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Abstract—Spaceborne synthetic aperture radar (SAR) systems operating at lower 

frequencies, such as P-band, are significantly affected by Faraday rotation (FR) effects. A novel 

algorithm for calibrating the circular transmit and linear receive mode spaceborne compact 

polarimetric SAR using mixed calibrators is proposed, which is able to correct precisely both FR 

and radar system errors (i.e. channel imbalance and cross-talk). Six sets of mixed calibrators, 

consisting of both passive calibrators and polarimetric active radar calibrators (PARCs), are 

investigated. Theoretical analysis and simulations demonstrate that the optimal calibration 

scheme combines four polarimetric selective mixed calibrators, including two gridded trihedrals 

and two PARCs, together with total electron content measurements by the GNSS system. 

Index Terms— Calibration, Faraday rotation, Ionosphere, Compact polarimetry, Synthetic 

aperture radar (SAR). 

 

I. INTRODUCTION 

There is growing interest in deploying lower frequency spaceborne Synthetic Aperture Radars (SARs) 

for monitoring of the Earth, such as the P-band BIOMASS mission to measure forest biomass [1], 

which is currently under Phase-A study by the European Space Agency. However, the ionosphere can 
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significantly affect such systems; in particular, L- and P-band spaceborne SAR measurements will 

suffer from Faraday rotation (FR) [1]–[4]. Furthermore, two conflicting factors often affect the design 

of such systems, namely the need for frequent global coverage and the need to maximize information 

content, which often requires polarimetric information. Full polarimetry (FP) suffers from reduced 

swath width compared to SAR systems transmitting on a single polarization, thus increasing the time 

needed for global coverage. As a result, there has been growing interest in the compact polarimetric (CP) 

SAR mode [5]-[14], because, for a given swath width, it operates with reduced data rate, system power 

and pulse repetition frequency compared to a FP system, while still allowing estimates of some of the 

key polarimetric quantities.  

The first system of this type, proposed by Souyris et al. [5], [6], used the /4 CP mode, which 

transmits H+V (45o linearly polarized) and receives echoes in the H and V polarizations. However, such 

a system could also be severely affected by FR [11]–[14]. A way to reduce the effects of FR was 

suggested by Raney [8] when he introduced the hybrid mode (also called the /2 mode [11] or CTLR 

mode [12]) which transmits on circular polarization and receives on the two linear (H, V) polarizations. 

This is a promising approach, since circular polarizations are preserved under FR [6], [10], [12] and 

[13]; hence the polarization of the incident wave would be undistorted and only FR effects on the return 

signal would need to be corrected. 

Freeman [14] developed a system model for CTLR mode compact polarimetry with FR. On the basis 

of this model, this paper proposes a novel algorithm for calibrating the CTLR mode using both passive 

and active calibration targets. After an introduction to the system model in Section II, the mathematical 

analysis in Section III leads to a set of new calibration algorithms and an optimized set of calibrators. 

Computer simulations presented in Section IV verify the effectiveness of the approach; these include 

simulations accounting just for radar system errors and FR, and simulations that also take calibrator 
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errors into account. 

II. SYSTEM MODEL FOR CTLR COMPACT POLARIMETRY 

A. Faraday Rotation 

When a polarized electromagnetic wave traverses the ionosphere, its interaction with free electrons 

and the Earth’s magnetic field leads to rotation of the polarization vector [4], [15]. This phenomenon is 

known as Faraday rotation. The one-way FR for a SAR signal can be approximated as [15] 

  TECseccos 4002
0

 B
f

K                               (1) 

where f0 is the carrier frequency in Hz, K is a constant of value 2.365104 [Am2/kg], B is the magnetic 

flux density in Wb/m2, and   and   are the angles the wave-normal makes with the Earth’s magnetic 

field and the downward vertical, respectively. TEC is the total electron content in TEC units (1 TECU = 

1016 electrons m-2). The “magnetic field factor”,  400seccos  B , is calculated at a height of 400 km. 

B. System Model 

We assume a CTLR mode SAR system that transmits right-circular polarization chirps and receives 

linear (H, V) polarization echoes. In the presence of cross-talk, the transmitted electric field will include 

a component from the orthogonal left-circular polarization, so has the form [14] 

 



















































c

c
c

V

H

jjjT

T





1

1

2

111

2

1  

where c  is a cross-talk parameter. 

With Faraday rotation, , the electric field incident on the Earth’s surface will be [14] 
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Freeman [14] introduced a system model for this CTLR mode, in which the measured scattering vectors 

are given by  
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where SHH, SHV, SVH and SVV are the components of the true scattering matrix, MRH and MRV are the 

components of the measured scattering vector, f denotes channel imbalance, i, i = 1-2, are crosstalk 

terms in the receiving channel, and Ni, i = 1-2, are additive noise terms present in each measurement.  

III. CALIBRATION ALGORITHM VIA MIXED CALIBRATORS 

A. Signatures of Mixed Calibrators 

By mixed calibrators we refer to a set of passive and active radar calibrators operating in combination. 

Their use for calibrating spaceborne FP SAR systems is discussed in [16]-[22]. Passive radar calibrators 

usually consist of the dihedral, trihedral and gridded trihedral (the classical trihedral with gridded base 

wires or thin plates [22], see Fig.1(c)), while the polarimetric active radar calibrators (PARCs) include 

three types [16], denoted as PARCX, PARCY and PARCP, respectively, having signature matrices:  
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where PARCX and PARCY are polarimetric selective active calibrators. 

For the passive calibrators illustrated in Fig.1, the scattering matrixes can be written as [22] 
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where ATri, ADi and AGt are gain factors, Tri, Di and Gt are phase factors,  and  are the azimuth and 

elevation angles, and  is the rotation angle of the dihedral. 

Without loss of generality, we assume that the gain and phase factors in the ideal responses of (4)-(7) 

are known, and can be normalized for simplicity. Then we have 
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where STri, SDi, SGt1 and SGt2 denote the signature matrices of the trihedral, dihedral ( = 0) and gridded 
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trihedrals Gt1 ( = /2, vertical grid) and Gt2 ( = 0, horizontal grid), respectively [22].  

B. Measured Scattering Vectors 

Substituting the signature matrices of the various calibrators into the CTLR mode system model (3) 

and neglecting the noise terms gives the following measured scattering vectors for the different 

calibrators, where the superscript denotes the type of calibrator:  
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C. Combination of Mixed Calibrators 

From (4) and (8), the following relationships between the measurements from the different calibrators 

can be easily derived: 
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Equation (16) indicates that a combination of Gt1 and Gt2 could replace the trihedral and dihedral, and 

a PARCP could be replaced by a combination of a PARCX, a PARCY and a dihedral. 

If we restrict the number of calibration devices to at most four, we have the following six schemes for 

calibrating the CTLR mode: 

(1) Trihedral + Dihedral + PARCP; 

(2) Dihedral + PARCX +PARCY; 

(3) Trihedral + PARCX +PARCY; 

(4) Gt1 + Gt2 + PARCP; 

(5) Gt1 + Gt2 + PARCX + PARCY; 

(6) Trihedral + Dihedral + PARCX + PARCY. 

It can be seen from (16) that scheme (4) is equivalent to scheme (1), while schemes (5) and (6) are 

equivalent to the combination of schemes (1) and (2). Schemes (1) - (4) employ fewer calibrators than 

schemes (5) and (6), so would appear preferable in terms of economy and complexity. However, 

schemes (5) and (6) can exploit redundancy to improve the precision of estimating both the FR and the 

radar system error terms (see Part E, Section III).  

D. Algorithms for Calibrating Compact Polarization SAR 

From (9)-(15), we can derive 
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Neglecting the second order small values (i.e. terms of the form 2c, 1c, etc.), an estimate of 
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channel imbalance f, denoted as f̂ , can be derived from (17). This can then be used to derive an 

estimate of the L-R circular cross-talk c, represented as c̂ . Finally, f̂  and c̂  are treated as known 

values and used to derive the cross-talk terms, 1 and 2, and the FR, . 

Following such a procedure, the calibration algorithms for schemes (1)-(6) can be derived from (16) 

and (17), and expressed as: 
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ˆ
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

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 
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Y
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X
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

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)3(

)3(
)3(

2 ˆ

ˆ
̂  
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)1(

)3(

)3(
)3( ˆ

ˆ

ˆ2
arg

2

1ˆ 















Tri
RV

Tri
RH MjMf

f                             (20) 

Scheme 4.  

Since the trihedral and dihedral can be replaced by the combination of Gt1 and Gt2, scheme 4 is 

equivalent to scheme 1, and yields: 

   
    

)1(
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
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  
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ˆ
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c MMMMfj
f

MMjMMM  



 

    )1(
1)4(

)4()4(21
)4(

1
ˆ

ˆ1

ˆˆ
ˆ 




 





c

c
Gt
RV

Gt
RV fjMM  

   )1(
2)4(

21)4(
)4(

2
ˆ

ˆ1

ˆ1ˆ 


 





c
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   
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f                     (21) 

Scheme 5.  

From (16), scheme 5 is equivalent to the combination of schemes 1 and 2, resulting in two 

alternative estimates for the channel imbalance, f, and the L-R circular cross-talk, c, giving: 

 
   

 
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f                          (22) 

Scheme 6.  

From (16), scheme 6 is seen to be equivalent to scheme 5, and therefore also has two alternative 

estimates for f and c:  
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 

 
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
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1 1
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(6) (2)
2 2

1ˆ ˆ
2

X Y Di
RH RH RHM M jM j       
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)6(
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ˆ2
arg
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
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
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




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Tri
RV

Tri
RH MjMf

f                              (23) 

The use of the symbol “ ” in the expressions for 1 and  in schemes 5 and 6 is because they 

depend on which of the two estimates of f are used. In practice, this distinction fades away, as an 

optimized value of f that combines these two estimates is used in the final calibration scheme (see 

section III. E). 

E. Analysis and Optimization 

Equations (18) - (23) present the detailed algorithms for calibrating CTLR mode SAR with six sets of 

mixed calibrators. It is evident that the estimates of f and c are key factors in the calibration algorithms, 

since they are utilized to derive the estimates of 1, 2 and . In particular, accurate estimation of the 

channel imbalance, f, is extremely important. 

Using (17), one can derive the relations between the true channel imbalance, f, and its two estimates, 

)1(f and )2(f , in the form:  

 
    1

)1(
2

2

2
1 1ˆ

2

2





 



f
ejMMjM

ejjMMM
f

j
c

P
RH

Di
RH

Tri
RH

j
c

Tri
RV

P
RV

Di
RV


  

 
    2

)2(

2

1 1ˆ
2

2





 f
jMMjM

jjMMM
f

c
Y
RH

X
RH

Di
RH

c
Di
RV

Y
RV

X
RV


                     (24) 

where 

   
   1221

21

11

2
1211

1

2














fjf

fj

BA

eABj j
c  
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   
   1221

21

22

2221
2

2












fjf

fj

BA

ABj c  

   j
c

Tri
RV

P
RV

Di
RV ejfjMMMA 2

11 2   

     j
c

P
RH

Di
RH

Tri
RH ejMMjMB 2

21 12   

 12 2  jfjMMMA c
Di
RV

Y
RV

X
RV   

   22 12  jMMjMB c
Y
RH

X
RH

Di
RH   

with 11
)1( / BAf  , 22

)2( / BAf   and 21  . 

Because 11   and 12  , they should not significantly affect the estimate of amplitude 

imbalance, | f |, but they will lead to biased estimates of the phase imbalance arg{f}, resulting in errors 

when estimating c and . From (24), it is seen that the phase error in the estimate )1(f̂  has a bias of 

opposite sign to that in )2(f̂ , so a better estimate of the phase is given by   2ˆˆarg )2()1( ff  . The 

optimised estimate of channel imbalance, f̂ , therefore takes this value as its argument and )2()1( ˆˆ ff   as 

its amplitude. 

Similarly, from (17) it can be seen that the relations between c and its two estimates, )1(
c  and )2(

c , 

are given by 

   2
)1(

2

2
1 1ˆ
12




 j
j

eB
c

j

c 






 

   2
)2(

2

2 1ˆ
12




 j
j

B
cc 


                         (25)  

It is clear that the biases in the phases of )1(ˆ
c  and )2(ˆ

c  are of opposite sign, so that   2ˆˆarg )2()1(
cc    is 

an optimized phase estimate for c. However, since )1(
ĉ  depends on )1(f̂ , )2(

ĉ  is preferred as the 

amplitude estimate for c. 

A major advantage of schemes 5 and 6 is that they are the only schemes providing two alternative 

estimates for f and c, which can be used as above to improve the accuracy of the estimates. This 

suggests the use of these schemes as the preferred calibration scenarios. 
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Both 1 and 2, have three different estimates, provided by schemes 1-3, respectively. Of these, )1(
1̂  

and )1(
2̂  might be expected to be the most accurate, since they are derived directly by solving (10), 

without neglecting any small values. However, their dependence on the estimation accuracy of f and c 

tends to cause larger errors (see Figs. 6-9). In contrast, many small values are ignored in deriving )3(
1̂  

and )3(
2̂ , reducing their accuracy (see Figs. 6-9). Scheme 2 is therefore the preferred approach for 

estimating 1 and 2, and is further improved by replacing )2(f̂  with the optimized estimate f̂ . For the 

same reason, the optimal FR estimate takes the form of scheme 1 with )1(f̂  replaced by the optimized 

estimate of f. In practice, we use the equivalent expressions for 1, 2 and  from schemes 5 or 6. These 

optimizations are validated by the numerical simulations presented in Part B, Section IV.  

Hence, for scheme 5, the optimized calibration algorithm is: 











 


2

)ˆˆarg(
expˆˆˆ

)5()5(
2

1
)5()5(

BA
BA ff

jfff
 











 


2

)ˆˆarg(
expˆˆ

)5()5(
)5(

B
c

A
cB

cc j


  

   fjMMjMM Y
RV

X
RV

Gt
RV

Gt
RV

ˆ
2

1ˆ 21
1   

 1 2
2

1ˆ
2

X Y Gt Gt
RH RH RH RHM M j M M j       

 

   













2121ˆ

ˆ2
arg

2

1ˆ
Gt
RV

Gt
RV

Gt
RH

Gt
RH MMjMMf

f                     (26) 

Similarly, the optimized calibration algorithm for scheme 6 is: 











 


2

)ˆˆarg(
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)6()6(
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1
)6()6(

BA
BA ff

jfff
 











 


2

)ˆˆarg(
expˆˆ

)6()6(
)6(

B
c
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

  

   fjMMjM Y
RV

X
RV

Di
RV

ˆ
2

1
1̂   

2

1ˆ
2

X Y Di
RH RH RHM M jM j        
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














Tri
RV

Tri
RH MjMf

f
ˆ

ˆ2
arg

2

1ˆ                               (27) 

Note that (16) implies that (26) is equivalent to (27) if issues of calibrator performance are ignored. 

However, gridded trihedrals, as used in Scheme 5 have the advantages of providing large beamwidth 

and giving average polarimetric noise (i.e., the coherent averaging of scattering vectors from different 

angular positions) less than -30 dB [22]. On the negative side, they require accurate construction of the 

grid, and the microwave absorber layer is likely to be affected by rain. In contrast, scheme 6’s use of a 

trihedral and dihedral instead of gridded trihedrals brings the merits of simple construction and little 

effect from rain, but the narrow beamwidth of the dihedral causes orientation difficulties, and the 

dihedral suffers from high polarimetric noise due to pointing error [22].  

F. Correcting FR Estimation Ambiguity Using TEC Data 

The optimized FR estimates in (26) and (27) lie between ±/2, leading to an ambiguity of k. 

However, this can be removed by using (1) to provide an independent estimate of FR, where TEC is 

given by the global ionospheric TEC maps estimated by the Global Navigation Satellite System (GNSS) 

and use is made of the IGRF10 model for the Earth’s magnetic field [4]. The International GNSS 

Service provides bi-hourly global TEC maps with grid-points spaced 5o in longitude and 2.5o in latitude 

[4], [23], with an overall root mean square (RMS) error of 3-5 TECU [23] and [24]. This corresponds to 

an FR error that increases with latitude (see (19) in [25]) and has the value 18.3 at 80 latitude for a 

P-band SAR (see Table I in [25]). Hence an unambiguous FR estimator is given by [25]: 

 
22

ˆˆ
roundˆˆ 









 
 GNSSF                            (28) 

where round{·} denotes rounding to the nearest integer, GNSS̂  is the FR predicted from GNSS TEC 

data and ̂  is taken from (18)-(23), (26) and (27). This expression would only lead to incorrect 

estimates if the error in GNSS̂  exceeded 45, i.e., even at the highest latitudes, errors in TEC exceeding 

2.5 times the expected RMS error.  
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IV. SIMULATION RESULTS AND DISCUSSION 

A. Simulation Parameters 

Numerical simulations were carried out to assess the proposed methods. The measured backscattering 

matrices were derived from (3), under given conditions of FR, channel imbalance and cross-talk. In 

order to test the proposed calibration algorithms fully, the error terms in (3) were allowed to have wide 

variation: in the simulations, FR ranged from 0 to 360, amplitude imbalance was taken to be less than 

3 dB, the amplitude of the linear cross-talk terms varied over the range -40 dB to -20 dB, the L-R 

circular cross-talk, c, ranged from -30 dB to -10 dB, and the arguments of both phase imbalance and 

the cross-talk terms were taken to lie within 60. 

The impact of GNSS TEC errors on FR estimation performance was simulated by assuming an 

unbiased Gaussian TEC error with standard deviation (SD) 5 TECU, which corresponds to an FR error 

with SD 13 at latitude 40 (see Table 1 in [25]).  

In the set of simulations presented in Part B, Section IV, only radar system impacts are considered, 

while Part C deals with the simulation and evaluation of calibrator errors on calibration accuracy. Note 

that in these simulations the data were corrupted with the maximum values of the radar system errors, 

i.e. | f | = 1.5 (3.5 dB), arg{f} = /3 (60) and |1| = |2| = 0.1 (-20 dB), |c| = 0.32 (-10 dB), in order to 

test the proposed algorithms severely.  

B. Simulation of Calibration Performance 

From (18)-(23), (26) and (27), it is apparent that there are three different estimates for f, c, 2 and , 

namely )1(f̂ , )2(f̂  and f̂ ; )1(
ĉ , )2(

ĉ  and c̂ ; )1(
2̂ , )3(

2̂  and 2̂ ; )1(̂ , )2(̂ and ̂ , respectively, 

and four estimates for 1 (i.e. )1(
1̂ , )2(

1̂ , )3(
1̂  and 1̂ ). Note that f̂ , c̂ , 1̂ , 2̂  and ̂  are the 

optimal estimates provided by (26) or (27), whose superior performance is demonstrated by the 

simulation results shown in Figs. 2-10 (curves with superscript “Optimal”). 

Figs. 2 and 3 illustrate the near-perfect performance of f̂  in estimating amplitude and phase 
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imbalance, respectively. Similarly, Figs. 4 and 5 demonstrate the excellent performance of c̂  as an 

estimator of both the amplitude and phase of c. Figs. 3 and 5 also confirm that the phase estimates of 

)1(f̂  and )1(
ĉ are oppositely biased to those of )2(f̂  and )2(

ĉ , as expected from the theoretical 

analysis in (24) and (25). 

Figs. 6-9 show that 1̂  and 2̂  provide the best estimates of the amplitude and phase of 1 and 2. 

The curves labeled “Original” denote the estimates derived from (18)-(20), while those labeled 

“Modified” correspond to estimates where f̂  is substituted for )1(f̂  and (2)f̂  in (18) and (19), and 

c̂  is substituted for )1(
ĉ  in (18). It can be seen that the original estimates for 1 and 2 perform less 

well than the modified estimates due to errors in the estimates of f and c derived in schemes 1-3. In 

particular, the modified )1(
1̂  provides nearly identical accuracy to 1̂ , and )1(

2̂  gives comparable 

accuracy to 2̂  (see curves marked with “x” in Figs. 6-9). This indicates that )1(
1̂  and )1(

2̂  would 

perform well if they employed the more accurate estimates f̂  and c̂ , because second order terms are 

not neglected in their derivation. This is consistent with the theoretical analysis presented in Part E, 

Section III. 

Fig. 10 demonstrates how the estimated FR error changes with respect to true FR, under different 

initial phase imbalances of 0 and 60. Note that the modified )2(̂  here is derived by substituting the 

optimal estimates f̂ , c̂ , 1̂  and 2̂  into (19). It can be seen that the FR estimates are biased due to 

radar system errors. However, the optimal FR estimate from scheme 5 or 6 provides the best 

performance, validating the effectiveness of the proposed FR estimation method (see Table II). 

Table I presents a statistical analysis of the amplitude and phase errors corresponding to the optimal 

channel imbalance and cross-talk estimates in Figs. 2-9. It shows that 2̂  and f̂  have nearly perfect 

performance, c̂  shows a phase bias of 1.2, while 1̂  has an amplitude bias of -2.5 dB and phase 

bias of 1.0. The statistical analysis of the estimated FR errors corresponding to Fig. 10 is shown in 

Table II; this indicates that ̂  is the FR estimator with the best performance, with maximum mean FR 
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error (i.e. FR bias) of 0.9. This indicates that c needs to be smaller than approximately -10 dB if FR 

bias is not to exceed 1. 

C. Average Polarimetric Noise Evaluation 

If the calibrators are perfectly constructed, then (16) and (17) indicate that schemes 5 and 6 are 

mathematically equivalent, and Figs. 2-10 demonstrate the equally excellent performance of optimal 

calibration algorithms based on these schemes. However, the calibrators may contain errors in their 

polarimetric characteristics, due to imperfect construction, inaccurate orientation, etc. These errors can 

be referred to as average polarimetric noise (APN), which may have significant impacts on calibration 

accuracy. The influence of APN on the two optimal calibration schemes 5 and 6 can be evaluated by 

means of numerical simulation [19]. 

For scheme 5, the error models of the calibration targets are given by [19] 
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and for scheme 6 by [18] 
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where we have used the same notation as in (4)-(6). For simplicity, we here assume that the APNs of the 

Gt1, Gt2, PARCX, PARCY and trihedral calibrators are the same, with complex value, , while the APN 

for the dihedral is larger [22]. To derive the simulation results in Figs. 11-13 we have assumed 

Di= 10 , so that the dihedral has an APN 10 dB larger than the other calibrators.  

Figs. 11 and 12 compare the amplitude and phase errors of the estimated channel imbalance and 

cross-talks derived from schemes 5 and 6 as a function of APN amplitude and phase, respectively, while 

Fig. 13 shows the associated FR errors. Here, the APN amplitude is varied over the range -60 dB to -30 

dB, and the APN phase lies within 60. Fig. 11 indicates that APN with amplitude -40 dB does not 

lead to a large amplitude estimation error. Thus we assume | | = -40 dB in evaluating the APN phase 

error in Figs. 12 and 13(b). Figs. 11-13 show that, although schemes 5 and 6 are mathematically 
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identical, scheme 5 has much better tolerance to APN than scheme 6, and is the preferred calibration 

scheme.  

D. The Effects of Clutter and Noise on Calibration Accuracy  

The analysis in previous sections has implicitly assumed that the calibrators can be constructed and 

located in such a way that noise and clutter can be neglected. However, the 6 MHz bandwidth allowable 

under ITU regulations for a spaceborne P-Band SAR corresponds to a slant range spatial resolution of 

25 m, or 50 m ground range resolution at an incidence angle of 30o. Hence, to keep the clutter to an 

acceptable level, the areas of low backscatter surrounding the calibrators need be quite large. To assess 

how critical this requirement is, or equivalently how large the Signal to Noise Ratio (SNR) needs to be, 

the performance of the calibration was evaluated for different levels of SNR.  

Under the assumption of no APN error, Fig.14 shows the standard deviation (SD) of the FR 

estimation error and the amplitude and phase estimation errors of the radar system errors for scheme 5 

(the preferred scheme) as a function of SNR (assuming the clutter and noise are white Gaussian), 

calculated from 100,000 Monte Carlo simulations for each value of SNR ranging from 20 dB to 60 dB 

in steps of 1 dB. As long as the SNR exceeds 40 dB, noise has little impact on the estimation of FR, 

channel imbalance f and cross-talk c, but it has marked effects on the cross-talk terms 1 and 2, 

especially 1. For example, an SNR of 40 dB leads to an FR error whose SD is 0.52, errors in the 

amplitude of f and c with SD about 0.15 dB, and errors in the phase of f and c with SD about 1, while 

for 1 and 2 the SDs of the errors are respectively 1.83 dB and 0.53 dB for amplitude, and 12.15 and 

3.51 for phase. An SNR of at least 50 dB seems necessary to reduce the phase error in 1 to tolerable 

levels, which gives some guide to the required size of the passive calibrators, the performance of the 

active calibrators and the dimensions of the low backscatter background on which they must be 

positioned. 

V. CONCLUSIONS 

Spaceborne SAR systems are much more stable in time and space than airborne systems, and have 
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less need of frequent calibration. Therefore, precise measurements of system errors at a small number of 

selected sites by a scheme that removes FR effects is likely to be sufficient for a spaceborne CTLR 

mode CP SAR system.  

This paper has proposed a number of possible calibration schemes to provide these measurements, 

all of which involve a mixture of passive and active calibration devices, although the passive devices 

could be replaced with active devices with the same polarimetric signatures. It establishes that 

calibration strategies involving four devices yield more accurate estimates of the radar system 

parameters than those using just three devices, though incur greater cost and complexity in deployment. 

It has also established that gridded trihedrals give significant advantages over the dihedral and trihedral, 

because of their much lower APN and insensitivity to pointing accuracy. On the negative side, gridded 

trihedrals require accurate construction of the grid, and the microwave absorber layer is likely to be 

affected by rain [22]; these problems can be avoided if equivalent active devices are employed. A 

preferred calibration scheme emerges clearly from the analysis and simulations, involving four 

polarimetric selective calibrators, namely, two gridded trihedrals (or active calibrators) that select for 

the HH and VV channels and two active calibrators that select for the HV and VH channels. The 

optimal calibration algorithm provides accurate estimates of all the radar system parameters, whatever 

the Faraday rotation conditions. It also provides accurate estimates of Faraday rotation itself.  

As regards deployment, the compact polarimetric configuration is aimed at realizing wide swaths, 

over which the system performance may change. Hence several sets of mixed calibrators would need to 

be positioned across the swath, though not all sets would need to be contained in the same image. 
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(a) Trihedral                         (b) Dihedral                    (c) Gridded trihedral 

Fig. 1 The passive calibrators. 

TABLE II 

STATISTICAL ANALYSIS OF ESTIMATED FR ERRORS CORRESPONDING TO FIG.10 WITH DIFFERENT PHASE IMBALANCE 

VALUES 

 
arg{f}=0 arg{f}=/3 

Mean RMS Mean RMS 

1̂  (Original) -1.907 0 -1.179 0 

2̂  (Original)
 -0.422 3.462 0.578 3.088 

2̂
(Modified) 2.855 0.177 2.856 0.409 

̂ (Optimal) 0.472 0.542 0.892 0.445 

TABLE I 

STATISTICAL ANALYSIS OF AMPLITUDE AND PHASE ERRORS CORRESPONDING TO THE OPTIMAL CHANNEL IMBALANCE AND 

CROSS-TALK ESTIMATES IN FIGS.2-9 

 
Amplitude Error (dB) Phase Error (deg) 

Mean RMS Mean RMS 

f̂  -0.0561 0.00434 0 0.102 

1̂  -2.523 1.5938 1.001 1.259 

2̂  0 0 0 0 

c̂  0.0432 0 1.179 0 
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Fig. 5 Simulation of estimating cross-talk c phase (|f | = 1.5, arg{f} = /3, |1| = |2 |= 0.1, |c| =0.32, arg{1}= arg{2}= 0,  = /4) 

 

Fig. 4 Simulation of estimating cross-talk c amplitude (|f | = 1.5, arg{f} = /3, |1| = |2 |=0.1, arg{1}= arg{2}= arg{c}=0,  = /4) 

 

Fig. 3 Simulation of channel phase imbalance estimation (|f | = 1.5, |1| = |2 |= 0.1, |c| =0.32, arg{1}= arg{2}= arg{c}=0,  = /4). 

   

Fig. 2 Simulation of channel amplitude imbalance estimation (arg{f} = /3, |1| = |2 |= 0.1, |c| =0.32, arg{1}= arg{2}= arg{c}=0,  = /4). 
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Fig. 9 Simulation of estimating cross-talk 2 phase (|f | = 1.5, arg{f} = /3, |1| = |2 |= 0.1, |c| =0.32, arg{1}= arg{c}=0,  = /4). 

 

Fig. 8 Simulation of estimating cross-talk 2 amplitude (|f | = 1.5, arg{f} = /3, |1| = 0.1, |c| =0.32, arg{1}= arg{2}= arg{c}=0,  = /4). 

 

Fig.7 Simulation of estimating cross-talk 1 phase (|f | = 1.5, arg{f} = /3, |1| = |2 |= 0.1, |c| =0.32, arg{2}= arg{c}=0,  = /4). 

   
Fig. 6 Simulation of estimating cross-talk 1 amplitude (|f | = 1.5, arg{f} = /3, |2 |= 0.1, |c| =0.32, arg{1}= arg{2}= arg{c}=0,  = /4). 
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(a) 

    
(b) 

Fig. 11  Comparison of estimated channel imbalance and cross-talk amplitude errors derived by (a) Scheme 5 and (b) Scheme 6 as a function of APN 

amplitude, ||, with |f | = 1.5, arg{f} = /3, |1| = |2 |= 0.1, |c| =0.32, arg{1}= arg{2}= arg{c}=0,  = /4, arg {} = 0, Di= 10 . 

   
(a) 

   
(b) 

 
Fig. 10  Simulation of the estimated FR error as a function of true FR angle, with |f | = 1.5, |1| = |2 |= 0.1, |c| =0.32, arg{1}= arg{2}= arg{c}=0, but 

different phase imbalance values: (a) arg{f} = /3, (b) arg{f} = 0. 
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(a) 

  
(b)  

Fig. 13 Comparison of the estimated FR errors from Schemes 5 and 6 as a function of (a) amplitude (arg{} = 0) and (b) APN phase (| | = -40dB),  

with |f | = 1.5, arg{f} = /3, |1| = |2 |= 0.1, |c| =0.32, arg{1}= arg{2}= arg{c}=0,  = /4, Di= 10 . 

    
(a) 

    
(b) 

Fig. 12  Comparison of estimated channel imbalance and cross-talk phase errors derived from (a) Scheme 5 and (b) Scheme 6 as a function of APN 

phase, arg{}, with |f | = 1.5, arg{f} = /3, |1| = |2 |= 0.1, |c| =0.32, arg{1}= arg{2}= arg{c}=0,  = /4, | | = -40 dB, Di= 10 . 
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(a)  

  
(b)  

 
(c)  

Fig. 14 SD of FR estimation error, amplitude an phase estimation errors of channel imbalance and cross-talks for Scheme 5 as a function of SNR, under 

the conditions of no APN error (i.e.  = 0), and |f | = 1.5, arg{f} = /3, |1| = |2 | = 0.1, |c| = 0.32, arg{1} = arg{2} = arg{c}= 0,  = /4.  

(a) FR estimation error; (b) amplitude errors of channel imbalance and cross-talks; (c) phase errors of channel imbalance and cross-talks. 


	1.pdf
	Quegan_Calibration

