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Presence of a Richardson’s regime in kinematic simulations

F. C. G. A. Nicolleau∗ and A. F. Nowakowski
Sheffield Fluid Mechanics Group, Department of Mechanical Engineering,

The University of Sheffield, Sheffield, United Kingdom
(Dated: April 4, 2011)

In this paper we investigate Kinematic Simulation (KS) consistency with the theory of Richardson
[1] for two-particle diffusivity. In particular we revisit the sweeping problem. It has been argued
in [2] that due to the lack of sweeping of small scales by large scales in Kinematic Simulation, the
validity of Richardson’s power law might be affected. Here, we argue that the discrepancies between
authors on the ability of Kinematic Simulation to predict Richardson power law may be linked to the
inertial subrange they have used. For small inertial subranges, KS are efficient and the significance
of the sweeping can be ignored, as a result we limit the KS agreement with the Richardson scaling
law t3 for inertial subranges kN/k1 ≤ 10000. For larger inertial range KS do not fully follow the
t3 law. Unfortunately, there is no experimental data to compare KS with and draw conclusions
for such large inertial subranges. It cannot be concluded either that the discrepancy between KS
and Richardson’s theory for larger inertial subranges is exactly taken into account by the theory
developed in (Thomson & Devenish, J. Fluid Mech. 526, 2005).

I. INTRODUCTION:

A. The two-particle dispersion problem

The two-particle separation is defined as

∆(t) = |X2(t)−X1(t)| (1)

where X1(t) is the position of the first particle and X2(t)
the position of the second particle at time t. The first
quantity of interest is the mean-square separation be-
tween the two particles 〈∆2(t)〉 as a function of time
which has received much research attention since the pi-
oneering work of [1] (see for example [2–14]).

It is worth noting that the reference work in [1] refers to
the diffusivity (d/dt)〈∆2(t)〉 as a function of the mean-
square separation, 〈∆2(t)〉, for two particles in the iner-
tial subrange of turbulence. That is, for particle pairs
such that η < ∆(t) < L, where L is the upper limit
length scale of the inertial range or integral scale and η
the lower limit or Kolmogorov scale. Richardson intro-
duced the locality assumption and derived his four-third
law of diffusion

d

dt
〈∆2(t)〉 ∼ ∆

4
3 (t) (2)

His locality assumption states that the mean square sep-
aration reaches a limit as the averaging time is increased
because only eddies comparable in size with the sepa-
ration are effective in further statistical increase of the
mean square separation.

From Eq. 2, neglecting the initial separations ∆0 and
applying Kolmogorov’s similarity theory to the relative
diffusion of particles, [15] and [16] obtained the famous
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t3 law for the diffusion in isotropic turbulence and in the
inertial range of times:

〈∆2(t)〉 = G∆εt
3 (3)

where G∆ is the Richardson universal dimensionless con-
stant and ε the rate of energy dissipation per unit mass.

B. Observation of the Richardson law

Since Richardson derived his formula for the parti-
cle relative diffusion there has been much endeavour to
verify it. However, experimental measurements of La-
grangian statistics and validation of the power law (3)
are not straightforward. This comes from the prob-
lem of tracking the positions of particle pairs at the
very large frequencies required in high Reynolds num-
ber flows. Laboratory experiments [17, 18] report ob-
servations of Richardson scaling in two-dimensional and
three-dimensional flows for Reynolds numbers Reλ up to
104.

Numerical simulations [19–22] also struggle to achieve
sufficiently large Reynolds numbers owing to the high
computational demands required to solve the Navier-
Stokes equations. [14] concluded that DNS with
Reynolds numbers large enough to observe (3) and mea-
sure directly the constant G∆ are not possible in the
near future and we can only, for the time being, rely on
extrapolations from the present Reynolds numbers. See
also [23] for a review of Richardson’s validation.

This is something to bear in mind when assessing
Kinematic Simulation’s ability to reproduce (3) at large
Reynolds numbers. KS can give prediction for particles’
Lagrangian statistics at large Reynolds numbers but to
our knowledge there are no experimental data to compare
with for inertial scale ranges of 104 or larger.
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C. Kinematic Simulation’s predictions

Many studies have been done using KS to understand
the turbulent diffusion of particle pairs. This has been
done either to validate the power law in different ranges
of Reynolds numbers or to find a specific value for the
Richardson constant, G∆, which still has uncertainties
in its value. There have been some contradictory conclu-
sions as to the ability of KS to predict a t3 law. According
to [5, 6, 9, 12] KS predict (2), according to [2] they do
not. The main argument against KS to be found in this
latter reference is that:

A consequence of the way the flow is con-
structed is that, in contrast to real turbu-
lence, there is no sweeping of the smaller ed-
dies by the larger eddies.

In this paper, we limit our study to the classical KS for
isotropic flows without a mean velocity. For this case [2]
predicted that

The separation process then follows t6 in the
bulk of the flow but follows Richardson’s clas-
sical t3 law in regions where the velocity is
much smaller than the r.m.s. velocity. [...]
Because of the way the size of these regions
varies in time, the resulting mean-square sep-
aration grows like t9/2.

In the present work, we study particle pair separations
in an isotropic turbulent flow using KS and investigate
the ability of this method to reproduce the well known
Richardson’s law. The numerical approach used to gen-
erate the turbulent flow field is introduced in section II,
the results obtained are presented in section III. We
generalise the approach to energy distribution different
from the classical -5/3 power spectrum in section IV and
examine the effect of the KS unsteadiness parameter in
section V. Conclusions are summarised in section VI.

II. KINEMATIC SIMULATION TECHNIQUE:

Kinematic Simulation are a particular case of synthetic
turbulence. By synthetic turbulence we mean hand made
analytical flows which spare one the need to fully solve
Navier-Stokes equations. Synthetic turbulence has been
used as an approach to understand the general mecha-
nisms of turbulent diffusion, and also to make quantita-
tive predictions of relative dispersion and higher order
Lagrangian statistical moments. A simple model should
capture the essence of the physics. Such is the idea with
synthetic turbulence which retains less information than
the whole flow, but try to keep what is paramount for
the Lagrangian statistics.
Synthetic turbulence began to emerge with [24] [see

also 25–27], in which diffusion was simulated on a one
dimensional grid with a random velocity field. [28] con-
tinued with a random flow field in three dimensions, and

constructed incompressible fields as an isotropically ran-
dom sum of unsteady Fourier modes. These were the
basis for the Kinematic Simulation developed in [3, 29].
These models are not intended as a simulation of the
Eulerian field, but only of the Lagrangian statistics that
would arise from such synthetised underlying Eulerian
fields. This Eulerian field is only intended to be a qual-
itatively accurate representation of an actual turbulent
field, which contains certain important flow structures in
an qualitative way. This kind of computation does not
require the storage of a lot of data with very big tables
as with direct numerical simulation.

In [6] KS were compared to the direct numerical simu-
lation (DNS) results of [19]. It was found that KS did ex-
hibit Richardson’s scaling and also reproduced the large
flatness in the relative velocity observed in DNS. This was
important as the relative velocity flatness is a measure
of Lagrangian intermittency and this supported the idea
that relative diffusion happens in sudden bursts when an
appropriate flow structure is encountered. Here lies one
of the most important aspects of kinematic simulation,
the incorporation of flow structure, upon which the rela-
tive diffusion and higher order statistics depend.

A. The KS method for isotropic turbulence

In Kinematic Simulation the underlying Eulerian ve-
locity field is generated as a sum of random incompress-
ible Fourier modes with a prescribed energy spectrum.
The computational simplicity of KS allows one to con-
sider large inertial sub-ranges and Reynolds numbers Re.
With this method, the computational task reduces to the
calculation of the trajectory of each particle placed in the
turbulent field, each trajectory is, for a given initial con-
dition, solution of the differential equation:

dx

dt
= uE(x, t) (4)

where uE is the analytical Eulerian velocity used in KS.
In this paper, as in [5, 30], it takes the form of a truncated
Fourier series, sum of Nk random Fourier modes:

u(x, t) =

Nk∑
n=0

ancos(kn ·x+ωnt)+bnsin(kn ·x+ωnt) (5)

where an and bn are decomposition coefficients corre-
sponding to the wave vector kn, and ωn is the unsteadi-
ness frequency.

The wave vectors kn = knk̂n are oriented randomly

by ensuring that the unit vectors k̂n have a random, uni-
formly distributed, orientation. The magnitude of the
wave numbers included in the summation can be given
an arbitrary distribution. Usually they are decimated
so as to reduce computational demands, while includ-
ing enough modes for the convergence of the Lagrangian
statistics. [31] tried arithmetic, geometrical, and linear
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distributions and found that the distribution

kn = k1

(
kNk

k1

)(n−1)/(Nk−1)

(6)

where n is an integer satisfying 1 ≤ n ≤ Nk, gives the
fastest convergence of the statistics.
The coefficient vectors an and bn are chosen randomly

and independently in the plane normal to kn,

an · kn = bn · kn = 0 (7)

to ensure that the random field is incompressible. In
order to impose an energy spectrum, E(k) upon the field,
the magnitudes of the coefficients are chosen as follows

|an|2 = |bn|2 = 2E(kn)∆kn (8)

where

∆kn =
kn+1 − kn−1

2
(9)

The spectrum used usually follows the universal form in
the inertial range,

E(k) = Ckε
2/3k−5/3 (10)

where Ck is the Kolmogorov constant (Ck = 1.5) and ε
is the dissipation rate of energy per unit mass, but de-
partures from this scaling have also been studied, partly
for intermittency corrections but also to try to gauge the
importance of the energy spectrum scaling on the La-
grangian statistics in kinematic simulation. In this study,
we will use an energy spectrum characterized by a power
law with an exponent, p, varying from 1.15 to 1.96:

E(kn) ∼ u2
rmsL (knL)

−p
for k1 ≤ kn ≤ kN (11)

where we have introduced the rms of the turbulent ve-
locity fluctuation

urms =

√
2

3

∫ kN

k1

E(kn)dk (12)

and the integral length scale of the isotropic turbulence
is defined as follows:

L =
3π

4

∫ kN

k1
k−1E(kn)dk∫ kN

k1
E(kn)dk

(13)

The Kolmogorov length scale is defined as η = 2π/kN .
The ratio between the integral and Kolmogorov length
scales is L/η = kN/k1 which is used to determine the in-
ertial range and the associated Reynolds number: Re =
(L/η)4/3 = (kN/k1)

4/3. A characteristic time for nor-
malisation is introduced as td = L/urms.

B. The Eulerian field time dependence

A time dependence of the velocity field can be incor-
porated through the unsteadiness frequency ωn. This is
often taken as the eddy turnover time of the nth mode,

ωn = λ
√

k3nE(kn) (14)

A wide range of values of the parameter λ has been
studied, from near-frozen fields to extremely unsteady
fields. It has been shown [6] that in three-dimensional
isotropic KS for two-particle diffusion, most of the statis-
tical properties are insensitive to the unsteadiness param-
eter’s value, provided that it rests in the range 0 ≤ λ ≤ 1.

The interactions between the random Fourier modes are
not modelled as such in KS, hence KS miss their dynam-
ics. As a result the small eddies are not advected by the
large ones, a KS shortcoming called ‘lack of sweeping’ be-
tween different modes. Recently [2] have proposed that
the second order statistics in kinematic simulation are
dominated by this absence of sweeping. They have in-
vestigated the particle pair separation using KS paying a
particular attention to this problem. As a consequence of
the lack of sweeping, it is expected that the two-particle
mean-square separation will be different from Richard-
son’s scaling because the large scales in real life do in-
fluence the rate of separation. [2] predicted that in the
absence of sweeping, the variance of the particle separa-
tion should increase as t9/2. This was confirmed by their
KS results for two inertial subranges kN/k1 = 106 and
108.

However, [32] have investigated the separation of particle
pairs using Kinematic Simulation for inertial subrange in
the range kN/k1 = 104 and concluded that KS reproduce
Richardson’s power law over their range of scales. This
was also consistent with [12]’s results.

III. RICHARDSON REGIME AND KS
INERTIAL RANGE:

A. Varying the inertial range

To clarify these apparent contradictory conclusions, it
is worth reporting from the main studies cited here the
inertial subrange which was used for the particle diffu-
sion. In [5] the two-particle diffusion was investigated
using a two-dimensional KS and Richardson’s law was
observed on an inertial subrange kN/k1 = 4000.

In [9], three-dimensional KS was used to determine the
relation between the generalised Richardson’s power law
exponent for the pair separation, γ, and the fractal di-
mension of the stagnation points, Ds. The inertial range
used was kN/k1 = 1000. The results showed remarkable
consistency between the KS predictions and the general-
isation of Richardson’s theory for different values of the
energy spectrum exponent 1 ≤ p ≤ 2.
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In [12], two-particle diffusion in a three-dimensional
KS was studied for different power law exponents of the
energy spectrum from 1.2 to 3. Richardson’s prediction
was again verified in the limited range kN/k1 = 2000
provided that the initial pair separation was larger than
the Kolmogorov length scale.
We can conclude from this partial survey that KS stud-

ies using inertial ranges kN/k1 up to 4000 yield results
in agreement with Richardson’s prediction. Whereas
[2]’s results questioning this agreement were obtained for
much larger range up to 108.

In this section we present KS made for the full range
103 ≤ kN/k1 ≤ 106; in order to study the effect of the
Reynolds number. We fix the initial separation to be
∆0/η = 10 to make a direct comparison with the results
obtained in [2]. All the runs’ parameters are tabulated in
Table I for a r.m.s. velocity urms = 1 m s−1 and an inte-
gral length scale L = 1 m. The statistics were performed
over 4000 realizations of the flow field.

Case kN
k1

λ η Case kN
k1

λ η

A 103 0 6.28 10−3 J 104 1 6.28 10−4

F 104 0 6.28 10−4 N 105 0 6.28 10−5

G 104 0.25 6.28 10−4 S 106 0 6.28 10−6

H 104 0.5 6.28 10−4 T 106 0.5 6.28 10−6

I 104 0.75 6.28 10−4 U 106 1 6.28 10−6

TABLE I. Different cases studied for two-particle diffusivity,
urms = 1, L = 1, p = 5/3 and ∆0/η = 10.

B. Particle pair diffusivity for p = 5/3:
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FIG. 1. (Color online) Two particle separation as a function
of time for different inertial subranges (cases A, F, N and S
in table I).

In Fig. 1, the particle pair separation 〈∆2〉/L is plot-
ted as a function of time for different inertial subranges,

103 ≤ kN/k1 ≤ 106. The slope of Richardson’s scaling
(t3) and the slope proposed in [2] (t9/2) are added to the
figure. It can be noticed that for small inertial subranges,
up to kN/k1 = 104, the curves seem to follow Richard-
son’s scaling t3, but for higher inertial ranges they seem
rather to follow the scaling t9/2.

As mentioned in § I, for [1] the reference quantity was the
two-particle diffusivity. The locality in scale assumption
was made for the diffusivity. Working directly on

d

dt
〈∆2(t)〉 ∼ 〈∆2(t)〉2/3 (15)

is keeping closer to this fundamental assumption. Fur-
thermore, [12] argued that plots of pair separations as
functions of time as in Fig. 1 can be misleading and their
analysis need to be complemented by an analysis in terms
of diffusivity. In particular, conclusions are easier to draw
from plots of (d/dt)〈∆2(t)〉 as they remove part of the ini-
tial separation (∆0) effects.

Accordingly, we compute directly the diffusivity by dif-
ferentiating 〈∆2(t)〉. In Fig. 2a we plot the compensated
diffusivity

d

dt
〈∆2〉/〈∆2〉2/3 (16)

as a function of 〈∆2〉/L2 for the different cases of
Fig. 1. Whereas, for comparison in Fig. 2b we plot
(d/dt〈∆2〉)/〈∆2〉7/9 as a function of 〈∆2〉/L2 for the same
cases. A horizontal trend will validate each law respec-
tively. There are two other well-known regimes which are
worth mentioning: the Batchelor regime at small times
t, where 〈∆2〉 ∼ ∆2

0 + V 2
0 t

2, and the diffusive regime
where 〈∆2〉 ∼ t for large times. The diffusive regime is
clearly identified by the dash line having the correspond-
ing slope in Fig. 2a and b. The advantage of the plots
we use is that the small time, small separation regimes
are squeezed with respect to the large diffusivity regimes
(those in the inertial range of scales). This is confirmed
in Fig. 2 where the diffusivity exhibits a constant slope
down to the smallest scales. That is the Batchelor regime
cannot be seen in such plots, for the sake of completeness
we add the solid line corresponding to a t2 regime.

Comparing 2-a) and -b) we can conclude as suggested by
[32] that neither law are satisfactorily observed over the
entire inertial range of scales. More precisely:

d

dt
〈∆2〉 ∼ 〈∆2〉2/3 (17)

seems to be observed for inertial ranges kN/k1 ≤ 104

only. For larger ranges, Eq. (17) is verified only af-
ter large separations, i.e. when ∆/L ≥ 100 as can be
seen in Figure 2-c. Otherwise, for the inertial ranges
kN/k1 > 104 and ∆/L < 100, comparisons of Figs 2 a
and b indicates that the diffusivity is closer to 〈∆2〉7/9
than to 〈∆2〉2/3 but the power dependence is not 7/9
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FIG. 2. (Color online) Compensated diffusivity, for the cases in Fig. 1, p = 5/3: a) (d/dt)〈∆2〉/〈∆2〉2/3 as a function of

∆2/L2; b) (d/dt〈∆2〉)/〈∆2〉7/9 as a function of 〈∆2〉/L2; the dash line corresponds to the large time t-regime and the solid
line to the Batchelor t2-regime; c) magnification of plot a) around the Richardson range with a linear scale along the y-axis; d)
magnification of plot b) for the same range of scales with a linear scale along the y-axis.

which appears clearly as an overestimation, except per-
haps for the range 3 × 10−10 < 〈r2〉/L2 < 3 × 10−6 for
L/∆0 > 105 the exact value reported later on in Figure 4
is 0.75.

To clarify this behaviour in Fig. 3a we plot the com-
pensated diffusivity (16) as a function of 〈∆2〉/L2 for
four different ratios ∆0/L, namely 0.01, 0.005, 0.001 and
0.0001, cases G, J, L and M in table II. The different
curves have been arbitrarily translated along the y-axis
to have a clearer view of the two ranges. The two ver-
tical arrows point towards the range of scales where a
Richardson law is observed. That is

0.03 <

√
〈∆2〉
L

< 0.26 (18)

That range is independent of L/∆0 provided that
L/∆0 > 100. It persists when L/∆0 increases so it is
not an effect of small inertial range. For smaller ranges
the determination of a power law cannot be conclusive.
This corresponds to L/∆0 < 102 in our KS as illustrated
in Figs 2 and 3. This is the minimum range needed to
observe the plateau we identified at large scales. Fig 3 in-

dicates that this plateau is then fixed for L/∆0 ≥ 5×102.
However, most DNS would correspond to such small
ranges, so for the sake of comparison we show results
down to L/∆0 = 102 in Fig. 4.

Before that large scales range (when 〈∆2〉/L2 < 10−4)
the law followed by the diffusivity depends on the initial
separation, more exactly on the ratio L/∆0 and departs
more and more from Richardson’s prediction. We will see
in the next section that eventually it reaches an asymp-
tote in-between 2/3 and 7/9. In other words, Fig. 3 shows
that KS seems to struggle with Richardson’s locality-in-
scales hypothesis at small scales but follows that hypoth-
esis for larger scales. For the sake of comparison we plot
the same diffusivity compensated by 〈∆2〉7/9, the figure
shows clearly that there is no region where that scaling
is observed. However, the scaling seems to get closer to
7/9 when L/∆0 increases.
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FIG. 3. (Color online) Compensated diffusivity as a function of 〈∆〉2/L2 for different initial separations, cases G, J, L and M

in table II, a) d/dt〈∆2〉/〈∆2〉2/3, b) d/dt〈∆2〉/〈∆2〉7/9, c) same as a) with a linear scale on the y axis, d) same as b) with a
linear scale on the y axis.

C. Estimation of the diffusivity power law at small
scales

In order to quantify better the power law dependence
on the initial separation L/∆0 we run many different
cases with different ratios L/∆0 and ∆0/η. These dif-
ferent cases are reported in Table II. For each case we
plot

d

dt
〈∆2〉/〈∆2〉b (19)

as a function of ∆2/L2, tuning the coefficient b in order to
find the best power law describing the diffusivity before
the range (18) where Richardson’s prediction is observed.
The values for b as a function of L/∆0 are reported in
Fig. 4. The two horizontal lines correspond to Richard-
son’s prediction (2/3) and to [2]’s prediction (7/9).

The general trend confirms our previous observation,
that is for small L/∆0, b is close to Richardson’s pre-
diction. It then starts to depart significantly from that
prediction around L/∆0 = 1000 to come closer to the
7/9 prediction. It becomes closer to that prediction than
to Richardson’s for L/∆0 > 3000. It then levels off

for L/∆0 > 3 × 104 around a value of b in the range
[0.74; 0.75]. That is slightly short of [2]’s prediction.
Computing cost prevented us from investigating larger
inertial ranges but the asymptote of the curve seems
clearly below 7/9. We estimate the error in the slope
measurements to be smaller than ±0.01, in most cases
smaller than ±0.005. We also varied the ratio ∆0/η (see
Table II) and find no effect of this parameter confirming
that the main parameter is L/∆0, that is the portion of
the inertial range that is seen by the particle pair (pro-
vided of course that ∆0/η ≥ 1).

IV. SENSITIVITY TO THE ENERGY
SPECTRUM POWER LAW

A. Generalisation of diffusivity formula

The difference between Richardson’s and [2]’s predic-
tions respectively 0.67 and 0.78 is certainly significant
but it remains a difference of just about 16%. Further-
more, we have seen that larger scales seems to follow
Richardson’s theory.
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Case L
∆0

∆0
η

kN
k1

A 103 1 103

B 105 1 105

C 2× 105 1 2× 105

D 5× 104 2 105

E 105 2 2× 105

F 2× 104 5 105

Case L
∆0

∆0
η

kN
k1

G 102 10 103

H 2× 102 10 2× 103

I 4× 102 10 4× 103

J 5× 102 10 5× 103

K 6× 102 10 6× 103

L 103 10 104

M 104 10 105

Case L
∆0

∆0
η

kN
k1

N 5× 102 20 104

O 103 20 2× 104

P 2× 103 20 4× 104

Q 3× 103 20 6× 104

R 4× 103 20 8× 104

S 5× 103 20 105

T 2.5× 103 40 105

TABLE II. , In all cases λ = 0, p = 5/3, the number of realisations is larger than 3000 and η = 2π.
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FIG. 4. Power law exponent from Eq. 16 as a function of L/∆0

for cases in Table II. The dash line corresponds to Thomson &
Devenish prediction, the plain line to Richardson’s value 2/3.
Symbols correspond to different ∆0/η, namely + ∆0/η = 1,
◦ ∆0/η = 2, � ∆0/η = 5, � ∆0/η = 10, 4, ∆0/η = 20 and ∇
∆0/η = 40.

It is therefore important to support our work with a
generalisation to a range of spectral power laws to look
for a general trend or isolate p = 5/3 as a peculiar case.
the effect of the energy spectrum power law on the dif-
fusivity was introduced in [33] and [34]. Generalising [1]
it is assumed that the diffusivity depends only the spec-
trum E(k) and a wavenumber k∆ which is of the order

of
√
〈∆2〉 so that:

d

dt
〈∆2〉 = f {E(k∆), k∆} (20)

with k∆ ∼
√
〈∆2〉. Using dimensional arguments, the

diffusivity must be of the form:

d

dt
〈∆2(t) ∼ 〈∆2〉1/4

√
E(
√
〈∆2〉) (21)

Eq. (15) can then be written in a general form for a tur-
bulence energy spectrum (11) as follows:

d

dt
〈∆2(t)〉 ∼ urmsL

(
〈∆2(t)〉

L2

)c

(22)

with c = 1+p
4 , which leads to

〈∆2(t)〉 ∼ L2
(
t
urms

L

) 1
1−c

(23)

with 1
1−c = 4

3−p . The characteristic time associated to

the pair is defined as

τ ∼ L

urms

(
〈∆2(t)〉

L2

) 3−p
4

(24)

where p is the energy spectrum exponent and varies as
1 ≤ p ≤ 2. When E(k) ∼ k−5/3 we retrieve c = 2/3 and
〈∆2〉 ∼ t3. Equation (22) is more general but still relies
on Richardson’s locality-in-scale hypothesis.

B. KS prediction for E(k) ∼ k−p

In order to see the consistency of KS with this hypoth-
esis and to have a better idea of the effect of increasing
the inertial subrange on KS prediction of Richardson’s
law, we repeat the previous results for different spectral
power laws. We vary p in Equation (11) from 1.15 to 1.96
and also vary the inertial range kN/k1 (see the different
cases reported in Table III).

Figure (5) shows (d〈∆2〉/dt)/〈∆2〉c as a function of
〈∆2〉/L2 where c is given by Eq. (22) for the different
spectral power laws and an inertial range kN/k1 = 104.
For easier interpretation we plot the cases p < 5/3 in
Fig. 5a and the cases p > 5/3 in Fig. 5b. The re-
sults are consistent with what was observed for the case
p = 5/3, i.e. all the curves show a remarkable consis-
tency of KS with Richardson’s locality-in-scale hypothe-
sis and [5, 33]’s prediction (22) for the same small range√

〈∆〉2/L given in (18). For smaller
√
〈∆〉2/L, similarly

to the case p = 5/3, the diffusivity departs from [5, 33]’s
generalisation of Richardson power law.

When comparing Figs 3 and 5 we can conclude that the
locality-in-scale hypothesis and Eq. 22 are verified for
1.15 ≤ p ≤ 1.96 over the same range of scales

√
〈∆2〉/L

(18). This generalises the conclusion made for p = 5/3
that KS is remarkably consistent with the locality as-
sumption as it shows this agreement for the different val-
ues of p. The KS difficulty to match Richardson’s predic-
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Case kN
k1

p λ η Case kN
k1

p λ η

N 106 1.15 0 6.28 10−6

B 104 1.27 0 6.28 10−4 O 106 1.27 0 6.28 10−6

C 104 1.37 0 6.28 10−4 P 106 1.37 0 6.28 10−6

D 104 1.47 0 6.28 10−4 Q 106 1.47 0 6.28 10−6

E 104 1.57 0 6.28 10−4 R 106 1.57 0 6.28 10−6

S 106 1.62 0 6.28 10−6

T 106 1.70 0 6.28 10−6

K 104 1.77 0 6.28 10−4 V 106 1.77 0 6.28 10−6

L 104 1.87 0 6.28 10−4 W 106 1.87 0 6.28 10−6

M 104 1.96 0 6.28 10−4 X 106 1.96 0 6.28 10−6

TABLE III. Different cases studied for two-particle separations, for different power spectra, ∆0/η = 10 for all cases.
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FIG. 5. (Color online) (d〈∆2〉/dt)/〈∆2〉c as a function of 〈∆2〉/L2 for different energy spectrum power laws and kN/k1 = 104,
(cases B, C, D, E, F, K, L and M in Table I).

tion can therefore be localised to small scales and there
is no effect of the spectral power law p on this range.

C. Generalisation of Thomson and Devenish
sweeping effect to E(k) ∼ k−p

The argument of [2] on the effect of sweeping can be
generalised to any spectral law. We follow the simplified
approach of [32] here: The eddy diffusivity as the rate
of the particles mean-square separation can be expressed
in terms of a characteristic relative velocity ∆V between
fluid element pairs and a time scale τ over which such
relative velocities change.

d

dt
〈∆2(t)〉 ∼ ∆V 2τ (25)

Both ∆V and τ are functions of the mean-square separa-
tion 〈∆2(t)〉. The relative velocity is given by the spectral
law as follows for a structure of characteristic size r:

∆V ∼
√
E(k)∆k ∼ urms

(
L

r

) 1−p
2

(26)

and τ is given by:

τ(〈∆2(t)〉, u′) ∼ min

√〈∆2(t)〉
u′ ,

L

urms

(√
〈∆2(t)〉
L

) 3−p
2


(27)

[2] introduce mean-square separations conditional on u′,
i.e., 〈∆2〉u′ , so that

〈∆2〉 =
∫ ∞

0

〈∆2〉u′ p(u′)du′ (28)

where p(u′) is the probability density function associated
to the turbulence velocity u′. There are two regimes:

• According to [2]’s assumption when u′ is small
enough the sweeping problem is absent and (23)

applies, therefore 〈∆2(t)〉 ∼ L2
(
turms

L

) 4
3−p , that is

for p = 5/3 〈∆2〉u′ ∼ εt3.

• Whereas, when u′ is large enough, we start from
(25) which becomes:

d

dt
〈∆2(t)〉 ∼ u2

rms

L

u′

(
〈∆2(t)〉

L2

) p
2

(29)
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〈∆2〉u′ is sweeping-dominated so that

〈∆2〉u′ ∼ L2

(
u2
rms

u′L
t

) 2
2−p

(30)

that is for p = 5/3 〈∆2〉u′ ∼ ε4t6/u′6.

The separation which divides these two regimes can be

estimated as L2
(
turms

L

) 4
3−p ∼ L2

(
u2
rms

u′L t
) 2

2−p

that is

u′
sep ∼

(
turms

2
p−1

L

) p−1
3−p

(31)

which corresponds to u′ ∼
√
εt for p = 5/3.

〈∆2〉u′ ∼
∫ u′

sep

0

L2
(
t
urms

L

) 4
3−p

p(u′)du′+

∫ ∞

u′
sep

L2

(
u2
rms

u′L
t

) 2
2−p

p(u′)du′

(32)
We use for u′ the pdf proposed in [2]:

p(u′) =

√
2

π

u′2

u3
rms

e
− 1

2
u′2

u2
rms (33)

and obtain

〈∆2〉 ∼ L2
(
t
urms

L

) 3p+1
3−p

(34)

which leads to [2]’s results for p = 5/3. The expression
for the diffusivity is obtained by differentiating (34)

d

dt
〈∆2(t)〉 ∼ urmsL

(
〈∆2(t)〉

L2

) 4p−2
3p+1

(35)

In Figure 6a we compare the results from KS to the two
predictions (23) from [5, 33] and (35) from the generali-
sation of [2]’s argument. The points in Figure 6a are the
results from KS. Similarly to the case p = 5/3 reported in
Figure 4, for p 6= 5/3, when L/∆0 ≥ 105 results do not
change. We measured c outside the range of scales for
which Morel & Larchevêque is observed. It is measured
for an inertial range L/∆0 ≥ 105 large enough for it to
have reached its asymptotic value. It is neither Morel &
Larchevêque nor the extension of 7/9 which is observed
but the intermediary value c that we are reporting, which
is clearly above [5, 33]’s prediction and below the gener-
alisation of [2]’s theory.
The departure from [5, 33]’s theory increases up to

p = 5/3 and then levels off around a value c = 0.77 very
close to 0.75 the limit value for p = 2.

Figure 6b shows the relative error of the two theories
when compared to the KS values. Interestingly, the max-
imum discrepancy between KS and [5, 33]’s is observed
for the case p = 5/3 where [2]’s theory gives a better pre-
diction of the KS result. Apart from that range around
p = 5/3, KS results are very close to [5, 33]’s predic-
tions. It is worth noting that the generalisation of [2]

converges to [5, 33]’s predictions for p = 1 and p = 3.
p = 1 corresponds to the lower limit of integrability for
the energy spectrum. Such spectra would have a much
more even distribution of energy than the classical 5/3.
The largest discrepancy between the two theories occurs
for p = 1.775. This value could be thought of as the
point where the absence of sweeping is the most harm-
ful to KS, however, as noted before KS departs the most
significantly from [5, 33] earlier at p = 5/3 where it gets
closer to [2]’s generalisation.

It is reasonable to believe that, approaching the two lim-
iting cases p = 1 and p = 3, the lack of sweeping of
the small eddies becomes less relevant, for two opposite
reasons.

As p gets closer to 1, the energy spectrum becomes flat-
ter, the characteristic velocity is more or less the same
over the range of scales modelled by KS so that a sweep-
ing of small eddies by large eddies looses its relevance as
indicated by the convergence of both theories to the same
prediction c = 0.5

Similarly for p → 3 both theories converge to c = 1.
In this case the energy spectrum tends to a very sharp
distribution on the large scales. The particle advection
is completely dominated by the large scales in the flow.
The contribution of the small eddies where KS struggles
with Richardson’s locality assumption becomes less im-
portant. Therefore the accurate modelling of their sweep-
ing by large scales is not so important anymore. This is
supported by our observation that KS follow remarkably
Richardson’s locality assumption at large scales.

Overall KS seem more consistent with [5, 33] generalisa-
tion of Richardson’s hypothesis to p 6= 5/3 than expected
from a generalisation of [2]’s approach.

V. EFFECT OF VARYING THE
UNSTEADINESS PARAMETER ON THE
VALIDITY OF RICHARDSON REGIME:

It is worth remembering that sweeping mechanisms
have been proposed for KS, the most popular is the term
ωn defined in Eq. 14. In all the cases we studied before,
the unsteadiness parameter λ was fixed to 0 as there is
no conclusive results from previous researches showing it
has any significative effect in three-dimensional KS.

In order to show if this parameter has an effect on KS
prediction of Richardson law, we repeat our results for
p = 5/3 for 0 ≤ λ < 1. Figure 7 shows the results for
kN/k1 = 104 corresponding to cases F, G, H, I and J in
table I. From that figure it can be noticed that λ has
no effect on the prediction of the diffusivity scaling. We
repeated the results for kN/k1 = 106 (not shown here)
and did not find any effect of λ either.
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FIG. 6. Power c from Eq. 22: (a) solid line, theoretical value (23) as predicted by Morel & Larchevêque, points, results from
KS, dash-line value as predicted from (35); (b) relative error in % between the power c measured from KS and the values from
(23) solid line and (35) dash line. kN/k1 = 106, (cases N to X in table III).
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FIG. 7. (Color online) Effect of the unsteadiness parameter
on the normalized diffusivity with respect to Richardson’s law
as a function of the two-particle separations, p = 5/3 and
kN/k1 = 104, (cases F, G, H, I and J in table I).

VI. CONCLUSION

Questions were raised about the applicability of the
kinematic simulation approach to the separation of pairs
in real turbulent flows. In particular because of their in-
ability to model accurately the sweeping of small eddies

by large eddies.

We can conclude from our study that KS are consistent
with Richardson’s prediction for turbulence with inertial
ranges up to kN/k1 < 104. That may be enough for prac-
tical applications of KS as a subgrid for instance. This
would already correspond to very high actual engineering
Reynolds numbers.
The problem remains: KS prediction departs from [33]’s
prediction at small scales for large inertial ranges. How-
ever, our results are still close to the theoretical predic-
tion and it would be fairer to conclude that KS prediction
are not as good at small separation than at large sepa-
ration. It is perhaps premature to discard KS prediction
altogether for larger inertial range as there is no exper-
imental results on such large ranges we can rely on for
comparison.

Furthermore, if we accept the sweeping problem as it is
used in [2] we can conclude that it does not seem to have
much effect at larger scales where KS follows remarkably
Richardson’s theory as extended to spectral power laws
1.15 ≤ p ≤ 1.96 ([5, 33]’s prediction) and limited effects
at small scales for 1 < p < 1.6 and 1.7 < p < 2.
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