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ABSTRACT 
 

We present a common path Fourier domain optical coherence tomography 

(FDOCT) setup where the reference signal arises from multiple reflections within the 

sample arm. Two configurations are demonstrated. The first is based on a reflective 

microscope objective while the second is based on a normal (refractive) microscope 

objective. The second configuration is effectively a Mireau interferometer. We 

present sensitivity analysis of these setups and images of in vivo skin. Advantages of 

both common path arrangements include: 1) the reference surface is not close to the 

sample surface while keeping the optical path lengths matched (so the additional 

interferometer is not needed) and 2) the user can independently control reference and 

sample arm power. Additionally, the configuration using the refractive objective 

ensures that the coherence gate and focus gate always match. A disadvantage is that 

the reference arm power in certain circumstances is not optimal (i.e. close to 

saturating the CCD). However, this issue can be removed by a light source of 

sufficient output power. We believe the idea is scalable and therefore of interest to 

endoscopy applications.  
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RESEARCH HIGHLIGHTS 

 

• Multiple reflections within the sample arm can be beneficial. 

• We demonstrate a novel common-path Fourier domain OCT based on 

Mireau interferometer. 

• Potential applications are in endoscopy. 

 

 

 



 4 

 

1 INTRODUCTION 

Fourier domain optical coherence tomography (FDOCT) has been used 

extensively in many areas of epithelial tissue imaging [1, 2]. It is faster than the 

original optical coherence tomography technique (OCT), i.e. time domain optical 

coherence tomography (TDOCT), and has a sensitivity advantage [3-5]. Achieving 

ultrahigh resolution in OCT has been difficult to implement due to dispersion 

mismatch between sample and reference arm [6]. This is a special concern in 

endoscopy applications [7] where handling of long fibres exacerbates the problem. 

Apart from dispersion mismatch, problems arise in polarization fading and 

environmental effects such as temperature, pressure and fibre bending [8, 9]. All these 

problems are resolved if a common path interferometer is used. Broadly speaking, 

three architectures have been explored so far. In the first case, the reference arm is 

embedded in the sample arm and distant from the specimen. In this case, an additional 

interferometer (often called an autocorrelator) is required to bring together the distant 

arms of the first interferometer [10-17]. The second case uses a partially reflecting 

surface close to the specimen as the reference arm [18-23] thus obviating the need for 

the second interferometer. The third case incorporates a miniature interferometer 

close to tip of the fibre [19, 21]. 

All solutions have a common problem: reference arm and sample arm 

reflectance usually cannot be independently controlled (in fact it is possible in the first 

and third case mentioned above [24], but this has not been studied in detail). In this 

manuscript we present, to the best of our knowledge, a novel architecture that broadly 

falls in the second case above. We previously discussed a similar architecture for fibre 

sensing applications [25]. The reference arm is formed by engineering a doubly 

reflected signal from surfaces embedded in the signal path to the specimen. The main 

advantages of this setup are: 1) reference surface need not be close to sample surface; 

2) tilting the reference surface can change the reference arm power independently of 

sample arm power; 3) the setups presented here do not need the additional 

interferometer. 

Two common path configurations are demonstrated. The first uses a reflective 

objective while the second uses a normal refractive objective. In the second case, we 

intentionally use a refractive microscope objective corrected for visible light. This 

creates higher reflections off optical surfaces within the objective for near-infrared 

light (NIR). The second case is a Mireau interferometer widely used in surface 

metrology [26]. To the best of our knowledge, this is the first time it is applied to 

OCT. Setups presented have a merit in both FDOCT methods, namely spectrometer 
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based and swept source based OCT, although we show results only for spectrometer 

based system. This idea is applicable to configurations that use the additional 

interferometer such as the ones described in [10-17]. Additionally, it may be of 

interest in cases where interferometric phase retrieval is needed (e.g. in Doppler OCT 

[27] or spectral domain phase microscopy [28]). We believe the setups presented here 

are scalable and therefore applicable to endoscopy.  

2 MATERIALS AND METHODS 

The proposed setup is shown in figure 1. The light source used is Broadlighter 

D890-HP from Superlum, Russia. The total output of this source is 6mW from two 

multiplexed superluminescent diodes (SLEDs) with full width half maximum 

(FWHM) of 150 nm. The source is fed into the 3dB fibre coupler via a broadband 

isolator (IO-F-SLD150-895-APC, OFR, USA). Optical power after the fibre 

collimator in the sample arm is 1mW. The light from sample arm is detected by the 

spectrometer [2, 29]. The spectrometer has standard architecture [2, 30, 31], light 

exiting the fibre is collimated by an achromatic doublet lens (L1 in figure 1) with focal 

length 50 mm. The expanded beam is dispersed by the blazed diffraction grating, 830 

grooves per mm, (DG in figure 1, part number NT43-850, Edmund Optics, USA) and 

the first diffracted order is focused onto a CCD (Atmel Aviiva SM2CL2010, pixel 

size 10 ȝm, CCD integration time for imaging purposes was 400 ȝs and output charge 
amplifier gain was set to 0dB) using two identical focusing lenses (L2 in figure 1). 

The two lenses are mounted together. Each is an achromat doublet, 200 mm in focal 

length and 50 mm in diameter making L2 a compound lens with 100 mm focal length. 

Our experience is that two lenses improve the off-axis spot size, although the on-axis 

spot size is worse [31]. Spectrometer efficiency was measured to be 6%. This is a low 

value and we are investigating how to improve this. 

Figure 2(a) shows a detailed view of the common path arm with reflective 

objective (referred to henceforth as configuration 1). The reference arm path goes 

from fibre collimator to S2 and then reflects to S1 while the sample arm path goes 

from fibre collimator to specimen. S2 is tilted so that the reflected light is 

perpendicular to S1 and therefore traces its way back to the fibre collimator. S1 and S2 

are reflective neutral density filters (NDF). The reflectances of S1 and S2 are denoted 

RS1 and RS2 and their values are 36% and 50% respectively. The angles shown are 

exaggerated and the beams in practice largely overlap. S2 is tilted by ~ 0.1° while S1 is 

tilted by ~ 0.2°. The reference beam path is shown to pass twice through S1 and S2 in 

order to dispersion match the sample arm. So the beam needs to be carefully aligned 

in order to ensure the right surface is selected as the reference. As mentioned above, 

the microscope objective used in configuration 1 is reflective (Edmund Optics, USA, 
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part number NT59-888). The working distance of the reflective objective is 25 mm. A 

single axis galvanometer is placed between the objective and the specimen to ensure 

constant reference arm power throughout the scan. Although it was possible to place it 

prior to the objective, this complicated scanning. 

Figure 2(b) shows a detailed view of the common path arm with refractive 

objective (referred to henceforth as configuration 2). Collimated light leaves the fibre 

collimator and is focused by the objective. A partially reflective surface (i.e. NDF) S 

is placed midway between the objective and the focus. With careful positioning the 

reflection from S will focus exactly on the tip of objective. As the objective is 

corrected for visible light, the reflection from the tip of the objective towards S is 

significant (~7%). As in figure 2(a) the reference beam path is shown to pass twice 

through S in order to dispersion match the sample arm. The beam from the fibre 

collimator needs to be centred on the microscope objective pupil in order to 1) ensure 

that the path is retraced back into the collimator, and 2) to provide maximum 

reflectance. This creates the reference arm within the common path arm. As 

mentioned previously, this configuration is known as Mireau interferometer. A single 

axis galvanometer is placed between the surface S and the specimen. The spacing 

between the galvanometer and the specimen is even more limited than in 

configuration 1. Note that configuration 2 ensures the reference and sample arm foci 

match automatically, so adjustment is minimal. This may be of use in optical 

coherence microscopy applications [32-34] if XY scanning is possible post-objective. 

The microscope objective used was Mitutoyo, ×10, part number 378-803-2. The 

working distance of the refractive objective is 33.5 mm.  

The sensitivity of the system depends on total reflectance of the reference arm 

and can be calculated using the following equation (Eq. 6 from [5]).  
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The terms in the above equation are as follows: sγ  and rγ are fractions of input 

power exiting the interferometer from sample and reference arm respectively 

assuming perfect reflectors from sample and reference surfaces (both are affected by 

the coupling ratios of the fibre coupler and further attenuation due to multiple 
reflection in the NDF filters, see equations below), ρ  is spectrometer efficiency 

(6%), η   is detector quantum efficiency (40%), τ  is CCD integration time (400 ȝs for 

images presented), h is Planck’s constant, P0 is the SLED ex-fibre power output ( 6 
mW), Π is the polarization of the source (1 for both SLEDs), effν∆ is the linewidth of 
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the SLED (55.9 THz), N is the number of pixels used by spectra (1200) and receiverσ  is 

the RMS receiver noise. Eq. (1) allows us to simulate expected sensitivities for 

various levels of reference arm power. The main term is Rr, reference arm reflectance 

which can be calculated for configuration 1 as: 

( ) 2
21

2
11 SSSr RRRR −=  

(2) 

Where (1-RS1) is the attenuation of the beam from the fibre collimator through 

the first surface S1 (the value is squared due to double pass). 

Configuration 2 has a similar relation: 

( ) RMOSTMOr RRRR _
22

_1−=  (3) 

Where RS is the reflectance of surface S in figure 2(b), (1-RMO_T) is the 

attenuation due to transmission through the microscope objective (45%), RMO_R is the 

inherent reflectance of the tip of microscope objective (7%). Therefore in 

configuration 2 we rely on inherent reflectance of visibly corrected objectives in NIR, 

since objectives corrected for NIR are likely to have very low reflectances. In 

configuration 1 we have more control as the reference arm power is decided by the 

NDF reflectance we choose. This flexibility in configuration 2 would be available 

only if we were to design the microscope objective itself. 

Eq. (1) is significantly affected by the fact that the power falling onto the 

sample is reduced by optical surfaces from the collimator to the sample. To take this 
into account sγ  from Eq. (1) for each configuration is given below:  

( ) ( )22
2

11 11 SSIFs RR −−= γγ  
(4) 

( ) ( )2_
2

2 11 TMOSIFs RR −−= γγ  
(5) 

IFγ is attenuation of input power due to 3dB fibre coupler (0.482 taking into 

account double pass). Eqs. (2)-(4) are calculated prior to using them in Eq. (1). They 

obviously will reduce sensitivity, but crucially, as we will show below, this need not 

be prohibitive. Note that we take IFr γγ = and calculate reference arm attenuation 

from Eqs. (2) and (3). 

As mentioned previously, in both configurations the reference surface is not 

close to the specimen surface. Furthermore, the tilting of relevant surfaces can change 

the reference arm power level independently of the sample arm power. This is 

important for optimizing the sensitivity of the system. This is not novel in itself, but 

common-path systems usually do not allow for this flexibility. Lastly, in configuration 

2 the reference path length and objective focus match automatically, so once aligned 

readjustments are minimal. 
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3 RESULTS 

Figure 3(a) shows theoretical sensitivity as a function of RS1 and RS2 (assumed 

to be the same for simplicity) for configuration 1 while figure 3(b) shows the 

theoretical sensitivity as a function of RS for configuration 2. This effectively gives 

the sensitivity as the function of reference arm power, as this can be directly 

calculated from equations (2) and (3). The main effect of increasing the reference arm 

power (RS1 and RS2 in configuration 1 or RS in configuration 2) is that at a certain 

point the power falling onto the specimen becomes too small (and this light is further 

attenuated on the way back). One advantage of the arrangements presented here is that 

a given reference arm power can be reduced by tilting either surfaces S1 and S2 in 

configuration 1 or surface S in configuration 2. Possible improvements to our setup 

include using a circulator instead of an isolator to maximize power efficiency. 

However, broadband circulators are hard to obtain, so we were not able to implement 

this step. Increasing CCD integration time from 40 ȝs to 400 ȝs improves the 
sensitivity to a maximum theoretical value above 100dB for configuration 1. The 

problem remains for fast imaging (40 ȝs integration time or less). Sensitivity in this 
case is not satisfactory, but can be attained by a more powerful light source and 

improvements in our spectrometer (for example spectrometer efficiency is 6% and 

should be higher, at least 20% to 30% [31, 35]). 

Figure 4(a) shows spectral fringes (after background subtraction) with mirror as 

the specimen. Figure 4(b) shows the point spread function (PSF) with a resolution of 

approximately 4 ȝm in air which is close to theoretical value 3.7 ȝm (obtained by 

calculating the coherence function of the source spectra). Figure 4(b) is a Fourier 

transform of figure 4(a) (after performing k-space interpolation on figure 4(a)). The 

results in fig 4 were done using configuration 1. Similar results were obtained with 

configuration 2. Lateral resolution for both configurations was 13 ȝm. 

Figure 5 shows the theoretical reference arm reflectance power as a function of 

inline surface reflectance RS1 = RS2 for configuration 1 and RS for configuration 2. 

CCD saturation powers at 40 ȝs  and 400 ȝs are 60 ȝW and 6 ȝW respectively. Figure 

5 needs to be compared with figure 3 in order to find optimal reflectance of NDFs. 

The aim is to have enough reference arm power to saturate the CCD (see figure 5) 

while achieving optimal sensitivity (see figure 3). For example, RS1 = RS2 = 20% in 

configuration 1 should give optimal sensitivity and should saturate the CCD at 400 ȝs 

integration time. However, we could not achieve CCD saturation in practice for these 

reflectances, probably due to low quality of the fibre collimator employed. Raising 

RS1 and RS2 to 36% and 52% respectively achieved CCD saturation for configuration 

1. Note that further increase in reflectances for configuration 1 becomes 
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counterproductive and at RS1 = RS2 = 65% the total reference arm reflectance 

decreases due to decrease in the beam power reaching surface S2. For configuration 2, 

RS = 50% should provide optimal sensitivity and reference arm power (RMO_R was 

measured to be 7%). However, with the reflectance RS = 45% the reference arm power 

reached only 20% of maximum CCD intensity, at 400 ȝs integration time. For 

simulation purposes, we assumed that the reflection from surface S falls onto the tip 

of the objective and reflects perfectly backwards onto S. The problem is that the tip of 

the objective is curved and it is hard to locate the place where reflections fit the 

simulation. Further improvements in the alignment should improve the situation. Note 

that increasing the output power to 10 mW scales all the graphs by 10dB, so higher 

power allows using lower reflectance NDFs to achieve optimal reference arm power 

for sensitivity.  

Figure 6 shows sample images of in vivo skin with configuration 1 and 

configuration 2. CCD integration time was 400 ȝs for both configurations. The skin 
images show clear stratum corneum and lower layers of epidermis. Both images 

display a vertical artefact (red arrows) which is probably a motion artefact. The 

sensitivity of configuration 1 was measured to be 89dB while for configuration 2 it 

was 82dB and these values are about 10 dB lower than ones predicted from theory 

(see figure 3). See the section below for a discussion regarding these results. 

4 DISCUSSION 

Several interesting points regarding the arrangements presented here need to be 

mentioned. The light exiting the collimator is never perfectly collimated so part of the 

beam is lost for long optical path lengths. By introducing intermediate surfaces the 

dispersion is not perfectly matched as the reference arm and sample arm optical path 

may traverse intermediate surfaces a different number of times. Further complications 

arise when considering reflections from the inner and outer surface of any of the 

intermediate surfaces. In configuration 1 we use reflective objective and therefore the 

dispersion mismatch would not be a problem even with a separate reference arm. As 

an aside, we think that applying reflective objectives to OCT may need more attention 

for this reason as well as for their flat response in the NIR range. One difficulty in 

using reflective objectives in OCT is that it is harder to apply them to beam scanning 

configurations for lateral scans above 2 mm.  

The thickness of intermediate surfaces needs to be greater than depth studied as 

well. This avoids multiple images within the same cross sectional scan. 

Autocorrelation artefact is visible along the middle of the skin image in figure 6 for 

configuration 2. This is probably due to a multiply reflected image of the surface 
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within the microscope objective. Alternative solutions include introducing NDFs with 

non-parallel surfaces, i.e. wedges.  

Single axis galvanometer is placed post-objective in both configurations and 

this limits the size of the lateral scan. We were able to perform 2 mm scans relatively 

easily. A further limitation is that the galvanometer is close to the specimen (>5 mm) 

which increases the possibility of damaging the galvanometer. Note that an 

improvement to the setup would be to design a custom refractive microscope 

objective that includes the multiply reflected signal in the design. Currently, in order 

to enable pre-objective scanning, a specially curved surface for each objective would 

need to be designed. Although possible, one needs a detailed surface curvature of 

commercial microscope objectives, which are usually not available. 

Multiple reflections are mostly a nuisance in optical designs, especially so in 

interferometric setups, and this is due to their increased sensitivity [36]. Here, we 

have tried to show that one can take advantage of them if their presence is considered 

at design stage. Furthermore, if one designs with multiple reflections in mind then 

there are many other configurations to consider.  

Despite the issues mentioned above, the implementation shown here is very 

versatile and the skin images are good. In an endoscopy arrangement, the GRIN lens 

is usually attached to the distal end of the fibre. Partial reflector could be mounted 

after the GRIN lens at half of the working distance. The implementation for partial 

reflector could be a wedge shaped film in order to minimise coherent artefacts. The 

main engineering problem would be to ensure correct alignment of the partial 

reflector and the stiffness of the whole unit. 

5 CONCLUSION 

We have shown two simple common path solutions applied to spectrometer 

based FDOCT. The arrangements are applicable to swept-source based OCT systems 

as well, provided sufficient reference arm power is available from the multiply 

reflected reference arm. Although increasing the reference arm power by increasing 

inline reflectances reduces power falling onto the specimen, we have the control to 

reduce the reflectance if the power source has high output power (such is the case in 

configuration 1). We believe the results presented are of interest for endoscopy 

applications. 
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FIGURES CAPTIONS 
 

 

Figure 1. FDOCT diagram. Details of two configurations in the sample arm are given 

in figure 2. M – mirror, DG – diffraction grating, L1 and L2 – lenses, SLED – 

superluminescent diode 
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Figure 2 (a) shows the configuration based on reflective objective (configuration 1) 

and (b) shows the configuration based on refractive objective (configuration 2). 

Doubly reflected surfaces are placed pre-objective in (a) while in (b) the doubly 

reflected surface S is post-objective. The tilt of S1 and S2 in (a) is exaggerated for 

demonstration (the angles are 0.2 and 0.1 degrees for S1 and S2 respectively). 
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Figure 3 (a) shows the sensitivity dependence on reflectance of surfaces S1 and S2 for 

configuration 1 while (b) shows the sensitivity dependence on reflectance of surface S 

for configuration 2. 
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Figure 4. (a) shows sample fringe pattern generated from mirror in configuration 1 

(after background subtraction); (b) shows FWHM to be 4 ȝm (in air) (theoretical 
value is 3.7 ȝm). 
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Figure 5. Total reference arm power is higher for configuration 1. Note that surface 

reflectance refers to RS1 and RS2 in case of configuration 1 or RS in case of 

configuration 2. 
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Figure 6. Palmar skin from small finger is shown for configuration 1 and 2. Bar is 

~200 ȝm. SC: stratum corneum, DE: dermis, yellow arrow points to autocorrelation 

artefact while red arrows point to vertical artefacts. 
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