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Abstract:

In this paper, a new boundary element (BE) approach is proposed to determine the singular 

stress field in plane V-notch structures. The method is based on an asymptotic expansion of

the stresses in a small region around a notch tip and application of the conventional BE in the 

remaining region of the structure. The evaluation of stress singularities at a notch tip is

transformed into an eigenvalue problem of ordinary differential equations that is solved by the 

interpolating matrix method in order to obtain singularity orders (degrees) and associated 

eigen-functions of the V-notch. The combination of the eigen-analysis for the small region 

and the conventional BE analysis for the remaining part of the structure results in both the 

singular stress field near the notch tip and the notch stress intensity factors (SIFs).

Examples are given for V-notch plates made of isotropic materials. Comparisons and 

parametric studies on stresses and notch SIFs are carried out for various V-notch plates. The 

studies show that the new approach is accurate and effective in simulating singular stress 

fields in V-notch/crack structures. 

Keywords: linear elasticity, V-notch, stress intensity factor, boundary element method, 

asymptotic expansion

1．Introduction

V-notches of bonded dissimilar materials are frequently encountered in engineering 

applications, such as in welded connections and structures strengthened with fiber reinforce 

polymer plates. In such cases, the stress concentration near the sharp notch and the interface 
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end is very high. In particular, the peak stress at the notch tip is singular according to the 

theory of elasticity. For evaluating fatigue strength of the structures, the stress distribution 

around the notch tip and the notch/generalized stress intensity factors (GSIFs) are important 

mechanical quantities to be determined. Since there exist multiple stress singularities at a 

general V-notch structure, it is difficult to model the singular stress field by conventional 

methods. Analytical solutions of the notch SIFs have been found only for a few special cases. 

Extensive studies have been carried out to deal with the singular stress fields of V-notch 

problems. Gross et al. (1964; 1972) and Carpenter (1984) obtained the GSIFs for plane 

V-notch problems by a boundary collocation method. Chen (1995) derived the notch SIFs of 

some plane V-notch problems by using the body force method, in which the density functions 

associated to the body forces had to be configured in advance. By applying Lekhnitskii 

formalism and Stroh formalism, Ting (1996) studied the solutions of the stress fields of 

general anisotropic elastic materials and composites. For the two-dimensional V-notches, 

Szabó and Yosibash (1996) obtain first a conventional finite element method solution for the 

entire domain, which was then used as boundary conditions of a small sub-domain around the 

notch tip. Then a special finite element formulation in conjunction with the assumption of the 

asymptotic expansion of the displacement field in the sub-domain, where the singular 

eigenpairs have been obtained by other methods, is used to extract the GSIFs. Evidently, the 

efficiency of the method depends on the accuracy of the preliminary FE solution. Matsumoto

et al. (2000) derived a boundary integral expression of the interaction energy release rate for a 

cracked body and computed the stress intensity factors of bimaterial interfacial cracks. Based

on the analytical expressions of the local stress field near a V-notch tip, Atzori et al. (2002)

estimated the fatigue strength of welded joints with notches in aluminum alloys at a given 

number of cyclic loading. With the solutions of stress singularities, Labossiere and Dunn

(1999) and Hwu and Kuo (2007) computed the stress intensity factors through the near tip 

displacement and stress fields from the conventional finite element analysis as well as the 

calculation of the path-independent H-integral (Stern et al., 1976). Based on a critical 

interface corner stress intensity factor, Reedy and Guess (1993) gave a failure criterion for the 

strength of the adhesively bonded butt tensile joint. Gómez and Elices (2003) presented a 

simple approximate formulation of fracture criterion for sharp V-notches of some materials, 

such as steel, aluminum PMMA and PVC. Utilizing the results of the GSIFs, Livieri and

Lazzarin (2005) evaluated the fatigue strength of steel and aluminum welded joints as a type 

of V-notched structures by studying on a large amount of experimental data. By using

coherent gradient sensing (CGS) method, Yao et al. (2006) experimentally studied mode-І 

stress singularity and fracture behaviors of V-notch tip.

At present, the most commonly used numerical methods to determine stress distributions
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of a V-notch are the finite element and boundary element methods (BEM). The conventional 

FEM (Pageau et al., 1995; Mohammed and Liechti, 2001) and BEM (Tan et al., 1992; Xu et 

al., 1999; Ioka et al., 2007) usually use very fine meshes in the vicinity of the notch tip to 

simulate the singular stress field. Then the stresses or displacements at some mesh points near 

the notch tip are used to determine the GSIFs by the extrapolation technique. However, any 

further increase of element number has very limited impact on improving the accuracy of the 

approaches. This is because the conventional elements near the notch tip can not reflect the 

essence of the stress singularity in the tip region. It is well known in the finite element 

analysis that the “quarter-point” element (Henshel and Shaw, 1976; R.S. Barsoum, 1976) at 

crack tip can efficiently model the singular stress field near the crack tip, in which the 

mid-side nodes near the crack tip are placed at the quarter point. Subsequently the idea was 

introduced to the BEM by Blandford et al. (1981). In fact, the shape functions of the

quarter-point element can only represent stress singularity of order -1/2 that is correct for line 

cracks of isotropic materials. Unfortunately the quarter-point element is not suitable to model 

the stress field near a V-notch tip. Researchers have been trying for some time to construct a 

singular element for modeling stress fields in the notch tip region. To the authors’ best 

knowledge, it has not been very successful.

On the basis of asymptotic expansion of the stresses near a V-notch tip, a special finite 

element method was recently used to deal with some V-notch problems. For V-notches and 

line cracks, according to the singular stress fields of the type )( 
ijij fr , Seweryn (2002)

took two or three dominating stress eigen-functions as analytical constrains in the notch tip 

region. Then the resulting elements in terms of the analytical constrains were applied to 

model the stress field in the core region around the notch tip. The remaining area of the 

notched structure can be modeled using the conventional FEM. This approach requires 

predefined analytical stress eigen-functions. For the V-notch of isotropic materials subjected 

to various boundary conditions, Seweryn and Molski (1996) gave the analytical solutions of 

the eigen-functions, and explicit closed-form eigen equation, from which the eigenvalues can 

be determined by an iteration technique. However the analytical stress eigen-functions are not 

always acquirable for general V-notch problems of bonded dissimilar multi-material. To

address this problem, some approximate stress eigen-functions were proposed to construct the 

stress functions. For example, using the FEM, Carpinteri et al. (2006) calculated the first 

leading singular exponent and the ModeⅠ stress amplitude for a multi-layered beam with a 

crack or re-entrant corner that forms symmetrically a bimaterial interface. Chen and Sze 

(2001) proposed a hybrid finite element with asymptotic expansion to determine the stress 
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exponents and stress distributions of bonded bimaterial V-notches. On the basis of this work, 

Sze et al. (2001) and Chen and Ping (2007) developed the approach further and used it for the 

analyses of singular electro-elastic fields around a V-notch of piezoelectric material. By the 

same method, Ping et al. (2008) analyzed the singular stress fields of V-notched anisotropic 

plates.

In this study, a new BE approach is proposed to determine the singular stress fields of 

plane V-notch structures in conjunction with asymptotic expansions of the stress distribution 

near the notch tips. To find the stress field near a tip, a small sector around the notch tip is 

isolated from the V-notch structure as a free body. Based on the expression of the asymptotic 

expansion, the evaluation of stress singularities in the notch tip region is transformed into an 

eigenvalue problem of ordinary differential equations (ODEs). The eigenvalue problem is 

then solved by the interpolating matrix method (Niu, 1993) to obtain the singularity orders 

and the associated eigenvectors of the V-notch. Further to the eigen-analysis of the small 

sector, the boundary integral equation is applied to treat the remaining region of the notched 

structure. Thus the displacement and stress fields of the V-notch structure and the notch SIFs

are finally determined. 

2. The eigen-analysis of the stress singularities of the plane V-notch problems 

Let us consider a plane V-notch of isotropic material with an opening angle 

212   as shown in Fig. 1. Define a polar coordinate system,   , with an 

origin at the notch tip. Two radial edges of the notch are denoted by 1  and 2  .

A small sectorial region R within the range of a radius R of the V-notch tip is cut out 

from the solid region  of the V-notch structure as shown in Fig. 2(b). The remaining part 

of the notch structure is referred to as region   (See Fig. 2(a)）. There are R  , 

Fig. 1. A plane V-notch problem.
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iii    ， )2,1( i .

In the linear elasticity, it has been verified that the asymptotic displacement field in the 

notch tip region can be expressed as a series expansion with respect to the radial coordinate 

 originating from the notch tip (Yosibash and Szabó, 1996). A typical term of the series can 

be written in the form
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where the exponent k is called stress singularity order; )(~ ku and )(~ ku are the 

associated eigen-functions which represent the displacement components in the  - and 

 -directions, respectively; kA is the amplitude coefficient of each term of the asymptotic

expansion (called also the generalized/notch stress intensity factor). Substituting Eq. (1) into 

the strain-displacement relations of the linearly elastic theory yields the strain components. 

Then from Hooke’s law of plane stress problems, the components of the plane stress tensor 

are expressed as
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where dd /)()(   ; E is the Young’s modulus and  the Poisson’s ratio. If the stress 

eigen-functions )(~  k , )(~ k and )(~  k are defined as follows

Fig. 2. A plane V-notch. (a) The remaining part after a sector around the notch tip being 

removed. (b) The sector taken around the notch tip
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The three plane stresses are
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Note that the eigen-pairs in Eq. (1) do not depend on load conditions. In the small sectorial 

region R , the body forces can be neglected and the equilibrium equations are
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Introducing Eq. (2) into Eq. (4) and removing the common factor 1k
kA  from the 

equations lead to a set of ordinary differential equations (ODEs) as follows
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The appearance of 2
k in Eq. (5) results in a nonlinear eigen problem that is difficult to solve.

Here an alternative approach is adopted to transfer the equations into a linear eigenvalue 

problem. To this end, two new field variables are introduced as below
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Hence, by introducing )(kg and )(kg into Eq. (5), one has
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Assume that all the tractions on the two edges, 1 and 2 , near the notch tip are zero. That 

is 
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Substitution of Eq. (2) into Eq. (8) yields the boundary conditions as follows
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If the edges are fixed along either 1 or 2 , the boundary condition can easily be expressed 

as

0~ u ,         21 or                          (10a)

0~ u ,         21 or                          (10b)

By the above derivation, the evaluation of the singularity orders and the associated 

eigen-functions u~ and u~ near the V-notch tip is transformed to the solution of a linear 

eigenvalue problem of the ODEs governed by Eqs. (6) and (7) subjected to the boundary 

conditions of Eq. (9) or (10). Through Eq. (3), u~ and u~ can be used to determine the

stress eigen-functions )(~  k , )(~ k and )(~  k in the vicinity of the notch tip.

Furthermore, for the analysis of plane V-notch problems of bonded dissimilar 

multi-materials, including orthotropic and anisotropic materials, the same deduction process

as shown above can be implemented to compute eigen solutions of the associated ODEs. It is 

obvious that Eqs. (6) and (7) are valid for each sub-domain with a single material for 

analyzing the stress singularity orders near the interface tip of the dissimilar multi-material.

This process will produce a set of ODEs that are similar to Eqs. (6), (7), (9) and (10). By 

solving the eigenvalue problem of the ODEs, the singularity orders and the associated 

eigen-functions near the notch tip of the dissimilar multi-materials are then determined. 

To determine the stress singularities of the V-notch as described above, the ODEs need to 

be solved first. Niu (1993) proposed a numerical solution called interpolating matrix method

that can solve the eigenvalue problem of ODEs effectively. By the interpolating matrix 

method, an interval ],[ 21  is divided into n subintervals with )1( n divisions. All the 

unknown functions in the ODEs are approximated with piecewise polynomial interpolation 

within each of the subintervals. The highest derivatives at the division points, appearing in the 

ODEs, are chosen as the basic unknowns of the discrete ODEs system. The interpolating 

matrix method has two distinct advantages: (1) All functions and their derivatives appearing 

in the BVPs of ODEs are simultaneously obtained with the same degree of accuracy. This 

feature is particularly beneficial to the calculation of stress field that requires the first 
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derivative of the displacement functions; (2) It can solve a general eigenvalue problems of 

ODEs and is convenient to write a general-purpose computer program.

Generally, in the case of  ＜ 0180 , there exist one or several stress singularity orders k
in the range of 0)1,()( kRe  for a V-notch problem of dissimilar multi-material. 

3. The BE analysis of the stress fields and SIFs for the plane notch structures

For a plane notch structure, the displacement components in the vicinity of the notch tip 

can be expressed with the following expansion as (Yosibash and Szabó, 1996)
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where )21( N,,,kAk  are the associated amplitude coefficients with dimension kmm ; N

is the truncated number of the eigenvalues. The kA corresponding to the eigen-pairs of 

0)1,()( kRe  are equivalent to the generalized stress intensity factors of the V-notch. In 

general, the more terms Eq. (11) takes, the bigger is the region around the notch tip that is

valid for the displacement solution described by Eq. (11). The eigenvalves k and the 

associated kA , )(~ ku , )(~ ku )1( N,,k  are usually complex and can be obtained by 

solving Eqs. (6, 7, 9, 10). The solutions can be expressed by
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where 1i ; subscripts “R” and “I” represent the real and imaginary parts of a complex

variable or function, respectively. After introducing Eq. (12) into Eq. (11), the displacement 

components ),( u , ),( u are obtained by taking the real parts as follows
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Considering Eqs. (2) and (3), the stress components in the vicinity of the notch tip are denoted

also by the asymptotic expansion as follows
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Inserting Eq. (12) into Eq. (3) yields
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Substituting Eqs. (12) and (15) into Eq. (14), then taking the real parts of ),(   , 

),(  and ),(   , respectively, one obtains the following stress components:
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In order to combine the above solution with the solution in the region   , the above 

displacement and stress components are transformed into a global Cartesian coordinate

system. On the boundary R (See Fig. 2(b)), iu , it （ 2,1i ）are used to denote the 

displacement and traction components in the Cartesian coordinate system, 21xox , 

respectively. The transformation of the displacements and tractions from the polar coordinate 

system to the Cartesian coordinate system is shown below.
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Comparing Fig. 2(a) with Fig. 2(b), it can be easily seen that R and R  share the 

same interface. Assuming that iu , it（ 2,1i ） are defined as the displacement and traction 

components on R  in the coordinate system, 21xox , the conditions of the perfectly bonded 

interface yield

ii uu    ，  ii tt  ，  R on ),(                     (19)

Substituting Eqs. (13) and (16) into Eqs. (17)~ (19), iu and it on R  are given as below
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Thus, the displacements iu and tractions it on the inner boundary R  of the remaining 

region   (See Fig. 2(a)) are represented by the solutions of the eigen-analysis of the ODEs 

in Section 2. 

To determine the displacement and stress fields of the plane V-notched structure, the new 

technique proposed here requires division of the regions   and R as shown in Fig. 2. 

Firstly, the solutions of the stress singularities in the small sector R are evaluated by 

analyzing the eigenvalue problem of the ODEs shown by Eqs. (6, 7) and the boundary 

conditions of Eqs. (9) and (10). In the present paper, the interpolating matrix method (Niu, 

1993) is adopted to solve the ODEs, which can provide the solutions of the top N dominant 

singularities, including k , )(~ ku , )(~ ku , )(~  k , )(~ k and )(~  k ),,1( Nk  . 
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Note that kRA and kIA , ),1,( Nk  in Eqs. (20, 21) are unknown quantities that will be 

determined in the next step.

Let us consider now the remaining region   (See Fig. 2(a)). There is no stress 

singularity in   . Therefore the conventional BEM is capable of analyzing the part

described by   without other special treatment. The boundary R  21 of  

is divided into meshes. The boundary integral equation is written as follows

  
 

 dbUduTdtUuC jijjijjijjij )(),()(),()(),()()( *** xyxxyxxyxyy

 y      (22)

where y is the source(load) point; x the field point; jb is the body force per unit volume;

ju and jt )2,1( i are, respectively, the displacements and tractions on R  21 .

)( yx ,U *
ij and )( yx ,T *

ij are the Kelvin displacement and traction fundamental solutions. 

d)( denotes the Cauchy principal value integral. The )( yijC are known coefficients, 

the values of which depend on the geometric configuration and material property around a 
source point y , The coefficients are calculated by

 
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22


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
yijC

where the angles 21 ,,  are defined in Fig. 3; )( yijC = ij for internal points and 

)( yijC = ij5.0 for smooth boundary points; ij is the Kronecker delta. For a plane strain 

problem of an isotropic homogeneous medium, the fundamental solutions are

Fig. 3. Geometric configuration around 
a source point y on boundary.
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)ln43(
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                         (23)
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14
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
        (24)

where G is the shear modulus; iy and ix denote the Cartesian coordinate components of y

and x , respectively. in denotes the unit outward normal vector on the boundary. Hence we 

can write

     
r

r

x

r
r i

i
i, 




 ， ii,n, nr
n

r
r 




 ， iii yxr  ， iirrr            (25)

Note that for the region   , 21   is the outer boundary of the notch structure

and R  is an inner boundary which arises from the separation of the regions   and R . 

M nodes are generated on 21   from the division for the BE analysis and n points 

are chosen on R  for the interpolating matrix method. The nodal displacements and 

tractions at all the nodes on 21   are expressed, respectively, by the displacement 

vector T
MxMxxxxx uuuuuu )(

212121 2211 U and the traction vector 2211 2121
( xxxx ttttT

T
MxMx tt )

21
. The displacements and tractions at the n interpolation points on R  have been

given by Eqs. (20, 21). The k and the values of )(~ ku , )(~ ku , )(~  k , )(~ k and 

)(~  k ),,1( Nk  at the n points on R  have been obtained from the previous 

eigen-solutions of Eqs. (6, 7) and (9, 10) by using the interpolating matrix method with

the kRA , kIA ),1,( Nk  remaining as unknowns. The amplitude coefficients in Eq. (11) 

are the components of vector A IRIR AAAA 2211( T
NINR AA ) .

It is well known that the BEM is a technique to transform the boundary integral equation 

into a set of algebraic equations. After Eq. (22) is discretized by the boundary elements on 

R  21 , any unknown functions in Eq. (22), such as )(xiu , )(xit , )( yx ,U *
ij and

)( yx ,T *
ij , can be approximated with piecewise polynomial shape functions multiplied by 

nodal values of the functions along the boundary. At each load point y , the integration of Eq. 

(22) with respect to x over all the elements leads to two algebraic equations for a 

2-dimesional problem. Letting each of the M nodes on 21   act as the load point in 

applying Eq. (22) for the region,   , in turns, the following 2M algebraic equations are 

obtained

   
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
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
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


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GG
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U
HH  bbbbbb                             (26)

where bbH , bpH , bbG and bpG are constant coefficient matrices. In a well-posed problem 

either the displacement, or the traction, or a combination of the two at the ix -direction of 

each node is prescribed on the boundary. Therefore in the vectors U and T of Eq. (26) 
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there are 2M known and 2M unknown quantities, respectively. Considering that all the 

components of A are also unknown quantities, 2N additional algebraic equations are 

required to determine the vectors A , U and T . To this end, the N points from the uniform 

division on the inner boundary R  are chosen as the source points to apply the boundary 

integral equation Eq. (22) for the region  . Thus the following 2N algebraic equations are 

established:

   
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A

T
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U
HH  bb                             (27)

where bH , pH , bG and pG are also constant coefficient matrices.

The combination of Eqs. (26) and (27) gives
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b

bρbb                     (28)

Eq. (28) is a set of 2(M+N) algebraic equations with 2(M+N) unknown quantities. The 

solutions of Eq. (28) give all the nodal displacements iu and tractions it on 

21   + R  and the amplitude coefficients kRA , kIA ),1,( Nk  .

Next, by substituting kRA and kIA into Eqs. (13, 16), the displacement and stress 

distributions in the vicinity of the notch tip are found. The displacements and stresses at any 

inner point y in the region   can be calculated, respectively, by Eq. (22) and the 

following stress integral equation:

 


 )d()]d()()()([ xxyx,xyx,y k
*
ijkk

*
ijkk

*
ijkij bWuStW)( ,   iny   (29)

where the kernel functions *
ijkW and *

ijkS are linear combinations of the derivatives of

)( yx ,U *
ij and ),( yx*

ijT with respect to y . 

Finally, from the obtained amplitude coefficients kRA ， kIA ),1,( Nk  and the stress 

solutions of Eq. (16) or stress eigen-functions )(~  ij , the notch stress intensity factors iK

can be determined as follows.

When 1 and 2 are real numbers,

    (0)~2|),(2lim 110
0

Ι
1





 AK  




               (30a)

(0)~2|),(2lim 220
0

ΙΙ
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



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


                (30b)

When 1 is a complex number (Rice, 1988), 
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       (31)

The notch SIFs represent the strength of the singularity at the sharp notch tip and are the 

important parameters of interest.

4. Numerical examples 

Example 1. Consider a V-notch plate of isotropic material under uniaxial tension as shown in 

Fig. 4(a).

The plate is in plane stress state with mm200h , mm40w , Young’s modulus 

Pa1093 9 .E , Poisson’s ratio 250.v  and load MPa1 . The opening angle  and 

the depth l of the notch are variable. First, the routine IMMEI of the interpolating matrix 

method is used to evaluate the stress singularity orders and the associated eigen-functions 

around the notch tip. Referring to Eqs. (6,7) and Fig. 4(b) where R and R  are a pair of 

fictitious boundaries, interval ],[ 21  is divided into n uniform sub-intervals. The 

eigenvalues are complex and are expressed by kkk i  . For 060 , Tables 1 and 2 

present the first 13 eigenvalues whose )Re( k , i.e., k , are larger than or equal to -1. Note

that the conjugate values and 1k are not listed in the tables. The eigenvalues in Tables 1 

2x

Fig. 4. A symmetrical V-notched plate under uniaxial tension load. 

(a) Geometry of the notch plate. (b) Sub-domain of radius R around the notch tip.

(c) BE mesh division along the boundary of the remaining structure.
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and 2 are, respectively, corresponding to the mode I (opening) and mode II (sliding) 

eigen-functions )(~ u . Comparisons are made with Fu and Long’s results (1998) that were

obtained from the subregion accelerated Müller method for the characteristic equation derived 

by Williams (1952). The results of Seweryn (2002), obtained using a special FEM in 

conjunction with an analytical stress expression, are also shown in the tables for comparisons. 

To obtain Seweryn’s results, half of the notch structure, due to symmetry, was discretized with 

152 six-node triangular elements.

Table 1 

The eigenvalues k of the mode I eigen-functions )(~ u , 060

Methods
1 1 2 2 3 3 4 4

Fu (1998) -0.487779 0 0.471028 0.141853 1.677615 0.284901 2.881487 0.360496

Seweryn(2002) -0.4878 0 0.4710 0.1418 1.6776 0.2849

IMMEI, n =20 -0.487717 0 0.471813 0.143640 1.684805 0.296623 2.924016 0.408020

IMMEI, n =40 -0.487775 0 0.471073 0.141991 1.678017 0.285650 2.883292 0.363632

IMMEI, n =80 -0.487778 0 0.471035 0.141869 1.677673 0.284994 2.881766 0.360853

Table 2 

The eigenvalues k of the mode II eigen-functions )(~ u , 060

Methods
1 1 2 2 3 3 4 4

Fu (1998) -0.269099 0 0 0 1.074826 0.229426 2.279767 0.326690

Seweryn(2002) -0.2691 0 0 0 1.0749 0.2294

IMMEI, n =20 -0.268710 0 0 0 1.077382 0.234207 2.297998 0.351998

IMMEI, n =40 -0.269070 0 0 0 1.075014 0.229741 2.280884 0.328306

IMMEI, n =80 -0.269095 0 0 0 1.074848 0.229466 2.279900 0.326881

It can be seen in Tables 1 and 2 that the eigenvalues obtained using the present method 

approach the results of Fu and Long (1998) as n increases. The two eigenvalues in the range 

of -1  k  0 for 80n have converged up to the fifth significant figure. In addition, the 

associated eigenvectors )(~ ku , )(~ ku , )(~  k , )(~ k and )(~  k are simultaneously 

obtained with the same degree of accuracy by the IMMEI.

The BEM is adopted next to analyze the remaining structure (Fig. 4(c)) excluding the 

small sector around the notch tip (Fig. 4(b)). The boundary 21   of the remaining 

structure is divided by 80 iso-parametric quadratic elements with 160 nodes. The fictitious

boundary R  is divided by 48 iso-parametric quadratic elements with 96 nodes, where the 

displacements and tractions at all the nodes on R  have been represented by Eqs. (20) and 

(21) through Eq. (19). To test the effectiveness of the present approach, the notch plate is
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analyzed by choosing different radius R and number of terms, N, in the expansion. By

fixing the notch depth ratio, wl , to 0.2, the solutions are obtained for variable radius to 

depth ratio, lR , between 0.1% and 2.1% and variable  from 00 to 090 . By performing 

the BE analysis, the displacements and tractions on 21   + R  and the amplitude 

coefficients kA are obtained. Consequently, the displacement and stress distributions in the

whole region  are computed by Eqs. (13, 16) and Eqs. (22, 29). Table 3 shows the values 

of kIkRk iAAA  for 60 , 2.0wl , %1.0lR and 8N . 

Table 3 

The stress amplitudes kA corresponding to k when 60 , 20.wl  , 001.0lR

k 1 2 3 4 5 6 7 8

AkR( kmm ) 2.51E-09 5.17E-12 1.31E-09 4.80E-10 -7.94E-07 -2.56E-06 1.13E-04 -3.51E-04

AkI( kmm ) 0.00E+00 0.00E+00 -4.03E-10 -8.41E-09 1.37E-06 -2.35E-06 4.55E-04 9.72E-04

Table 4 

The notch SIF )mm(N 12
Ι

K viz different R and N ( 60 , 2.0wl )

2 4 6 8 10 12 14 16

0.1% 7.0615 7.0154 7.0337 7.0664 7.0347 7.0194 7.0335 7.0580

0.3% 7.0739 7.0269 7.0404 7.0581 7.0411 7.0303 7.0397 7.0299

0.5% 6.9988 7.0469 7.0678 7.0698 7.0684 7.1124 7.1120 7.1059

0.7% 7.0975 7.0451 7.0563 7.0688 7.0574 7.0509 7.0560 7.0553

0.9% 7.1016 7.0447 7.0562 7.0655 7.0572 7.0520 7.0565 7.0562

1.1% 7.1054 7.0510 7.0565 7.0666 7.0577 7.0527 7.0569 7.0575

1.3% 7.1089 7.0537 7.0572 7.0653 7.0580 7.0536 7.0572 7.0584

1.5% 6.9805 7.0328 7.0442 7.0522 7.0408 7.0266 7.0323 7.0235

1.7% 7.0129 7.0388 7.0423 7.0567 7.0407 7.0304 7.0363 7.0307

1.9% 7.0345 7.0340 7.0416 7.0511 7.0445 7.0354 7.0406 7.0366

2.1% 7.0609 7.0361 7.0530 7.0704 7.0567 7.0501 7.0551 7.0509

Note that IK = 7.0627 1--2mmN  from Chen (1995).

Substituting the kA into Eq. (30) yields the notch stress intensity factors. Table 4 shows

IK of the notch with 60 and 2.0wl for different radius R and term number N. 

The results are compared with Chen’s solution (1995) that was obtained by using the body 

force method. Due to symmetry, mode II notch SIF does not exist in this problem. This can be 

seen from Table 3 where the value of 2A , which is associated to IIK , is nearly zero in

lR
ΙK N
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comparison with other kA .

It is observed in Table 4 that for any fixed value of N, the SIFs are all in good agreement 

with the existing results (Chen, 1995). This demonstrates that the present approach is 

numerically stable for evaluating the stress fields of notch structures in terms of the radius R . 

In Table 4 we can also see that all the computed IK by taking number 2N are very close 

to those obtained by taking 4N . It shows that the first two terms in the asymptotic 

expansion of Eq. (11) dominate the singular stress field in the notch tip region for the 

homogeneous and isotropic material. Although higher order terms in Eq. (11) do not make 

significant contributions to the notch SIF of the first order, the inclusion of them in the 

solution is still important and can improve the accuracy of the stress solutions in the tip region. 

Especially, the higher order terms are becoming more significant in the stress expression Eq. 

(16) as  increases. In addition, notch SIFs of higher orders exist in many notch structures 

and have to be determined by the solutions of higher order terms. It is worth to mention that

in the past studies on notch structures, only a few researchers have mentioned and dealt with 

higher order terms because of the analytical difficulties.

Table 4 shows also that the largest relative difference  of all the values of IK

obtained using the present BEM with 4N is 0.7% in comparison with the reference 

solution IK =7.0627 1--2mmN  (Chen, 1995). The relative difference is calculated by

100
Solution

SolutionSolution
(%)

Ref.

Ref.Present 


                          (32)

In order to compare the accuracy of the present BEM with that of the conventional BEM

for analyzing notch problems, the notch plate of Fig. 4(a) with 60 , 2.0/ wl is again 

considered. Without the eigen-analysis, the conventional BEM (CBEM) requires very fine 

meshes on the boundary of the region near the tip to model the stress distribution. The 

displacement and stress distributions are achieved, respectively, with 140 quadratic elements 

and 220 quadratic elements on the boundary of the half structure. Along the 1x -axes, the 

stresses at the mesh points of distance  measured from the tip O are substituted into Eq. 

(30a) to determine the notch SIF. The results are plotted in Fig. 5.

It can be seen in Fig. 5 that the computed IK from the conventional BEM varies

significantly as the value of  changes. Only in the range of 10%/3.75%  l the 

results of IK are reliable since the conventional BEM cannot model the stress singularities

in the vicinity of the notch tip. For the problem solved in Table 4, where IK =

7.0627 1--2mmN  (Chen, 1995), the best solution of IK from the conventional BE analysis 

is 12mmN1390.7  at which l is 6.25% (see Fig. 5) and the relative difference 
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between the two solutions increases to  =1.08%. Further tests, which are not shown here,

confirmed that a refinement of the meshes in the tip region helped little in improving the 

accuracy of the results shown in Fig. 5. 

Table 5 

The notch SIF )mm(N 12
Ι

K with different wl and 

wl

30 60
Present 

method

Chen(1995)  (%) Present 

method

Chen(1995)

(1995)

 (%)

0.05 2.8907 2.8820 0.3019 3.0084 2.9951 0.4441

0.10 4.2668 4.2486 0.4284 4.4294 4.3847 1.0195

0.20 6.8740 6.9017 0.4014 7.0501 7.0627 0.1784

0.30 10.1131 10.2462 1.299 10.3576 10.4300 0.6942

0.40 14.8843 15.0316 0.9799 15.1769 15.2365 0.3912

0.50 22.2281 22.4423 0.9544 22.5603 22.6973 0.6036

0.60 34.7102 35.0603 0.9986 35.1814 35.4083 0.6408

0.70 58.9055 59.5953 1.1575 59.5426 60.2095 1.1076

Clearly, since the assumption of asymptotic expansion of the stress field can reflect the 

essential stress singularities near a V-notch tip, the stress distributions from the present BEM 

are more accurate than those from the conventional BEM. It is observed that the computed 

notch SIF is nearly a fixed value that does not depend on the chosen radius R of the small 

sector. Furthermore the present BEM obtains all the amplitude coefficients kA of the first N

terms. The kA can be used to determine the notch SIF of the k-th order together with the k-th 

order eigen-functions. Moreover, multiple notch SIFs can be calculated by the new method, 

Fig. 5. The notch SIF computed by CBEM when 60 , 2.0/ wl .
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while the conventional BEM and FEM have difficulties in dealing with this. 

Table 5 shows the notch SIFs obtained using the present BEM for variable depth l and 

opening angle  . 12N and 018.0R mm are taken in the calculation. It can be seen that 

the relative differences between the computed SIFs and Chen’s solutions (1995) for all the 

cases are less than 1.3%.

Example 2. Consider a finite plate with a central crack under uniaxial tension as shown in Fig. 

6(a).

The standard mode-I crack in an isotropic material is used to show the accuracy of the 

present method. The plate is in plane stress state with m0.22 b , m0.32 h , m4.02 a . 

The material parameters and load are Pa210E , 3.0v and MPa1 , respectively.

Due to symmetry, only one half of the plate is considered in the analysis, as shown in 

Fig.6(b,c). After the stress singularity orders and eigenvectors of the small sector of 

radius R are obtained by the interpolating matrix method, the new BEM technique is adopted 

to evaluate the displacement and stress fields of the crack plate which is divided by two 

sub-domians, as shown in Fig. 6(c). In the calculation, 1.3%aR , and 96n are taken. 

The boundaries of the two sub-domains are divided by 158 quadratic elements with 316 nodes.

Table 6 shows the computed SIF K viz different term number N of the eigenvalues by 

using the present method. For the finite plate with mode I central-crack, an analytic solution 

of the SIF K is a0263.1 (The ARIC, 1993). Compared with the analytical solution, 

the relative errors of all the results in the table are less than %332.0 .

Fig. 6. A plate with a central crack under uniaxial tension load. 

(a) Geometry of the crack plate. (b) Sub-domain of radius R around the right 

crack tip. (c) BE mesh division along the boundary of the remaining structure.
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The idea of the present method to analyze the V-notch structures is similar to one of 

Chen and Sze (2001). Chen and Sze (2001) used the full-field finite elements to analyze the 

V-notch/crack structures. In the similar case as Fig. 6(a), Chen and Sze (2001) took 

m0.22 b , m0.22 h , m2.02 a as an infinite plate with a central crack while other 

parameters are the same as above. The exact solution of the SIF for the crack plate is 

aK 0000.1Ι  . For one half of the crack plate, Chen and Sze (2001) applied 404 

five-parameter 4-node elements (a special hybrid FE), one super 9-notch crack-tip element 

and 23 eigenvalues to evaluate the stress field of the plate and obtained aK 0132.1I  . 

The relative error is %132.0 .

It can be seen that the present BEM is to apply less node number (unknown quantities)

than the hybrid FEM for analyzing the notch/crack structures with the similar way.

Table 6

The SIF )(/1 aK  of the central-crack plate

N 8 10 12

Present BEM 1.0273 1.0296 1.0297

Analytic solution 1.0263 1.0263 1.0263

 (%) 0.099% 0.320% 0.332%

Example 3. Consider a plate with an inclined V-notch subjected to uniaxial tension load as 

shown in Fig. 7

The dimensions of the plate are mm200h , mm40w .  is the inclined notch angle. 

Fig. 7. A plate with an inclined V-notch 

under uniaxial tension load.
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 is the angle between the bisector of the notch angle and the x1-axis. The material 

parameters and load are Pa1093 9 .E , 3730.v  and MPa1 , respectively. For the 

sake of testing the accuracy of the results in terms of different geometric configurations, the

angles  and  and the notch depth l are taken variable. Since the notch is inclined, 

there exist the notch SIFs of both mode I and mode II.

After the stress singularity orders and eigenvectors of the small sector of radius R are

obtained by the interpolating matrix method, the new BEM technique is adopted to evaluate 

the displacement and stress fields of the notch plate. In the calculation, mm018.0R , 

N =12 and 96n are taken. As done in Example 1, the outer boundary of the remaining 

region is divided into 80 quadratic elements. Table 7 shows the computed notch SIFs for
30 , 60 , 20.wl  and different  . Chen’s solutions (1995) shown in the table 

were obtained from the body force method. The table shows that an increase of  results in 

an increase of the mode II notch SIF, while a decrease of the mode I notch SIF. All the relative 

differences between the present results and Chen’s solutions (1995) for IK and IIK are less 

than %1.1 and %6.1 , respectively.

Table 7

The notch SIFs of the inclined V-notch plate ( 2.0wl )

)(/ 
)mm(N 12

Ι
K )mm(N 22

ΙΙ
K

Present method Chen(1995)  (%) Present method Chen(1995)  (%)

30/0 6.8282 6.9017 1.0650 0.0197 0.0000 /

30/15 6.6625 6.6768 0.2142 1.2065 1.2017 0.3994

30/30 6.0129 6.0471 0.5656 2.2026 2.1908 0.5386

30/45 5.0519 5.0975 0.8946 2.8522 2.8080 1.5741

60/0 7.0501 7.0627 0.1784 0.0028 0.0000 /

60/15 6.8671 6.8037 0.9318 1.2628 1.2468 1.2833

60/30 6.1173 6.0705 0.7709 2.2386 2.2239 0.6610

60/45 5.0146 4.9854 0.5857 2.6967 2.7388 1.5372

5. Conclusions

In conjunction with an asymptotic expansion of the stress distribution near the notch tip, 

a new BEM has been proposed in this paper to determine the singular stress fields of plane

V-notch structures.

For a plane V-notch structure, the new method treats it as an assembly of two parts, i.e., a 

small sector of material around the notch tip and the remaining part of the structure. The

stresses and displacements of the small sector are represented by asymptotic expansions. On
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the basis of the liner elasticity theory, the evaluations of the stress singularity orders and the 

associated displacement/stress eigen-functions were transformed into an eigenvalue problem 

of ordinary differential equations. The interpolating matrix method was applied to solving the

eigenvalue problem with both the eigenvalues and the eigenvectors being obtained 

simultaneously. The displacements and tractions along the arc of the sector were expressed as 

a linear combination of the terms from the series expansions with different singularity orders.

In fact, the small sector can be thought as a super singular element around the notch tip, and 

the displacement/stress eigen-functions obtained through the eigen-analysis are essentially 

equivalent to a series of shape functions of the singular element for modeling the 

displacement/stress distribution. Since the remaining part has no stress singularities, the 

conventional BE is sufficiently accurate to predict the displacement and stress distributions. A 

combination of the two solutions finally provided the stress fields of the sector and the 

remaining structure as well as the notch SIFs. 

In contrast to the conventional BEM and FEM, the proposed BE approach does not 

require fine meshes near a V-notch tip. Another advanced feature of the new method is that, 

both the basic and higher order stress singularities can be revealed simultaneously through the 

asymptotic expansion and eigen-analysis. Using the present method, the fracture analysis of 

complex geometric and load conditions becomes possible and accurate. 

Three numerical examples have been given to show the application of the new method 

on V-notch/crack plates made of isotropic materials. For V-notch plates with different 

geometry, the stress fields and the notch SIFs were computed for different values of the radius 

R and the expansion term number N. Through comparisons with alternative solutions 

available in the literature, it can be concluded that the new method is an accurate and effective 

tool for modeling singular stress fields in V-notch structures. 

The present technique can be further developed to evaluate the stress distributions and 

the generalized SIFs of junctions, inclusions and V-notches in bonded dissimilar 

multi-material. In these cases, high order stress singularities are needed and can be obtained 

by the present method. This will make it possible for fracture criteria associated to these 

complex cases to be established. Future work is in progress in order to establish new fracture 

criteria on the basis of equivalent energy release rate of different V-notch angles.
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