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Abstract 
 
The matrix cracking transverse to loading direction is usually the one of most 

common observations of damages in composite laminates. The initiation and 

propagation of transverse cracks have been a longstanding issue in the last few 

decades. In this paper, a three-dimensional stress analysis method based on the state 

space approach is used to compute the stresses, including the inter-laminar stresses 

near transverse cracks in laminated composites. The stress field is then used to 

estimate the energy release rate, from which the initiation and propagation of 

transverse cracking are predicted. The proposed method is illustrated by numerical 

solutions and is validated by available experimental results. To the best knowledge of 

the authors, the predictions of crack behaviour for non-symmetrical laminates and 

laminates subject to in-plane shearing are presented for the first time in the literature. 

 
 
Introduction 
 
The first form of damages in laminates is usually matrix microcracks. The most 

common observation of microcracking is cracking in 90º plies during axial loading in 

the 0º directions (Narin, 2000). Transverse cracking is therefore the most common 

damage mode in composite materials. An immediate effect of transverse cracking is to 

cause stiffness degradations of the laminate. Stress singularities near the crack tips at 

the ply interface may initiate interlaminar delamination. Delamination is not 

necessarily the ultimate structural failure, but it may result in fibre-matrix debonding 

and fibre rupture, which will eventually lead to the loss of structural integrity. The 
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ultimate failure of a composite laminate follows the occurrence of transverse cracking, 

longitudinal cracking, delamination and fibre breaking.  

 The initiation and propagation of transverse cracks in composite laminates 

have been the focus of failure investigation in the last few decades. Extensive 

investigations have been carried out  both experimentally and analytically. 

 Garrett and Bailey (1977), Parvizi et al. (1978) and Bailey and Parvizi (1981) 

are amongst the earliest researchers who carried out extensive experiments to observe 

transverse cracks. They found that cracks formed in a direction parallel to the 

transverse reinforcement and the thickness of the 90° plies had significant effect on 

the cracking process.  Flaggs and Kural (1982) presented the results of an 

experimental study confirming that the constrained transverse cracking phenomena 

observed in the 90° ply of uniaxially loaded [0°/90°]s composite laminates was also 

exhibited by the more general [θ/90°]s class of composite laminates. Nairn and Hu 

(1992), Liu and Nairn (1992) and Nairn et al. (1993) carried out a series of 

experiments on crack density as a function of applied load. For all the laminates 

tested, the characteristic cracking curve had no cracks until an onset stress was 

reached. After the initial crack, the crack density typically increases very rapidly. The 

onset stress decreases as the thickness of the 90° plies increases. Yokozeki et al. 

(2005) investigated crack accumulation in multiple plies of [0/θ2/90°]s laminates 

(θ=30°, 45° and 60°). Most of the experimental investigations showed that the first 

damage mode was usually transverse cracking. Both the thickness of 90° layers and 

the stiffness of constrain layers affected the initiation and propagation of transverse 

cracks.  

 The majority of earlier analytical work on transverse cracking assumed that 

cracks formed when the stress or strain reached the transverse strength of a ply 

material. Garrett and Bailey (1977) assumed that a transverse ply had a unique 

breaking strain, εtu, and strength σtu. If a stress is applied in a direction parallel to the 

longitudinal plies, the transverse ply will fail at a stress σtu. Using the same strength 

criteria, Parvizi, et al (1978) reported more detailed studies for a glass fibre reinforced 

epoxy composite. Leblond et al. (1996) studied multiplication of transverse cracks as 

a function of applied stress in cross-ply laminates. The crack development was 

assumed to be controlled by the fracture stress in the 90° plies. However the strength 

based theory usually can not provide a good prediction of transverse cracking because 
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the strength of   90o plies of a laminate is usually not the same as that of a different 

laminate.  

 Due to the drawbacks and limitations of the strength based methods, the 

majority of recent work was based fracture mechanics using the energy method to 

predict transverse cracking. Most energy models used a representative volume 

element (RVE) to predict next crack formation when the energy released due to crack 

formation reached the critical strain energy release rate Gc.  It has been widely 

recognised that for the same material ply laminates with different lamination profiles, 

the value of Gc almost keeps constant (Nairn, 2000). Consequently, the method 

applies for a wide variety of laminates from a single value of Gc. 

 Parvizi et al. (1978) demonstrated that a simple shear lag analysis used in 

conjunction with the Griffith energy criterion can be used to accurately predict matrix 

cracking. Flaggs (1985) made use of a strain energy release rate fracture criteria in 

conjunction with an approximate two-dimensional shear-lag model to predict tensile 

matrix failure. Wang et al (1985) employed the energy release rate method of classical 

fracture mechanics to model various matrix crack interactions. Dvorak and Laws 

(1987) investigated the first ply failure using a critical energy release rate criteria and 

later Laws and Dvorak (1988) presented a model for progressive transverse cracking 

based on statistical fracture mechanics. Nairn (1989; 2000), Liu and Nairn, (1992) and 

Nairn and Hu (1992) carried out a series of study on matrix cracking by finite fracture 

mechanics. Zhang et al. (1992) and Fan and Zhang (1993) proposed the equivalent 

constraint model (ECM), in which the energy release rate due to transverse ply 

cracking, incorporating residual thermal stresses, was derived. McCartney (1998; 

2002; 2004; 2005) investigated ply crack development for various lamination profiles; 

from cross-ply to general symmetric laminates, subjected to axial extension or mixed 

mode loading. Smith and Ogin (1999) calculated the critical bending moment at 

transverse cracking under flexural loads using a fracture mechanics approach. Joffe et 

al. (2001) used a crack-closure technique to calculate the energy release caused by 

cracking. A Monte-Carlo simulation in incremental strain-controlled loading was used 

to model the transverse cracking process. The 90° layer was divided into a large 

number of elements and a critical energy release rate Gc was assigned to each element 

according to Weibull distribution. Yokozeki el al. (2002) employed energy release 

rate to investigate crack initiation and propagation across specimen width. Energy 
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release rates associated with crack propagation in the width direction were calculated 

using a three-dimensional FEA. Subsequently Yokozeki et al. (2005) used the same 

method to study micro-cracking behaviour induced by matrix cracks in adjacent plies. 

Lim and Li (2005) calculated energy release rates for transverse cracking and 

delamination under the generalised plane strain condition. By introducing the 

minimum strain energy density criterion to a non-linear FE analysis, Sirivedin et al. 

(2006) predicted matrix crack propagation in continuous-carbon fibre/epoxy 

composites. 

 It is obvious that for an energy based method, an accurate prediction of the 

stress distribution within a RVE is essential to an accurate estimate of the potential 

energy within the element. This is particularly difficult for a laminated RVE with 

transverse cracks.  Traditional analysis of laminated composites used classic or higher 

order plate theories that usually provided unsatisfactory predictions to interfacial 

stresses and the stress singularities at the tips of transverse cracks. Zhang and Ye 

(2007a) recently developed an analytical model that can provide accurate predictions 

to the stress fields, including all the interfacial stresses, and a satisfactory 

approximation to the stress singularities near ply cracks. The model was based on a 

state space approach that has been successfully used to solve a variety of stress 

problems (Soldatos and Ye, 1994; Ye and Soldatos, 1994a, b, 1995; Ye and Sheng, 

2003; Ye et al., 2004; Zhang and Ye, 2007b). Compared with other analytical models, 

this new model takes full three-dimensional consideration of laminar properties, 

displacements and interfacial stress continuities at all material interfaces. The model 

can also deal with both symmetric and non-symmetric laminates with a universal 

approach. A comprehensive account of the methodology can be found in Ye (2002).  

In combination with the state space formulation (Ye, 2002) this paper presents 

a model to predict crack propagation by using an energy based approach. An accurate 

stress distribution within a RVE with cracks is obtained from the state space solution. 

The stresses are then used to compute the energy release rate in the crack propagation 

analysis. Numerical results are obtained and compared with the tests results available 

in the literature. Results are also presented for non-symmetric laminates and laminates 

subjected to in-plane shearing. From the authors’ best knowledge, these results are 

new and are not available in the literature. 

 

Stresses of angle-ply laminates with transverse cracks 
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Solution of an angle-ply lamina 

Consider an off-axis lamina (Fig. 1) with principal material directions (1-2-3) in the 

global x-y-z coordinate system. The lamina has constant thickness h, width L and 

infinite length. The displacements in the x, y and z directions are denoted by u, v and 

w, respectively. Suppose that the lamina is subjected to a uniform tension by the 

application of a constant longitudinal strain in the y direction, 0ε  ,which represents a 

laminate that is long and relatively uniform in one direction, such as aircraft wing 

panels. The constant strain in the y direction also represents the state of stress at a 

point in a material subject to a generalized plane strain, where the stresses and strains 

in other two directions are more dominating.  

The lamina is made of a homogeneous, monoclinic and linearly elastic material 

whose principal material direction 1, i.e., the fiber direction, has an angle of θ  to the x 

axis. 

(a) Stress-strain relations 

The basic constitutive equation for thermo-elastic stress analysis is (Herakovich, 
1998) 

{ } [ ] { } { })( TC εεσ −= .                                                                         (1) 

Here, the matrices [ ]C , { }ε  and { }Tε  are stiffness matrix, total strains and thermal 
strains, respectively. For a linearly elastic monoclinic material, 
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where the ijC ′ are stiffness coefficients that can be expressed in terms of Young’s 
moduli, Poisson’s ratios and shear moduli. 

{ } T][ xyxzyzzzyyxx εεεεεεε = ,                                                         (3) 
{ } TT Δ= }{αε ,                                                                               (4) 

where TΔ  denotes temperature change, 
T

xyzzyyxx ]00[}{ ααααα = ,                                                         (5) 

where xxα , yyα , zzα  and xyα  are the coefficients of axial thermal expansion relative 
to the x, y, z directions and shear thermal expansion, respectively. 

(b) Equilibrium equations 
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(c) Strain-displacement relations 
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Since the lamina is subjected to a uniform extension 0ε  in the y direction, it follows 
that  

0εε =
∂
∂

=
y
v

yy .          (8) 

Then the generalized plane strain deformation is assumed such that all components of 

stress and strain do not depend upon y.  

To carry out the following deductions, let 

x∂∂= /α , 33131 / CCC ′′−= , 33
2

13112 / CCCC ′′−′= , 332313123 / CCCCC ′′′−′= ,  
33

2
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2

366614 / CCCC ′′−′= , 5544
2

45 CCC ′′−′=Δ .       (9) 

From the third equation of Eq. (1) and Eq. (7), one has 

T)CCC(CCvCu C
z
w
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∂
∂ .    (10) 

By substituting Eq. (7) into the first, second and sixth equations of Eq. (1), the in-

plane stresses can be expressed as 
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Inserting Eq. (11) into Eq. (6) and considering Eq. (10) as well as the fourth and fifth 

equations of Eq. (1), the following first order partial differential equation can be 

obtained 
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Assuming that displacements u, v, and w can be expressed, respectively, as 
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where )()0( zU  and )()0( zV  are unknown boundary displacements that can be 

determined by imposing traction free conditions along the stress free surfaces (see the 

boundary condition section). In Eq.(13), the following Fourier series expansions are 

assumed 
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where Lm /πξ = . In the case of a uniform extension in the x-direction, the axial 

displacement u is zero at x=L/2. Hence, the integer m in Eq. (14) and the equations 

below takes only even numbers, i.e. m = 0, 2, 4, … . 

By introducing Eqs. (13) and (14) into (12) and expanding the x and 1 in  Eq. (13) 

into also Fourier series, the following non-homogenous state space equation for an 

arbitrary value of m is obtained 

{ } [ ]{ } { })()( )(
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where  

{ } [ ]T)()()()()()()( zZzYzXzWzVzUz mmmmmmm =F ,      (15b) 
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The solution of the non-homogenous state space Eq. (15) is 

{ } [ ] { } [ ] { } τττ deez
z

m
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m
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m
m ∫ −+=

0

)( )()0()( BFF GG  

    [ ]{ } { } ],0[ ,)()0( )( hzzz mmm ∈+= HFD .         (16) 

In particular, at z=h, 

{ } [ ]{ } { })()0()()( hhh mmmm HFDF += ,         (17) 

where [ ])(hmD  is called transfer matrix. The calculation of the two constant matrices, 

[ ])(hmD  and { })(hmH , in Eq. (17) can be found either analytically or numerically from 

Ye (2002). 

 Solution of an angle-ply laminate 

Consider an infinite long multi-layered general angle-ply laminate of thickness H 

and width L. Again the laminate is subjected to a constant longitudinal strain, 0ε .We 

may imagine that it is composed of N fictitious sub-layers, each of which may have 

different thickness. However, it is assumed that the thickness of all the fictitious sub-

layers approach zero uniformly as N approaches infinity. Assuming, in addition, that 

different sub-layers may be composed of different monoclinic materials, two types of 

materials interfaces are distinguished in the plate; the fictitious interfaces which 

separate sub-layers with the same material properties and the real ones that separate 

sub-layers composed of different materials. Upon choosing a suitably large value of 

N, each individual sub-layer becomes thin. For each of the sub-layers, (15)-(17) are 

the solutions. The state space equation and the form of solution of an arbitrary sub-
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layer, e.g., the jth one whose thickness is hj, can easily be obtained by replacing h 

with hj in Eqs. (15)- (17). The state space equation of the jth sub-layer then becomes: 

{ } [ ] { } { } jmjmjmjm zzz
dz
d )()( )( BFGF += .                (18) 

After repeating the above process for all the individual sub-layers and with 

appropriate continuity requirements imposed at all the real and fictitious interfaces, a 

solution for the entire laminate can be formulated.  

In order to find the solution of the problem, the two unknown displacement 

components, )()0( zU  and )()0( zV  in Eq. (15) must be determined first. If the sub-layers 

of the laminate are all sufficiently thin, it is reasonable to assume that  )()0( zU  and 

)()0( zV  within the thin layer are linearly distributed in the z direction, i.e. 
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where −
jU , +

jU , −
jV  and +

jV are the values of )()0( zU j  and )()0( zV j at the top and bottom 

surfaces of the jth thin layer, respectively. Inserting Eq. (19) into Eqs. (15d) and (15e), 

vector { } jm z)(B  in Eq. (18) can be expressed as 
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The solution of Eq.(18) at z=hj is  

{ } [ ] { } { }
jjmjmjjmjjm hhh )()0( )()( HFDF += .         (21) 

By introducing the following continuity conditions at all interfaces, i.e., 

{ } { }
jjmjm h )( )0( 1 FF =+ , j=1, 2,…, N-1,         (22) 

and then using Eqs.(21) and (22) recursively, a relationship between the state vectors 

on the top and bottom surfaces of the laminate is established as follows: 

{ } [ ] { } { }mmNmNNm h HFDF += 1 )0(  )( ,         (23a) 

where 
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{ }NNm h )(F  and { }1 )0( mF  are, respectively, the state vectors at the top and bottom surfaces 

of the laminated composite. The traction free conditions at the top and bottom 

surfaces yields 
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Substituting Eq. (24) into Eq. (23) results in the following linear algebra equation 

system 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

6

5

4

1636261

535251

434241

 

m

m

m

m

m

m

H
H
H

W
V
U

DDD
DDD
DDD

,         (25) 

where ijD  and imH   are the matrix elements in [ ]mD and }{ mH of Eqs.(23b- 23c) that are 

related to the three displacement components at the bottom surface, respectively. 

Eq.(25) is a set of linear algebra equations in terms of the three displacement 

components, mU , mV  and mW , at the top surface. The terms on the right-hand side of 

Eq. (25), 4mH , 5mH  and 6mH , contain 4×N unknown constants, −
jU , +

jU , −
jV , and +

jV  

(j=1, 2,…N), introduced in Eq.(19). Because of the continuity of )()0( zU  and )()0( zV  at 

the interface between the jth and the (j+1)th sub-layers,  1
−
+

+ = jj UU and  1
−
+

+ = jj VV  (j=1, 

2,…N-1). Hence, the number of unknown constants is then reduced to 2(N+1). These 

constants are determined by introducing appropriate boundary conditions along the 

transverse edges. 

 

Ply-crack boundary conditions 

   When a general angle-ply laminate is subjected to an in-plane extension 

perpendicular to the 90° fibers, transverse ply cracks appear parallel to the fibers and 

across the entire width from edge to edge. For example, subject to a uniform biaxial 

extension, 0ε  and 0F , and a shear loading, 0S ,  the [θ°m/90°n/φ°s] laminate shown in 

Fig. 2  displays an array of periodic cracks in the 90°n layers, where the subscripts 
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denote the number of the real plies within a ply group.  In reality, matrix cracks can 

occur in any plies, but there are a large group of laminates, in which transverse 

cracking in 90º plies is the dominated damage mode, and therefore the minor matrix 

cracking in non-90º plies is ignored in the present model. Other damage modes, e.g. 

delamination and fibre breakage usually occur at high crack densities, so the current 

work focuses on low and intermediate crack densities. 

Assuming that the cracks are equally spaced, a representative volume element 

(Fig. 3) can be taken from any two neighboring cracks to predict the stress and 

displacement fields. 

   For the cracked layers at x=0, L the boundary conditions are traction free, 

i.e., 0xyxx == σσ .  For the un-cracked layers at x=0, L, due to the fact that the 

laminate is subjected to uniform extension and shear loading, the displacements of an 

uncracked layer in the x and y directions, u and v, remain constant, that is 

 
⎩
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⎧

=
=
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Substituting Eq. (26a) and Eq. (14) into Eq. (5.13) yields at x=0 and y=0 
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From also the equilibrium of the internal and external forces, the following equation 

exists 
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or, from Eq.(11) 
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where 0F  and 0S  are the forces per unit length (Fig. 3). From the introduction of  the 

boundary conditions, it can be seen that the solution can be found to the required 

accuracy by increasing the total number of the thin layers. 

  

Propagation of transverse cracking in laminates 
 
The total complementary potential energy of a representative element 

Fig. 3 shows a representative volume element which is taken from between two 

neighboring cracks in a [θ°m/90°n/φ°s] composite laminate. Assuming that stress 

analysis has been carried out on this idealized element from the previous section, 

where the laminate was assumed to consist of N fictitious sub-layers. By using the 

present stress analysis, the total complementary potential energy is easier to obtain 

than the total potential energy because the stresses, used to calculate the 

complementary strain energy, are determined immediately after solving the state 

space equations. The complementary strain energy Uc of this representative element is  

∑
=

=
N

j

j
cc UU

1
 (28) 

where the superscript ‘j’ denotes the jth sub-layer and j
cU  is the complementary strain 

energy of the jth sub-layer of the representative volume element. Using the stresses 

from the previous section, j
cU  per unit length in the y direction can be obtained as 

[ ]∫ ∫ σαΔ+σ′σ= −
jh L

j
TTj

c dxdzTCU
0 0

1 }{}{}{][}{
2
1  (29a) 

where 
T

xyxzyzzzyyxx ][}{ σσσσσσσ =                               (29b)  
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Considering that the laminate is under a uniformly prescribed strain ε0 in the y 

direction, the potential of the prescribed strain ε0 can be calculated as 

 ∑
=

=
N

1j

j
cc VV [ ]∑ ∫ ∫

=

=
N

1j

h

0

L

0
jyy0

j

dxdzσε  (30) 

The total complementary potential energy of this representative volume element is 

given as the difference of the complementary strain energy Uc and the potential of 

prescribed displacements Vc . 

 cc VUΓ −= ( )∑ ∫ ∫
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The energy release rate due to transverse cracking 

Consider a composite laminate subjected to external loading and there are a 

sufficiently large number of transverse cracks in the 90° layers. The entire length of 

the laminate is Le and the thickness of cracked layers is Hc. Fig. 4 shows the 

propagation process of the transverse cracks from state (a) to state (c). In state (a), it is 

assumed that there exist k uniformly spaced transverse cracks in the laminate. 

Therefore the crack density in this state is  

e
k L

k
=ρ  (32) 

 

With the changes of external loading, a new transverse crack forms and the crack 

pattern changes from state (a) to state (b). The number of the transverse cracks 

increases from k to (k+1). Although in reality a new crack formation is randomly 

distributed, the overall crack distribution tends to be uniform when the number of 

cracks is large. In order to simplify the analysis, state (b) is idealized to state (c), in 

which the (k+1) cracks are also equally spaced. The simplification of the crack 

spacing here is also due to that the focus of the present study is the effect of crack 

density on degradation of material properties. The crack density of state (c) is then  

e
k L

k 1
1

+
=ρ +  (33) 

 
During the transverse cracking process, the crack surface area increment is Hc. The 

energy release rate from state (a) to state (b) is  
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(34) 

where )( 1+ρΓ k  and )( kρΓ  are the total complementary potential energies of the entire 
laminate at crack densities 1+ρk  and kρ , respectively; )( 1+ρΓ kr  and )( kr ρΓ  are the 
respective total complementary potential energies of the representative volume 
element at crack densities 1+ρk  and kρ . 

The transverse crack propagation criterion 

 A new crack will form if the energy released due to crack formation reaches 

the critical energy release rate Gc, i.e. 

cGG ≥  (35) 

Gc is a material property and has units of energy per unit area. It can be measured by 

an experimental method. 

 Fig. 5 is a flowchart showing how to determine the critical cracking load for a 

given crack density. For a given load, stress analysis is carried out by using the state 

space model. The energy release rate G of a representative volume element is then 

computed by Eq. (34) and compared with Gc. If G>Gc, the current load is reduced to 

achieve a smaller energy release rate until G=Gc. If G<Gc, the current load is 

increased to obtain a larger energy release rate until G=Gc. If G=Gc, the current load 

is taken as the critical cracking load for the given crack density.  

 
Numerical results 
 
The formulations and criterion proposed above are applied to predict transverse 

cracking in composite laminates with different configurations, including symmetric 

cross-ply laminates, symmetric angle-ply laminates and general non-symmetric 

laminates. The material properties and dimension of these laminates (Liu and Nairn, 

1992; Joffe et al., 2001) are given in Table 1. Effects of  residual thermal stresses are 

included in the analysis. ΔT is the difference between the room temperature and the 

cure temperature. Table 1 also lists the critical energy release rate Gc for each 

material.  
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 Symmetric laminates subjected to tension 

The crack density as a function of applied average stresses for symmetric cross-ply 

laminates is plotted in Fig.6. Herein, the applied average stress is the axial tension per 

unit length in the x direction divided by the height H of the laminate. The test and 

variational results of Liu and Narin (1992) are also shown in these figures for 

comparisons. The numerical results for Material 1 with [0°2/90°2]s and [0°2/90°4]s 

lamination profiles are plotted in Figs. 6a and 6b,  respectively. Using a single value 

of Gc, the predictions of the two laminates agree well with the experimental results, 

which indicates that the critical energy release rate can be used as a material property 

that characterizes transverse crack propagation in composite materials.  

  
The dependence of crack density on the applied average stress for symmetric angle-

ply laminates with layups [±θ°/90°4]s are presented in Figs. 7a and 7b. The laminates 

are composed of Material 2. The present results are compared with those obtained by 

Monte-Carlo simulations and experimental data in Joffe et al. (2001). Once again very 

good agreements are observed in these figures. It can be seen that cracks occur earlier 

in the [±30°/90°4]s than in the [±15°/90°4]s laminates.  

 
 Non-symmetric laminates subjected to tension 

After successful validation for cross-ply symmetric laminates, the method is applied 

to predict transverse crack propagation in two non-symmetric laminates. The first one 

is constructed by replacing one set of 90°4 layers in the above [±30°/90°4]s laminate 

with 0°4 layers. Thus the new profile, [±30°/90°4/0°4/ + 30°], is now non-symmetric. 

The stress-crack density relation of the non-symmetric laminate is plotted in Fig. 8a. 

In comparison with Fig. 7b, the onset crack stress of the non-symmetric laminate is 

significantly increased. The second laminate has a lay-up of [30°/90°/30°/90°] and is 

composed of Material 3. Both the 90° layers are assumed to have transverse cracks 

and the crack distributions in both layers are identical. Fig. 8b shows the crack density 

as a function of the applied average stress in the laminate.  

 No comparisons have been made in Figs (8a) and (8b), because the present 

solutions are believed to be the first ones in the literature on predicting transverse 

crack propagation in non-symmetric laminates. These results, therefore, can be used 

as benchmarks for testing new models.  
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 Laminates subjected to tension and shearing 

In this section, the present method is further used to study the effects of shearing on 

transverse cracking. A symmetric and a non-symmetric cracked laminates under a 

combination of tension and shearing are analyzed, respectively. It is assumed that the 

laminates are composed of Material 3 from Table 1. A series of curves are shown in 

Fig.9 to demonstrate the effects of shear stresses on the transverse cracking process of 

a symmetric [30°/90°/90°/30°] laminate. The laminate is subjected to a combined 

action of uniform tension and shearing. The applied average stress, which is the 

average stress on the cross-section perpendicular to the x axis (Fig 2), increases, while 

the shear stress keeps constant. The applied shear stresses are -100, -50, 0, 50 and 100 

MPa, respectively. It can be seen that both the magnitude and the direction of shear 

stresses have significant effect on the initiation and development of transverse cracks. 

The negative shear stresses advance and the positive stresses delay the transverse 

cracking. This is because the [30°/90°/90°/30°] laminate has a negative shear strain in 

the x-y plane when the laminate is subjected to a single tension in the x direction (Fig 

2). If a negative shear stress is also applied, the magnitude of the negative shear strain 

increases. On the contrary, applying a positive shear stress decreases the magnitude of 

the shear strain. As a result, the energy release rate in the case of applying negative 

shear stress is higher than that in the cases of applying no shear stress or positive 

stresses. 

 The same set of shear stresses are also applied on a non-symmetric  

[30°/90°/30°/90°] laminate and the obtained stress-crack density relations are shown 

in Fig. 10. As can be seen, the effect of shearing on cracking is similar to the 

symmetric case. Nevertheless, under the same loading condition the crack initiation 

stress of the non-symmetric laminate is slightly higher than that of the symmetric one. 

This is because the 90° layers in the symmetric laminate are thicker and a thicker 90° 

layer is more prone to crack formation. 

 To the authors’ best knowledge, comparable solutions to the results presented 

in Figs. 9 and 10 are not available in the literature. The results can again be used as 

benchmark solutions for future development of new theories. 

 

Concluding remarks 
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By using the energy method, an approach based on the state space stress analysis to 

predict the propagation of transverse cracking in general composite laminates has 

been proposed. The proposed method inherits the advantages of the state space 

method, by which an accurate stress distribution and, hence, an accurate estimate of 

strain energy can be computed. The method can also deal with both symmetric and 

non-symmetric laminates. 

 In conjunction with the stress analysis, the energy release rate due to 

transverse cracking was derived in a laminate with an idealized uniform crack 

distribution. A new crack forms when the energy release rate approaches the critical 

energy release rate.  

 Numerical results for symmetric laminates were compared with alternative 

numerical solutions and experimental results. The solution was extended to the 

analysis of non-symmetric laminates under tension, and then to the analysis of general 

laminates subjected to both tension and shearing. This provided new numerical 

solutions that are hardly found in the literature. From the new results, it was found 

that shearing had significant effect on the cracking process.  

 It is noted that in this work the transverse cracking process was simplified as a 

crack density increment in a uniformly spaced state, while the nature of the crack 

multiplication in reality is stochastic. Though good comparisons with test results have 

been observed for the globe relationship between the applied stresses and crack 

density, a statistical approach should be resorted to modeling transverse cracking in 

future work in order to gain deeper understanding of the cracking process. 
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Table 1 Material properties and dimensions 
 Material 1   Material 2 Material 3 

Type 
Fiberite 

934/T300 
  Glass/epoxy 

 
Graphite/epoxy 

EL 128 GPa   44.73 GPa 144.78 GPa 
ET 7.2 GPa   12.76 GPa 9.58 GPa 

νLT 0.3   0.297 0.31 

νTT 0.5   0.42 0.52 

GLT 4.0 GPa   5.8 GPa 4.97 GPa 

GTT 2.4 GPa   4.49 GPa 3.37 GPa 

α1 -0.09×10-6/oC   8.6×10-6/oC N/A 

α2 28.8×10-6/oC   22.1×10-6/oC N/A 

ΔT -125  oC   -105 oC 0oC 

Gc 690 J/m2   610 J/m2 900 J/m2 

Le 50 mm   50 mm 50 mm 

Hply 0.154 mm   0.144 mm 0.127 mm 
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Fig. 1 Nomenclature of an off-axis lamina. 
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Fig. 2 Schematic view of a [θ°m/90°n/φ°s] laminate with an array of transverse ply 
 cracks in 90°n layers. 
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Fig. 3 A representative volume element of a [θ°m/90°n/φ°s] laminate with ply cracks in 
 90°n layers. 
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 Fig. 4 Nomenclature of the propagation process of transverse cracks and the 
 idealised uniform distribution state. 
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 Fig. 5. Flowchart of calculating critical cracking load for a given crack 

density. 
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                            (a)                                                                (b) 

 Fig. 6 Dependence of crack density on the applied average stress in  
   (a) Fiberite 934/T300 [0°2/90°2]s laminate with transverse cracks. 
   (b) Fiberite 934/T300 [0°2/90°4]s laminate with transverse cracks 
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                               (a)                                                                (b) 

 Fig. 7 Dependence of crack density on the applied average stress in  
(a) [±15°/90°4]s glass/epoxy laminate with transverse cracks. 
(b) [±30°/90°4]s glass/epoxy laminate with transverse cracks. 
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                           (a)                                                                     (b) 

 

 Fig. 8. Dependence of crack density on the applied average stress in  
(a) [±30°/90°4/0°4/ + 30°] glass/epoxy laminate with transverse cracks; 
(b) [30°/90°/30°/90°] graphite/epoxy laminate with transverse cracks. 
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Fig.9. Dependence of crack density on the applied average stress and shear stresses  in 

a [30°/90°/90°/30°] graphite/epoxy laminate. 
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Fig.10. Dependence of crack density on the applied average stress and shear stresses  

in a [30°/90°/30°/90°] graphite/epoxy laminate. 
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