrations form between
the convection cells away from the central tube.
This occurs at temporary downflowing plumes
that form between convection cells where the con-
vection converges.

Some simulations were initialised with a uni-
form vertical magnetic field and allowed to de-
velop nonlinear magnetoconvection. For smaller
radii (Γ = 3) results were obtained that are indis-
tinguishable from when the simulations were ini-
tialised with an axisymmetric central flux tube.
For larger radii (Γ = 6) more convection cells
formed in the numerical domain, which captured
more of the magnetic flux in the downflows be-
tween them. As a result, the flux concentration at
the central axis was less defined.

The conclusion from the work presented in this
paper is that the decay of a central flux tube is
dictated by the nonlinear magnetoconvection sur-
rounding it. The formation and destruction of
convection cells around the flux tube can add or
subtract magnetic flux from the tube. As such,
the flux tube’s decay rate does not fit a simple
law. A remnant of the central flux tube always
survives, with secondary flux concentrations be-
tween the convection cells. The more convection
cells form, the more flux is captured between the
cells and the central tube becomes less defined.
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Fig. 1.— Initial axisymmetric state obtained with
Q = 100 and Γ = 3. In the top panel the colour
(grey in the printed version) represents the tem-
perature fluctuation relative to the unperturbed
state, the lines magnetic field and the arrows the
velocity field. In the bottom panel the colour (grey
in the printed version) represents azimuthal cur-
rent density jφ in the (r, z) plane, the arrows mag-
netic field and contours the mass density ρ. The
axis is on the left hand edge of each panel.
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Fig. 2.— 3D state obtained with Q = 500 and
Γ = 5. The solution is sampled at the vertical
(r, z) plane taken at mid-sector with Mφ = 10.
(a) is the full solution and (b) the azimuthal per-
turbations of the physical quantities. In both (a)
and (b) the top panel represents the temperature
fluctuation relative to the unperturbed state in
colour and the velocity field as arrows. In the
bottom panel colour represents azimuthal current
density jφ, arrows the magnetic field and contours
the mass density ρ. All colour scales are replaced
by grey scales in the printed version. The solution
forms an axisymmetric standing wave inside the
magnetic flux bundle, and one annular convection
cell round the flux bundle, as seen in (a). The
linear modes are located at the boundary between
the magnetic flux bundle and the convection cell,
shown in (b). The amplitudes of the linear modes
oscillate and this data set was sampled at maxi-
mum amplitude. The axis is on the left hand edge
of each panel.
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Fig. 3.— Length of linear modes in the azimuthal
direction, for different magnetic flux tube radii
(rp). The length is calculated as 2πrp/Mφ. The
stars are the values measured from our simula-
tions.

Fig. 4.— Linear growth rates measured for dif-
ferent Mφ with numerical domain radii of Γ = 4
(solid line) and Γ = 5 (broken line). The stars and
diamonds are the values obtained from our simu-
lations. These growth rates were obtained with a
Chandrasekhar number Q = 500, chosen so that
the thickness of the magnetic flux tube allows only
one convection cell to form in the radial direction
outside the flux tube.
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Fig. 5.— Nonlinear solution with Q = 32, Γ = 3 and Mφ = 8 at time 1006.81. (a) shows the horizontal
midplane, and the two vertical planes are sampled at (b) φ = 18◦ with max |B| = 16.1 and (c) φ = 45◦

with max |B| = 12.5. (d) represents the radial profile of the summed magnetic field, defined in (11), at three
different times. The solid line is at time 1006.8, the dotted line at time 835.7 and the dashed line is the
profile of the axisymmetric initial condition at time 328.0. The diagnostics for the horizontal plane (a) are as
follows: in the first quadrant the colour represents jz and the contours Bz; in the second quadrant the colour
is the temperature fluctuation relative to the unperturbed state (dark is cold) and arrows are the velocity
field; in the third quadrant the colour is the temperature fluctuation relative to the unperturbed state and
contours are the mass density; in the fourth quadrant grey is magnetic field strength, with max |B| = 15.4
black and zero white. In the printed version the colour scales in quadrants one, two and three are printed
as grey scales. The diagnostics for the two vertical planes are the same as in Figure 2(a). The physics in
the two vertical planes are as follows: (b) has min(β) = 17.2, max(β) = 1.6 × 1011, min(jφ) = −118.8,
max(jφ) = 125.5, min(T̃ ) = 0.98, max(T̃ ) = 1.01; (c) has min(β) = 29.6, max(β) = 5.9 × 107, min(jφ) =
−62.0, max(jφ) = 80.3, min(T̃ ) = 0.98, max(T̃ ) = 1.01. Here β is the ratio of gas pressure over magnetic
pressure. In this solution max(Mach number) = 0.1.
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Fig. 6.— Nonlinear solution with Q = 100, Γ = 3 and Mφ = 8 at time 1043.13. (a) shows the horizontal
midplane with max |B| = 9.4, and the two vertical planes are sampled at (b) φ = 15◦ with max |B| = 9.4 and
(c) φ = 45◦ with max |B| = 7.9. (d) represents the radial profile of the summed magnetic field, defined in
(11), at three different times. The solid line is at time 1043.13, the dotted line at time 803.5 and the dashed
line is the profile of the axisymmetric initial condition at time 357.1. The diagnostics for the horizontal plane
(a) are the same as in Figure 5 and for the two vertical planes as in Figure 2(a). The physics in the two
vertical planes are as follows: (b) has min(β) = 15.8, max(β) = 7.4×1010, min(jφ) = −54.8, max(jφ) = 62.7,
min(T̃ ) = 0.99, max(T̃ ) = 1.01; (c) has min(β) = 28.0, max(β) = 1.2 × 107, min(jφ) = −46.2, max(jφ) =
51.7, min(T̃ ) = 0.99, max(T̃ ) = 1.01. In this solution max(Mach number) = 0.1.
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Fig. 7.— Nonlinear solution with Q = 250, Γ = 3 and Mφ = 8 at time 1034.95. (a) shows the horizontal
midplane with max |B| = 6.4, and the two vertical planes are sampled at (b) φ = 10◦ with max |B| = 4.4 and
(c) φ = 35◦ with max |B| = 6.4. (d) represents the radial profile of the summed magnetic field, defined in
(11), at three different times. The solid line is at time 1034.95, the dotted line at time 794.98 and the dashed
line is the profile of the axisymmetric initial condition at time 471.34. The diagnostics for the horizontal
plane (a) are the same as in Figure 5 and for the two vertical planes as in Figure 2(a). The physics in the two
vertical planes are as follows: (b) has min(β) = 24.2, max(β) = 1.2× 107, min(jφ) = −16.3, max(jφ) = 32.6,
min(T̃ ) = 0.99, max(T̃ ) = 1.01; (c) has min(β) = 13.8, max(β) = 7.7 × 1012, min(jφ) = −25.7, max(jφ) =
45.5, min(T̃ ) = 0.99, max(T̃ ) = 1.01. In this solution max(Mach number) = 0.1.

19



(a)

(b)

(c)

Fig. 8.— The time evolution of the summed
magnetic field as defined in (11). Black repre-
sents max |B̄| and white zero. The spatial di-
mensions are Γ = 3 and Mφ = 8. The axis
is along the top edge of each panel, and the
time begins when the nonaxisymmetric perturba-
tions are introduced. (a) presents Q = 32 with
max |B̄| = 15.22, of which three instances are plot-
ted in Figure 5(d). (b) presents Q = 100 with
max |B̄| = 8.27, of which three instances are plot-
ted in Figure 6(d). (c) presents Q = 250 with
max |B̄| = 4.64, of which three instances are plot-
ted in Figure 7(d). The convection tears magnetic
flux away from the the central flux bundle in the
cases of Q = 32 and Q = 100, while the flux bun-
dle stays intact for Q = 250.
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Fig. 9.— A 3D rendering of the kinetic and mag-
netic energies in the system, with Q = 100, Γ = 3
and Mφ = 8. The physical parameters are given
in Figure 6. On the left hand side is the velocity
field (v2) in green and on the right hand side the
magnetic field |B| in blue. A grey scale is used
in the printed version. The contours at the top
and bottom panels of the wedge are the vertical
magnetic field passing through these planes.

Fig. 10.— The vertical velocity perturbation on
each plane (ṽz) on the left hand side and the tem-
perature perturbation on each plane (T̃ ) on the
right hand side. The velocity is colour coded so
that upward flow is red and downward flow blue.
For the temperature red shows where the plasma
is hot and blue where it is cool relative to the sur-
rounding temperature. In the printed version only
the upflow and hot plasma are shown in a grey
scale. The physical parameters are as in Figure 6,
with Q = 100, Γ = 3 and Mφ = 8. The contours
at the top and bottom panels of the wedge are
the vertical magnetic field passing through these
planes.

21



(a) (b)

                
 

 

 

 

 

 

(d) (c)

                
 

 

 

 

 

 

Fig. 11.— Nonlinear solution with Q = 32, Γ = 3 and Mφ = 4 at time 1208.72. This simulation was
initialised from the numerical run depicted in Figure 5, with a data set taken at time 799.42. (a) shows
the horizontal midplane with max |B| = 12.2, and the two vertical planes are sampled at (b) φ = 35◦ with
max |B| = 15.0 and (c) φ = 70◦ with max |B| = 9.9. (d) represents the radial profile of the summed magnetic
field, defined in (11), at three different times. The solid line is at time 1208.72, the dotted line at time 1011.39
and the dashed line at time 800.23. The diagnostics for the horizontal plane (a) are the same as in Figure 5
and for the two vertical planes as in Figure 2(a). The physics in the two vertical planes are as follows: (b) has
min(β) = 17.2, max(β) = 7.6 × 1011, min(jφ) = −44.4, max(jφ) = 68.6, min(T̃ ) = 0.98, max(T̃ ) = 1.01; (c)
has min(β) = 27.1, max(β) = 2.5 × 1011, min(jφ) = −45.7, max(jφ) = 77.7, min(T̃ ) = 0.98, max(T̃ ) = 1.01.
In this solution max(Mach number) = 0.03 in (b) and 0.09 in (c).
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Fig. 12.— The time evolution of the summed mag-
netic field as defined in (11) for Q = 32, Γ = 3 and
Mφ = 4, with black representing max |B̄| = 11.58
and white zero. The axis is along the top edge
of the panel. Three instances from this data set
are plotted in Figure 11(d). The coalescing of the
magnetic flux at the central axis is clearly visible.
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Fig. 13.— Nonlinear solution with Q = 250, Γ = 3 and Mφ = 4 at time 901.03. This simulation was
initialised from the numerical run depicted in Figure 7, with a data set taken at time 800.83. The solution
retains its Mφ = 8 structure. (a) shows the horizontal midplane with max |B| = 4.6, and the two vertical
planes are sampled at (b) φ = 5◦ with max |B| = 4.2 and (c) φ = 30◦ with max |B| = 6.4. (d) represents the
radial profile of the summed magnetic field, defined in (11), at two different times. The solid line is at time
901.03, the dotted line at time 801.64. The diagnostics for the horizontal plane (a) are the same as in Figure 5
and for the two vertical planes as in Figure 2(a). The physics in the two vertical planes are as follows: (b) has
min(β) = 27.2, max(β) = 1.2 × 106, min(jφ) = −25.5, max(jφ) = 28.6, min(T̃ ) = 0.98, max(T̃ ) = 1.01; (c)
has min(β) = 13.5, max(β) = 2.8 × 109, min(jφ) = −22.4, max(jφ) = 48.5, min(T̃ ) = 0.98, max(T̃ ) = 1.01.
In this solution max(Mach number) = 0.07 in (b) and 0.06 in (c).
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(a) (b)

(c) (d)

Fig. 14.— Nonlinear solutions with Γ = 6 and Mφ = 8. The horizontal midplanes are shown for (a) Q = 32
at time 1509.8 with max |B| = 13.1 and (b) Q = 250 at time 2679.2 with max |B| = 5.6. The diagnostics for
the horizontal planes are the same as in Figure 5. The radial profiles of the summed magnetic field, defined
in (11), for these nonlinear solutions are given below each solution. (c) is for Q = 32 with the solid line at
time 1509.8, the dotted line at time 1228.5 and the broken line at time 946.49. (d) is for Q = 250 with the
solid line at time 2679.2, the dotted line at time 2368.79 and the broken line at time 2086.24.
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Fig. 15.— Vertical planes of nonlinear solution in Figure 14(b) for Q = 250, Γ = 6 and Mφ = 8, sampled at
(a) φ = 10◦ with max |B| = 5.3 and (b) φ = 35◦ with max |B| = 5.6. The diagnostics for the vertical planes
are the same as in Figure 2(a). The physics are as follows: (a) has min(β) = 21.1, max(β) = 4.6 × 105,
min(jφ) = −6.9, max(jφ) = 8.4, min(T̃ ) = 0.98, max(T̃ ) = 1.01; (b) has min(β) = 15.0, max(β) = 1.5×1012,
min(jφ) = −26.6, max(jφ) = 23.6, min(T̃ ) = 0.98, max(T̃ ) = 1.01. In this solution max(Mach number) =
0.05.
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(a)

(b)

(c)

Fig. 16.— The time evolution of the summed mag-
netic field as defined in (11). Black represents
max |B̄| and white zero. The spatial dimensions
are Γ = 6 and Mφ = 8. The axis is along the
top edge of each panel. (a) presents Q = 32
with max |B̄| = 12.09, of which three instances
are plotted in Figure 14(c) (b) presents Q = 100
with max |B̄| = 6.78. (c) presents Q = 250 with
max |B̄| = 3.91, of which three instances are plot-
ted in Figure 14(d) Throughout the simulations
magnetic flux is eroded from the central axis by
the convection.
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