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Abstract    

This chapter describes the techniques that are used to represent and to 

search for molecular structures in chemical patents.  There are two types of 

structures: specific structures that describe individual molecules; and ge-

neric structures that describe sets of structurally related molecules.  Meth-

ods for representing and searching specific structures have been well es-

tablished for many years, and the techniques are also applicable, albeit 

with substantial modification, to the processing of generic structures.  
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X.1 Introduction 

Patents are a key information resource for all types of industry, but this is 

particularly the case in the pharmaceutical and agrochemical industries.  

The main focus of these industries is to identify novel chemical molecules 

that exhibit useful biological activities, e.g., reducing an individual’s cho-

lesterol level or killing the insect pest of a crop (Barnard 1984; Berks 

2001).  Chemical patents hence need to contain not just the textual infor-

mation that one would find in any type of patent, but also information 

about the chemical molecules of interest.  These can, of course, be de-

scribed by their chemical names or images, but these provide only limited 

searching facilities that are not sufficient to meet the requirements of mod-

ern industrial research and development.  Instead, specialised types of rep-

resentation and search algorithm have had to be developed to provide effi-

cient and effective access to the structural information contained in 

patents.  These techniques are an important component of what has come 

to be called chemoinformatics (Willett 2008), i.e., “the application of in-

formatics methods to solve chemical problems” (Gasteiger 2006). 

 

Two types of molecular information are encountered in chemical patents.  

A patent may be based on just a single specific molecule, in which case 

the techniques that have been developed in chemoinformatics over many 

years may be applied, as discussed below.  However, the majority of 

chemical patents discuss not single molecules, but entire classes of struc-

turally related molecules, with these classes being described by a generic, 

or Markush, structure.  A single generic structure can represent many 

thousands, or even a potentially infinite number, of individual molecules, 

and the representational and searching techniques required are accordingly 

far more complex than those commonly encountered in chemoinformatics 
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systems.  In this paper, we provide an overview of the techniques that are 

used to handle both specific and generic chemical structures.  The reader is 

referred to the standard texts by Leach and Gillet (2007) and by Gasteiger 

and Engel (2003) for further details of the techniques described below; 

these books also provide excellent introductions to the many aspects of 

chemoinformatics that are not, as yet, of direct relevance to the processing 

of chemical patent information.   

X.2 Searching specific chemical structures 

X.2.1 Representation of chemical structures 

If one wishes to carry out computer-based searches of a chemical database 

then the molecules of interest must be encoded for searching, and we com-

mence by describing the three main ways in which one can provide a full de-

scription of a chemical structure in machine-readable form: these are system-

atic nomenclature, linear notations, and connection tables.  Before 

describing these, the reader should note that we consider here (and in the re-

mainder of this chapter) only the processing of 2D chemical molecules, i.e., 

the planar chemical structure diagrams that are conventionally used to repre-

sent molecules in the scientific literature and that are exemplified by the 

structure diagram shown in Figure 1.  More sophisticated techniques are re-

quired for the representation and searching of 3D chemical molecules, i.e., 

where one has geometric coordinate information for all of a molecule’s con-

stituent atoms (Martin and Willett 1998).  

 

Chemical compounds have had names associated with them ever since the 

days of the alchemists, but it was many years before it was realised that there 
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was a need for systematic naming conventions to ensure that every specific 

molecule would have its own unique name.  This name should be unique, in 

the sense that there should be only one possible name for a molecule, and 

unambiguous, in the sense that it should describe that molecule and no other; 

moreover, it was soon realised that the name should describe the various sub-

structural components comprising the molecule, whereas common, non-

systematic names will normally say little or nothing about a molecule’s com-

ponents.  For example, 2-acetoxybenzoic acid is the systematic, explicit rep-

resentation for the structure shown in Figure 1, which is also, and most 

commonly, called aspirin.   

 

Two systematic nomenclatures are in widespread use, these being the ones 

developed by the International Union of Pure and Applied Chemistry 

(IUPAC at http://www.iupac.org) and by Chemical Abstracts Service (CAS 

at http://www.cas.org).  IUPAC is an association of 60 national chemical so-

cieties, seeking to establish standards in nomenclature and physiochemical 

data measurement, while CAS is a division of the American Chemical Socie-

ty and the world’s largest provider of chemical information, indexing articles 

from more than 10,000 journals and patents from 60 national patent agencies.  

Systematic names continue to be widely used in the chemical literature, but 

are of less importance in chemoinformatics systems since they are normally 

converted automatically into one of the two other types of standard represen-

tation, i.e., linear notations or connection tables.  A linear notation is a string 

of alphanumeric characters that provides a complete, albeit in some cases 

implicit, description of the molecule's topology.  A canonicalisation proce-

dure is normally invoked to ensure that there is a unique notation for each 

molecule.  The first notation to be widely used was the Wiswesser Line No-

tation, which formed the basis for most industrial chemoinformatics systems 
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in the Sixties and Seventies.  Two notations are of importance in present-day 

systems: the SMILES (for Simplified Molecular Input Line Entry Specifica-

tion) notation developed by Daylight Chemical Information Systems Inc. 

(Weininger 1988) and the International Chemical Identifier (or InChI), the 

development of which is being overseen by IUPAC.  SMILES was devel-

oped for use in in-house industrial chemoinformatics systems (as is the case 

with much chemoinformatics software) while InChI, conversely, has been 

developed as an open-source, non-proprietary notation.  The SMILES and 

the InChI for aspirin are included in Figure 1.   

 

Notations provide a compact molecular representation, and are thus widely 

used for compound exchange and archival purposes.  However, most 

chemoinformatics applications will require their conversion to a connection 

table representation of molecular structure.  A connection table is a data 

structure that lists the atoms within a molecule and the bonds that link those 

atoms together (in many cases, only heavy atoms are included since the pres-

ence of hydrogen atoms can be deduced automatically).  The table provides a 

complete and explicit description of a molecule’s topology, i.e., the way that 

it is connected together, whereas this information is normally only implicit in 

a linear notation.  There are many ways in which the atoms and bonds can be 

encoded, with typical connection table formats being exemplified by those 

developed by MDL Information Systems Inc. (now Accelrys Inc.) (Dalby et 

al. 1992).  A sample connection table for aspirin is shown in Figure 1 where, 

for example, the first line shows that atom number 1 (Oxygen) is connected 

by a double bond (D) to atom number 2. 
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Connection Table: 1 O D 2 

2 C D 1 S 3 S 4 
3 O S 2 
4 C S 2 D 5 S 9 
5 C D 4 S 6 
6 C S 5 D 7 
7 C D 6 S 8 
8 C S 7 D 9 
9 C S 4 D 8 S 10 
10 O S 9 S 11 
11 C S 10 D 12 S 13 
12 O D 11 
13 C S 11 

 

 

Fig. 1: Structure, name, InChI, SMILES and 

connection table for aspirin 

 

A connection table is an example of a graph, a mathematical construct that 

describes a set of objects, called nodes or vertices, and the relationships, 

called edges or arcs, that exist between pairs of these objects (Diestel 2000; 

Wilson 1996).  This means that chemoinformatics has been able to draw on 

the many algorithms that have been developed previously for the processing 

of graphs.  Of particular importance in the present context are the graph iso-

Name: 2-acetoxybenzoic acidSmiles: CC(=O)Oc1ccccc1C(=O)O

InChI: 1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H,1H3,(H,11,12)
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morphism algorithms that are used to determine whether two graphs are iden-

tical and the subgraph isomorphism algorithms that are used to determine 

whether one graph is contained within another, larger graph (Gasteiger and 

Engel 2003; Leach and Gillet 2007).  

X.2.2 Searching for specific molecules 

An important search capability is structure searching: the inspection of a da-

tabase to retrieve the information associated with a particular molecule (e.g., 

if a chemist needed to know the molecule’s boiling point or to identify a syn-

thesis for it) or to confirm the molecule’s presence or absence in a database 

(e.g., if a chemist wanted to check whether a newly synthesised molecule 

was completely novel).   

 

Structure searching in files of systematic nomenclature or linear notations is 

effected using conventional computer science techniques for single-key 

searching.  These are typically based on hash coding, where an alphanumeric 

string (in this context, a systematic name or a canonicalised notation), is con-

verted algorithmically to an integer identifier that acts as a key to the mole-

cule’s location on disk storage.  A similar idea underlies the searching of 

connection table records; however, whereas names and notations are linear 

strings that can be converted into a canonical form very easily; this is not the 

case with connection tables and additional processing is required if hashing 

is to be used to enable fast structure searching.  The generation of a canonical 

connection table requires the nodes of the chemical graph to be numbered, 

and there are up to N! possible sets of numberings for an N-node graph.  Fol-

lowing initial work by Gluck (1965), Morgan (1965) described an algorithm 

to impose a unique ordering on the nodes in a graph, and hence to generate a 
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canonical connection table that can then be used for structure searching.  

With subsequent development (Freeland et al. 1979; Wipke and Dyott 1974), 

the resulting procedure, which is known to this day as the Morgan algorithm, 

forms the basis for all CAS databases and for many other chemoinformatics 

systems. 

 
Hashing is an approximate procedure, in that different records can yield the 

same hashed key, a phenomenon that computer scientists refer to as a colli-

sion.  In nomenclature and notation systems, collisions are avoided by means 

of a subsequent, and extremely simple, string comparison that confirms the 

equivalence of the query molecule and the molecule that is stored in the da-

tabase that is being searched.  In connection table systems, a graph isomor-

phism algorithm is used to confirm that a true match has been achieved, this 

involving an exhaustive, tree-search procedure in which nodes and edges 

from the graph describing the query molecule are mapped to nodes and edges 

of the graph describing a potentially matching database molecule.  The map-

ping is extended till all the nodes have been mapped, in which case a match 

has been identified; or until nodes are found that cannot be mapped, in which 

case, the mapping backtracks to a previous, successful sub-mapping and a 

different mapping attempted.  A mis-match is confirmed if no match has 

been obtained and if there are no further mappings available for testing.  It 

will be realised that the mapping procedure has a time complexity that is a 

factorial function of the numbers of graph nodes involved in the comparison, 

and that the procedure can thus be very demanding of computational re-

sources.  Fortunately, various heuristics are available to expedite the identifi-

cation of matches, and the use of the Morgan algorithm means that very few 

mis-matches need to be probed, making the overall procedure rapid in opera-

tion despite the complexity of the processing that is necessary. 
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X.2.3 Searching for chemical substructures 

Probably the single most important facility in a chemoinformatics system is 

the ability to carry out a substructure search, i.e., the ability to identify all of 

those molecules in a database that contain a user-defined query substructure.  

For example, in a search for molecules with antibiotic behaviour, a user 

might wish to retrieve all of the molecules that contain a penicillin or cepha-

losporin ring system.  Substructure searching is effected by checking the 

graph describing the query substructure for inclusion in the graphs describing 

each of the database molecules.  This is an example of subgraph isomor-

phism: it involves an atom-by-atom and bond-by-bond mapping procedure 

that is analogous to, but more complex than, that used for a graph isomor-

phism search.  A substructure search guarantees the retrieval of all molecules 

matching the search criterion: unfortunately, although it is completely effec-

tive, subgraph isomorphism is extremely inefficient since it belongs to the 

class of NP-complete computational problems for which no efficient algo-

rithms are known to exist (Barnard 1993; Leach and Gillet 2007).   

 

 
Fig. 2.  Query substructure and some example hits in a search for a pyr-

idine ring 

 

Operational substructure searching is practicable for three reasons.  First, the 

fact that chemical graphs are both simple (they contain relatively few nodes, 
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most of which are of very low connectivity) and information-rich (as one can 

differentiate atoms and bonds by their element and bond-types, respectively).  

These factors serve to reduce the numbers of atom-to-atom and bond-to-bond 

mappings that need to be considered by a subgraph isomorphism algorithm.  

Second, a lot of effort has gone into the development of algorithms that can 

handle chemical graphs, as against graphs in general, very efficiently, with 

the elegant matching techniques described by Sussenguth (1965) and by 

Ullmann (1976) lying at the heart of current substructure searching systems.  

Third, and most importantly, the subgraph isomorphism search is preceded 

by an initial screening search in which each database structure is checked for 

the presence of features, called screens, that are present in the query sub-

structure.  For example, using the penicillin example mentioned above, any 

database structure can be eliminated from further consideration if it does not 

contain the fused four-membered and five-membered rings that comprise the 

penicillin nucleus.   

 

A screen is a substructural feature, called a fragment, the presence of which 

is necessary, but not sufficient, for a molecule to contain the query substruc-

ture.  The features that are used as screens are typically small, atom-, bond- 

or ring-centred fragment substructures that are algorithmically generated 

from a connection table when a molecule is added to the database that is to 

be searched.  A common example of a screen is the augmented atom frag-

ment, which consists of an atom, and those atoms that are bonded directly to 

the chosen central atom.  A representation of the molecule’s structure can 

then be obtained by generating an augmented atom fragment centred on each 

atom in the molecule in turn.  This information is encoded for rapid search-

ing in a fixed-length bit-string, called a fingerprint, whose encoded frag-

ments hence provide a summary representation of a molecule’s structure in 
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just the same way as a few selected keywords provide a summary representa-

tion of the full text of a document.  The fingerprint representing the query 

can then be matched against corresponding fingerprints representing each of 

the molecules in the database that is to be searched.  Only a very small subset 

of a database will normally contain all of the screens that have been assigned 

to a query substructure, and only this subset then needs to undergo the time-

consuming subgraph isomorphism search.   

 

 
Fig. 3.  Example of augmented atoms and a fingerprint 

X.2.4 Similarity searching 

Substructure searching provides an invaluable tool for accessing databases 

of chemical structures; however, it does require that the searcher is able to 

provide a precise definition of the substructure that is required, and this 

may not be possible in the early stages of a drug-discovery project, where 

all that is known is the identity of one or more active molecules, e.g., an 

existing drug from a competitor company. In such circumstances, an alter-

native type of searching mechanism is appropriate, called similarity 

searching (Eckert and Bajorath 2007; Willett 2009). Here, the searcher 

submits an entire molecule, which is normally called the reference struc-
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ture, and the system then ranks the database in order of decreasing similar-

ity with the reference structure, so that the molecules returned first to the 

searcher are those that are most closely related to it in structural terms. 

The underlying rationale for similarity searching is the Similar Property 

Principle (Johnson and Maggiora 1990), which states that molecules that 

have similar structures will have similar properties. Hence, if the reference 

structure has some interesting property, such as reducing a person’s sus-

ceptibility to angina, then structurally similar molecules are also likely to 

exhibit this characteristic. 

 

There are many different ways in which inter-molecular structural simi-

larity can be quantified, with the most common similarity measures being 

based on the comparison of molecular fingerprints to identify the numbers 

of fragments common to a pair of molecules. This provides a very simple, 

but surprisingly, effective way of identifying structural relationships, as 

exemplified by the molecules shown in Figure 4.  However, we shall not 

discuss similarity searching any further here, since similarity-based ap-

proaches have not, to date, been considered in much detail for searching 

the generic structures that form the principal focus of this chapter.  This 

may, of course, change in the future as techniques for searching chemical 

patents become more widely used and as more sophisticated searching 

methods become necessary for effective database access.  For example, 

Fliri et al. (2009, 2010) have recently described the use of fingerprint-

based similarity methods to search sets of molecules randomly enumerated 

from Markush structures (see Section X.3.4).   
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Fig. 4.  Example of output from a similarity search 

X.3 Searching generic chemical structures 

X.3.1 Markush structure representation 

In order to ensure complete coverage of the scope of invention, and hence 

protect the inventor’s property rights, patent documents tend to extend be-

yond the realm of specific description but, instead, describe the invention 

using broader terms. Those features which reflect the novelty of the inven-

tion are described in full and unambiguous terms, whilst other features, 

although fundamental to the invention, may be optional or alternative in 

nature. An example of the latter feature might be a new refrigerator for 

which the internal light might be described using a vague term such as 

“device for illuminating the interior”.  The same is true of chemical pa-

tents in which features of the compound which are fundamental to the 

novelty of its operation are described using specific terms, and those for 

which alternatives may be substituted are described generically.  The re-

sult of this treatment is a single description which can represent a poten-

tially vast number of specific molecules, many (or even most) of which 

will have never been synthesised or tested.  
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The logical and linguistic terminology that exists in the chemical patent 

literature has been described in detail by Dethlefsen et al. (1991), leading 

to a classification of the structural variations which exist.  These authors 

identified four types of structural variation, which are exemplified in Fig-

ure 5.  Substituent variation involves the (possibly optional) set of alterna-

tive components which may be attached at a fixed point of substitution 

(e.g., R1 in the figure); position variation involves the alternative positions 

of attachment between two components of the molecule (e.g., R2).  Fre-

quency variation involves the repetition of a component either within a 

linear sequence or as an attachment to a ring system (e.g., n, indicating the 

presence of between 1 and 2 occurrences of the –O-CH2- substructure); 

and homology variation involves the use of terminology which is itself ge-

neric in nature and which defines the component as being a member of a 

family of related chemical substituents (e.g., R4 in the figure indicating an 

alkyl group member containing 1, 2 or 3 carbon atoms). 

 

n

R4

O
R1

R2
 

R1 is optionally F, Cl or Br 

R2 is OH or CH3 

R4 is C 1-3 alkyl 

n = 1-2 

Fig. 5: Examples of structure variation in generic chemical structures 
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Figure 5 illustrates a relatively simple generic structure, but repeated nest-

ing of alternative components within parent components is a common fea-

ture in chemical patents, leading to a complex and often confusing struc-

ture.  Enumeration of all of these the specific molecules is rarely an option 

due to storage requirements and computational costs.  Therefore, an alter-

native method of computer representation is required.  The basic structure 

adopted by current commercial systems (Berks 2001) is a logical tree in 

which the invariant core of the structure, the graphical component in Fig-

ure 5 for example, becomes the root.  The various optional and alternative 

components become the branches of the tree, and the logical and connec-

tional relationships are maintained within the representation (Barnard et al. 

1982), as exemplified in Figure 6. 

 

The logical tree encodes all of the linkages, potential or actual, within the 

set of molecules covered by a Markush structure, and it can hence be re-

garded as a form of connection table, albeit one that is far more complex 

that that used to describe a single specific molecule. 

 

 
Fig. 6: Tree representation of a generic structure 
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X.3.2 Representational transparency 

The representation of the components themselves in the tree depends on 

whether they are specific or generic in nature, the latter being the instance 

of homology variation. Specific components can be represented by a con-

nection table, or even a line notation, whereas components relating to a 

chemical family, or homologous series, require alternative means. In the 

latter case, the representation is usually a single node which may be la-

belled according to the family group, and which is usually qualified by 

further attributes such as the number of carbon atoms or number of rings 

present.  In the Markush DARC system, which originated from a collabo-

ration between Derwent Publications and the French Patent Office INPI, 

(now called the Merged Markush Service, MMS, and produced by Thom-

son Reuters) these are termed “Superatoms”, whilst the MARPAT system 

produced by CAS uses “Hierarchical Generic Groups”.  

 

Whichever method is employed, there remains the problem of transparen-

cy between the two types of representation, i.e., the lack of a common rep-

resentation across components.  During a search operation, whether for a 

structure or for a substructure, the aim is to identify mappings between the 

components of the query structure and those of the database structure. This 

operation is complicated by the requirement to map features which are 

specific in one representation with those which may be generic in others, a 

one-to-many mapping, or even features which are generic in both. In order 

to overcome this transparency problem, a common representation is usual-

ly sought so that the mapping becomes like-for-like.  The enumeration of 

all possible specific members of the homologous series is again usually 

not an option, so a more appropriate step is the aggregation of specific 

components into their respective generic nodes.  In the Sheffield Generic 
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Structures Project (Lynch and Holliday 1996), several aggregation meth-

ods were investigated, leading to a transparent representation called a re-

duced graph (Gillet et al. 1987).  Figure 7 illustrates an example of such a 

graph in which aggregation is based on the ring (R) or non-ring nature of 

the features, and on further subdividing the non-ring features into those 

which are all carbon (C) and those which are non-carbon (Z). 

 

 
Fig. 7: Reduced graph representation of the generic structure of Fig-

ure 6 (optional connections are indicated by a dotted line)  
 

Since we now have a common representation, one-to-one mapping can be 

carried out between the query and database structure. The final, and now 

less complex, stage is to map the constituent features of the matching que-

ry node and the database node. These are still likely to contain generic 

and/or specific components, but the operation is now more localised and 

much simpler and can be implemented using a modified version of 

Ullmann’s subgraph isomorphism algorithm (Holliday and Lynch 1995) 
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X.3.3 Fragmentation codes and screening 

Early structure-based retrieval systems operated almost exclusively on the 

basis of fragmentation codes in which the structural components were de-

scribed using a series of fragment descriptors that were analogous in prin-

ciple to the fragments used for screening substructure searches of data-

bases of specific molecules.  The most notable fragmentation codes were 

the Derwent Chemical Code used by Derwent Publications Ltd. (Simmons 

1984), the DuPont/IFI code (Kaback 1984) and the GREMAS code from 

International Documentation in Chemistry (Suhr 1984). The GREMAS 

system was highly effective and it was later possible to generate the codes 

automatically from the structure representation (Rössler and Kolb 1970). 

 

As with specific structure searching, graph-based generic systems, such as 

MARPAT and Markush DARC, also require an initial fragment-based 

screening stage in order to reduce the number of compounds being sent to 

more computer intensive search strategies.  In addition to the standard 

screens used at CAS for searching specific molecules, the MARPAT sys-

tem uses generic group screens in which the components are reduced to 

their Hierarchical Generic Groups.  The Markush DARC system also ex-

tended their existing specific search screens with the addition of Fuzzy 

FRELs (where a FREL is a circular fragment that can be considered as a 

larger version of the augmented atom discussed previously; some of these 

fuzzy FRELs were defined in terms of Superatoms and others reflected 

specific local variations.  In the system developed at Sheffield, the ap-

proach was to generate specific fragment descriptors from the generic 

components (Holliday et al. 1993).  Two types of screen were developed: 

those from the invariant components of the molecule, i.e. those alterna-

tives which are common to all molecules covered by the generic; and 
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those which would be optional depending on the individual specific mole-

cules being considered at any point.  In Figure 5, for instance, a screen de-

noting a halogen would be common to all molecules, with a logical “bub-

ble-up” of all screens from the branches of the tree to its root maintaining 

the logical relationships between screens (Downs et al. 1989). 

X.3.4 Recent Developments 

More recently, there has been renewed interest in Markush structures; in 

part due to the increased computer power which was not available when 

the current systems first evolved. One area of interest is the application of 

Oracle relational database systems for storing and searching Markush 

structures (Barnard and Wright 2009; Csepregi et al. 2009).  Many of the 

new developments do not, however, deal with all types of structure varia-

tion, and rely on the same philosophy of extending current systems for 

handling specific chemical structures. 

 

Two other areas of interest are the automatic extraction of structural in-

formation from the patent documents (Valko and Johnson 2009; Zimmer-

mann et al. 2005) and enumeration of specific compounds from the 

Markush structure. Chemical patent documents contain structures for the 

specific claim as well as a selection of examples. Although these usually 

represent a very small proportion of the possibly infinite number of com-

pounds represented by the Markush structure, they are clearly a rich 

source of information and are indexed accordingly. A further source of 

structural information comes from the translation of nomenclatural terms 

identified in the document, as in the SureChem database and search sys-

tem (at http://www.surechem.org).  Full enumeration of all represented 
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compounds is not possible for most structures due to the combinatorial 

complexity. However, as noted previously, sets of randomly enumerated 

specifics have been used for similarity searching, enabling rapid patent 

analysis and virtual library creation (Fliri et al. 2009; Fliri et al. 2010). 

X.4 Conclusions 

The structures of chemical molecules are an important component of the 

information contained in chemical patents.  Individual molecules can be 

searched using well-established techniques from chemoinformatics, and 

substantial enhancements to these techniques have allowed them to be 

used for the representation and searching of the generic chemical struc-

tures in patents, which can describe very large numbers of structurally re-

lated molecules.  In this chapter, we have summarised the techniques that 

are currently available for structure and substructure searching of both 

specific and generic structures.  There are, however, many problems that 

remain to be addressed.  Most importantly, the very generic descriptions 

that are sometimes used in patents mean that very large hit-lists can result 

even in response to quite specific structural queries: it is hence likely that 

there will be much interest in the future in the use of similarity-based pro-

cedures to rank search-outputs so that attention can be focused on just the 

top-ranked structures and patents.   
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