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Optimisation of C:N Ratio for Co-Digested Processed
Industrial Food Waste and Sewage Sludge Using the

BMP Test

Zuhaib Siddiqui, N.J. Horan, and Kofi Anaman

Abstract

Biomethane production from processed industrial food waste (IFW) in admix-
ture with sewage sludge (primary and waste activated sludge: PS and WAS) was
evaluated at a range of C:N ratios using a standard biochemical methane potential
(BMP) test. IFW alone had a C:N of 30 whereas for WAS it was 5.4 and thus the
C:N ratio of the blends fell in that range. Increasing the IFW content in mix im-
proves the methane potential by increasing both the cumulative biogas production
and the rate of methane production. Optimum methane yield 239 mL/g VSre-
moved occurred at a C:N ratio of 15 which was achieved with a blend containing
11 percent (w/w) IFW. As the fraction of IFW in the blend increased, volatile
solids (VS) destruction was increased and this led to a reduction in methane yield
and amount of production. The highest destruction of volatile solids of 93 percent
was achieved at C:N of 20 followed by C:N 30 and 15. A shortened BMP test is
adequate for evaluating optimum admixtures.

KEYWORDS: biochemical methane potential (BMP), co-blending, methane yield,
volatile solids



1. INTRODUCTION 

 

Anaerobic digestion of thickened sludge has been practiced by the UK water 

industry for over one hundred years (Watson, 1923).  The process was initially 

employed to stabilise the sludge before recycling to agricultural land, thus 

preventing nuisance odours.  More recently the main focus has been on the 

production of biogas often in association with combined heat and power (CHP) 

schemes (Coffey, 2009).  There has been a surge of interest in the technology over 

the past decade, in particular from the waste industry for its application to the 

digestion of biodegradable organic wastes.  The UK Government has also 

recognised the important contribution that anaerobic digestion can make to help it 

achieve a number of key national targets.  These include use of renewable energy, 

reducing CO2 and other greenhouse gas emissions and reducing the amount of 

biodegradable municipal waste sent to landfill.     

  A key strategy to achieve all these targets is for the Water Companies to 

ensure that at least 20% of all energy used by the water industry comes from 

renewable sources by 2020 (Defra, 2009; Defra, 2009a).  The industry has an 

additional incentive to achieve this figure as it will be included in the EU’s carbon 

trading scheme and so it will soon be required to pay for its carbon emissions 

(Craven, 2009).  The Water Industry is well placed to achieve the targets and 

there are a number of reasons for this.  It has been estimated that there is an 

overcapacity of at least 30% in its existing anaerobic digestion infrastructure.  If 

this could be utilised, it would increase biogas production by at least 43%.  

However sewage sludge is a poor feed source for anaerobic digestion as it is high 

in nitrogen and low in carbon (Kim et al. 2004).  Thus the methane yield is 

reduced as a result both of the paucity of carbon and the ammonia released during 

digestion, which may prove inhibitory to the process.  As a consequence it would 

prove beneficial to supply the additional feed needed to utilise the extra capacity, 

as an easily degradable, high carbon substrate.  Co-digestion in admixture with 

sewage sludge would then further enhance the methane yield.   

There is a wide range of potential substrates that could be employed in 

admixture during digestion.  For instance food and vegetable waste are high in 

carbon and lack nitrogen and phosphorus, so are ideal candidates.  By contrast 

animal wastes such as cow slurry and chicken manure are unsuitable due to their 

high nitrogen content (Callaghan et al. 2002).  When co-digestion has been 

evaluated either at a laboratory or pilot-scale, the results have been encouraging 

and blended wastes generally demonstrate enhanced methane yields.  But there 

are barriers to the application of co-digestion in the water industry, in particular 

with establishing quality control of the imported feedstock.  Sweenie (2009) has 

summarised these barriers and considers achieving a consistent digester feed in 

terms of moisture content and C:N ratio, to be most important.  If the carbon 
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content is too high then rapid acidification can occur and methanogenesis is 

inhibited by the low pH (Carucci et al. 2005).  It appears that the ideal C: N ratio 

is waste specific over a range from 9 to 30.  Sosnowski et al. (2003) observed 

two-fold higher biogas production, co-digesting sewage sludge and the organic 

fraction of municipal solids at a C: N of 9.26, when compared to sewage sludge 

alone.  Sievers and Brune (1978) used paper pulp and sewage sludge mixtures and 

reported optimal operation with a C: N ratio of 16:1.  Rizk et al. (2007) used 

FVW and sewage sludge and found this was optimal at a C:N of  20:1. Others 

consider that the variables with the biggest impact on the quantity and 

composition of methane are pH, alkalinity, volatile acid concentration, nutrient 

availability and the presence of toxic materials (Heo et al. 2004).  Whereas 

sewage sludge has a relatively constant composition, its volume and solids 

concentration are highly variable which makes digester optimisation difficult.  

Thus blending sewage sludge with a waste of a higher dry solid concentration will 

permit better control of digester performance and enhance digestibility.   However 

other feedstocks are likely to have a more variable composition than sewage 

sludge and it would be helpful to evaluate rapidly the optimal sludge mix ratio in 

order to provide confidence in the feedstock and act as a quality control 

procedure.    Thus it is the aim of this study to identify those factors which are the 

most important for enhancing the methane yield during co-digestion and suggest a 

rapid batch technique to aid in optimising the admixture and minimising 

variability in digester performance.  The specific objectives of this study were to: 

(i) evaluate the optimised C:N ratio enhancing the highest methane yield, rate of 

methane production and anaerobic biodegradability (ii) determine the rate limiting 

stage for common toxicants and their effect on rate of biogas production (iii) 

comparing the results obtained from the conventional biochemical methane 

potential (BMP) test with theoretical methane potential (TMP) and suggest a rapid 

batch technique to aid in optimising the admixture and minimising variability in 

digester performance. 

 

2. MATERIAL AND METHODS 

 

2.1 Feed stocks and seed inocula 

 

Processed industrial food waste (IFW), comprised pig Waste (name of the holding 

tank: PW) and screened refuse (SR) were collected from Kerry Ingredients, 

Okehampton, UK.  Waste arising from food processing was termed PW and 

during wastewater treatment as SR.  The former comprised solids such as rejected 

finished-products, processing waste and surplus fruit.  The last consisted of the 

residue left after the industrial wastewater was screened through a 3 mm screen. 

The sewage sludge (SS) comprised primary sludge (PS) and waste activated 
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sludge (WAS) was collected from the Knostrop WwTw in Leeds, UK.  

Feedstocks were stored at 4
o
C and prior to their use were maintained at room 

temperature.  Seed inoculum was obtained from a laboratory scale mesophilic 

anaerobic digester. The digester was operated at a temperature of 37
o
C±0.2 and 

hydraulic retention time (HRT) of 10 days by feeding co-blended IFW and SS 

maintaining the organic loading rate (OLR) of 3.4 g VS/L/.d. The pH, alkalinity, 

VFA and methane composition was 6.5±0.3, 6,000 mg/L 40,000 mg/L and 70.7%. 

 
2.2 Analytical methods 

 

The pH value was monitored with a hydrogen ion sensitive electrode using a 

Corning pH Meter.  The analytical determinants of total solids (TS), volatile 

solids (VS), total alkalinity (TA), ammoniacal nitrogen (NH4-N), total volatile 

fatty acids (TVFA) and fat (FAT) were carried out following the procedures 

outlined in APHA (1998).  Samples for analysis of TA, NH4-N, and TVFA were 

centrifuged at 60,000 rpm for 1 hour prior to analysis.  TS were the fraction of the 

total wet weight of sample from which moisture (water) had been evaporated in 

an oven at 105
o
C for twenty-four hours.  VS measure the difference between TS 

and weight of the inert or fixed solids (FS) from a sample after ignition in muffle 

furnace at 550
o
C until constant weight ensures.  TA was determined 

potentiometrically by titrating against standard sulphuric acid (0.1M).  NH4-N 

was determined after distilling the sample with 50% sodium hydroxide.  The 

distillate was recovered in indicating boric acid solution thereby titrating against 

standard sulphuric acid (0.01M).  The elemental composition of all feedstocks 

was determined with vanadium pentoxide by flash combustion method using the 

CHNSO Analyser (Thermo Flash EA-1112 series, Italy). Theoretical methane 

potential was calculated following Heo et al. (2004).  

 

2.3 Biochemical methane potential (BMP) test 

  

The BMP was determined in anaerobic batch reactors of 500 mL capacity with 

hermetically sealed stoppers and controlled-opening valves for gas removal.  The 

effective volume was 400mL and the gas phase was 100mL.  Each bottle 

contained the organic load of 4 g VS/L (1.6 g VS/400 mL) of feed-stock and 

selected seed inocula adjusting the VSseed-sludge:VSfeed-stock ratio as 2.5. To 

investigate the impact of co-digestion on bio-mehtane potential four different 

C:Ns (10, 15, 20 and 30) were volumetrically blended using the industrial food 

waste (IFW) and sewage sludge (PS, WAS).  Before starting the experiment, 

nutrient media (Kim et al. 2003) was added at 1mL/1000mL for mixed anaerobic 

cultures and corrected to pH 7.0 ± 0.2 using 6M NaOH and 1M HCl. A constant 

internal temperature of 37
o
C was achieved by incubating the reactors in a 
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temperature controlled mechanical shaker.  Samples were mixed at 140 rpm for a 

15 minute period followed by 15 minutes with no shaking.  For corrections, a 

control employing only seed sludge was used to account for the biogas 

contribution of the seed. The quantity of biogas produced was measured by 

connecting the valve on the batch reactor to the inlet tube of an hermetically-

sealed, water displacement aspirator bottle filled with 5% (w/v) NaOH 

(Shanmugham and Horan, 2009) to scrub off CO2 .  A measuring cylinder placed 

at the outlet of the aspirator bottles collected the displaced solution which 

measures the CH4 at atmospheric temperatures and pressure (N mL CH4/d).  The 

measured biogas volume was adjusted to standard temperature (0
o
C) and pressure 

(1 atm) STP using Eq-1. 

 

Sm

mSm
S

PT

PTV
V

×
××

=                 (1) 

 

Where, VS volume of measured gas at STP (mL), Vm volume of measured 

gas at ambient condition (mL), TS ambient temperature (
o
K), Pm ambient pressure 

(atm), Tm standard temperature (0
o
C or 273

o
K), Pm standard pressure (1 atm). 

  The initial and final characterisation of the 500 mL bottles was taken for 

the mass balance analysis and the serum bottle samples were used for anaerobic 

process evaluation analysis. The serum bottles contents were withdrawn 

periodically for analysis of anaerobic products. The samples from the serum 

bottles were used to analyse the anaerobic product such as total alkalinity (TA), 

volatile fatty acids (VFA), and NH4-N.  The BMP yield was then calculated from 

Eq-2. 
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3. RESULTS AND DISCUSSION 

 
3.1 Waste characterization 

 

Successful anaerobic digestion requires analysis of the feedstock to ensure that it 

is balanced in terms of carbon, nitrogen, TS and VS content and where waste are 

to be blended, to ensure the optimum blend.  Four wastes were used in this study.   

Processed industrial food waste (IFW) known as Pig waste (PW), and screened 

refusal (SR) were highly organic with a VS of 99 and 92% respectively and with 

very similar carbon content at 57.2 and 57.5 % (Table 1).  The primary sludge 

(PS) and the waste activated sludge (WAS) had higher ash content and so their 

VS content was much lower at 66.2 and 65.2% and the carbon content was also 
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reduced at 36.7 and 37.6% (Table 1).  All four wastes and seed inoculum had a 

high alkalinity and adequate volatile fatty acids to suggest they should prove 

amenable to anaerobic digestion.  Food waste alone had the highest C:N of 31.8, 

whereas it was lowest for WAS at 5.4.  Based on the results of the waste 

characterization, the four waste types were blended volumetrically to provide four 

feedstocks across the C:N range of 10 to 30.     

 

Table 1. Characteristics of feedstock 

Parameters PW SR PS WAS 

pH 3.4 4.0 5.5 6.6 

TS (%) 33.9 1.7 4.8 2.6 

VS (%TS) 98.7 91.5 66.2 65.2 

Alkalinity(mgCaCO3/L) 4,500 4,000 5,000 4,000 

TVFA (mgCH3COOH/L) 73,200 29,100 34,800 47,400 

NH4-N(mg/L) 98 80 143 650 

C(%TS) 57.2 57.5 36.7 37.6 

N(%TS) 1.8 3.3 3.2 6.9 

H(%TS) 5.8 6.9 5.5 5.7 

S(%TS) < 0.3 <0.3 0.6 0.6 

O(%TS) 31.9 25.8 14.4 21.5 

C:N ratio 31.8 17.4 11.6 5.4 

 

 

3.2 Effect of C:N ratio on theoretical methane potential (TMP) 

 

Generally, the organic waste is represented by CaHbOcNd.  Assuming the complete 

conversion of the biodegradable organic constituents to carbon dioxide and 

methane.  The TMP was calculated using the Bushwell equation (Bushwell and 

Mueller, 1952) Eq-3.  Heo et al. (2004); Sosnowski et al. (2003); Tchobanoglous 

et al. (1993) predicted the TMP using the same.   

 

( ) ( ) +−−+→+−−+ 42 324
8

1324
4

1 CHdcbaOHdcbaNOHC dcba

( ) 32324
8

1 dNHCOdcba +++−                (3) 
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The TMP vary over the range 370 to 480 mL with the most gas produced 

at a C:N of 15 and the least at 20 (Table 2).   

 

 
Figure. 1 Cumulative CH4 production for all analysed C:N ratios 

 

3.3 Effect of C: N ratio on methane production 

 

The cumulative methane production for each of the four blends was measured 

over a period of 30 days and was observed to vary over the range 185 to 251.4 

mL, with the most gas produced at a C:N of 20 and the least at 30 (Figure 1).  The 

rate at which methane was produced was increased by increasing the C:N and 

varied 15.1 to 29.1 mL/(L.d) (Figure 2). The highest methane production rate was 

noted at C:N 30, observed during the first day of experiment and later decreased 

to 11.6  mL/(L.d).  For all the wastes the majority of methane production occurred 

during the first 15 days of the test ranging from 50 to 70% of the total.  So it was 

thought possible to reduce the time of the BMP test to 15 days without detracting 

from the value of the test as an absolute measure of the amount of methane 

produced not required.  The digester retention time is a key process design 

parameter that is selected to ensure that the microorganisms in the reactor have 

adequate time to grow and reproduce (Heo et al. 2004; Li and Fang, 2007).  At the 

same time it is important for economic success to ensure that the digester is 

operated at the maximum rate of gas production.  For a batch system as employed 

in the BMP test this is extrapolated from the linear part of the curve, in other 

words before the cumulative gas production ceased to be linear and again in all 

cases it was determined within 15 days.  This was further corroborated by Kim et 

al. (2003), who have performed the standard BMP for 15 days.  Although the 
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specific methane potential (SMP) for all the blends, achieved through TMP were 

noted higher compare to the SMP achieved through the BMP test (Shanmugam 

and Horan, 2009).  The methane yield for the blended waste was much higher and 

varied over the range 125 to 239 mL/g VSremoved (Table 2).  At C:N 15, the 

methane yield 239 mL/g VSremoved (454 mL/g CODremoved) was two folds higher 

than the methane yield noted at C:N 30 (Table 2) and higher than earlier reported 

values 50 – 230 mL/g VS (Hedge and Pullammanappallil 2007; Heo  et al. 2004; 

Lahoz et al. 2006; Gunasleen, 2004; Kim et al. 2003; Callaghan et al. 2002; Rizk 

et al. 2007) or 57 mL CH4/g COD (Kim et al. 2007) and 424 mL CH4/g COD 

(Egruder et al. 2001). 

 

 

 
Figure. 2 Rate of CH4 production for all analysed C:N ratios 

 

3.5 Effect of C: N ratio on ammonia 

 

McCarty and McKiney (1961) were amongst the first to suggest that free 

ammoniacal nitrogen may be toxic to methanogenic activity and they considered 

this occurred at concentrations greater than 150 mg/L.  A range of values have 

since been proposed to define ammonia toxicity.  For instance Val Velsen (1979) 

thought that ammoniacal nitrogen concentrations up to 1,500 mg/L had no 

significant effects on methanogenesis while Koster and Lettinga (1984) concluded 

that concentration of ammonia in excess of 700 mg/L would decrease 

methanogenic activity.  In this study ammoniacal nitrogen showed a variation 

over the range 100 to 300 mg/L (Figure 3) but this was not related to the initial 

C:N ratio, and consequently to the amount of methane produced, thus inhibition 
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was not demonstrated.  In most cases there was a decrease in ammonium levels 

then followed by a inclination which might reflect some volatilisation at the high 

incubation temperatures.   

 

 
Figure. 3 Ammonium release during digestion for all analysed C:N ratios 

 

Table 2 Performance data for experiments during 30-days BMP test, TMP and 15-

days rapid BMP test 

Standard BMP TMP Rapid BMP C:N 

CH4 Yield 

mLCH4/g VSremoved 

VSremoved 

% 

SMP 

mL  

SMP 

mL 

SMP 

mL 

VSremoved 

% 

ATP 

mg/

L 

10 205.3 75.6 232.2 470 83 26.9 5.3 

15 211 76.3 239.8 480 153 40 9.6 

20 180.4 93.8 251.4 370 128.3 76.4 6.3 

30 134.4 92.5 185.3 380 80.5 40.3 3.5 

 

3.6 Application of ATP analysis  

 

Biological activity during the BMP test was monitored using adenosine 

triphosphate (ATP) concentration in order to determine whether this test could act 

as a rapid measure of optimum activity.  The highest ATP concentration 

coincided with the highest methane yield at a C:N of 15 (Table 2) and although 

there was no clear mathematical relationship, an increasing methane yield was 

associated with a high cellular ATP and vice versa.  ATP concentration started to 

decline once the rate of methane production had slowed after 15 days, again 
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suggesting that a reduced testing period would be adequate for optimising waste 

admixtures.  For the purpose of quality controlling admixtures, ATP analysis 

offers the opportunity to simplify the BMP test by omitting the time consuming 

gas collection and measurement stage and relying on the relative ATP 

concentration after 15 days. 

 

4. CONCLUSION 

 

Processed Industrial food waste has a very high C:N ratio of around 30:1 and is 

predominantly carbohydrate whereas by contrast, waste activated sludge has a 

low ratio of around 5.4:1 and comprises high fat and protein.  Co-blending of food 

waste with the sewage sludge from wastewater increases both the amount and the 

rate of methane produced during anaerobic digestion.   

The optimum blend occurs at a C: N ratio of 15 which is achieved with 11% 

(w/w) food waste.  The highest methane yield 239 mL/gVSremoved was also 

observed at C:N 15 

 The highest destruction of volatile solids of 93% was achieved at C:N of 20 

followed by C:N 30 and 15.  

 ATP concentration reflects methane yield and offers a simplified test to optimise 

admixtures. Further work is required to refine the methodology. 

 At all C: N values 50 to 70% of the total methane production is achieved in the 

first fifteen days.  Linear methane generation slows after 15 days although 

optimum mix does not change after a further 15 days.  A shortened BMP test is 

adequate for evaluating optimum admixtures. 

 

5. REFERENCES 

 

American Public Health Asssociation. (1998). “Standard methods for the 

examination of water and wastewater.” 20th ed. Washington, DC, USA. 

 

Bouallagui, H., Touhami Y., Cheikh R.B. and Hamdi M., “Bioreactor  

performance in anaerobic digestion of fruit and vegetable wastes”, Process 

Biochemistry, 2005, 163, 989–995.  

 

Bushwell, A.M., and Mueller, H.F., “Mechanisms of methane fermentation”, Ind. 

Eng. Chem., 1952, 44,550. 

 

9Siddiqui et al.: Optimisation of C:N Ratio Using the BMP Test

Published by The Berkeley Electronic Press, 2011



Li, C., and Fang, H.H.P., “Fermentative hydrogen production from wastewater 

and solid wastes by mixed cultures”, Crit. Rev. Environ. Sci. Technol., 2007, 37, 

1–39. 

 

Callaghan, F.J., Wase, D.A.J., Thayanithy, K. and Forster, C.F., “Continuous co-

digestion of cattle slurry with fruit and vegetable wastes and chicken manure”, 

2002, Biomass and Bioenergy, 27, 71–77. 

 
Carucci, G., Carrasco, F., Trifoni, K., Majone, M. and Beccari, M., “Anaerobic 

digestion of food industry wastes: effect of codigestion on methane yield”, 2005, 

J. Environmental Engineering ASCE, 131, 1037–1045. 

Coffey, M., “Energy and power generation: maximising biogas yields from 

sludge”, 2009, Filtration and Separation, 46, 12–15.  

 

Craven P., “Waste recycling fuels Severn Trent works”, 2009, Water and 

Wastewater Treatment, 52, 35–36. 

 

Defra., “Shared goals – anaerobic digestion”, 2009, Defra, London, UK. 

 

Defra., “Developing an implementation plan for anaerobic digestion, report of the 

anaerobic digestion task group”, 2009a, Defra, London, UK. 

 

Erguder, T.H., Tezel, U., Guven, E. and Demirer, G.N., “Anaerobic 

boitransformation and methane generation potential of cheese whey in batch and 

UASB reactors”, 2001, Waste management, 21, 643–650. 

 

Gunasleen, V.N., “Biochemical methane potential of fruits and vegetable waste 

feedstocks”. Biomass and Bioenergy, 2004, 6, 389–399. 

 

Hedge, G. and Pullammanappallil, P., “Comparison of thermophilic and 

mesophilic one-stage, batch, high solids anaerobic digestion”, 2007, 

Environmental Technology, 28, 361–369. 

Heo, N.H., Park, S.C. and Kang, H., “Effects of mixture ratio and hydraulic 

retention time on single-stage anaerobic co-digestion of food waste and waste 

activated sludge”, 2004, Environmental Science Health, A39, 7, 1739–1756. 

 

Koster, I.W. and Lettinga, G., “The influence of ammonium–nitrogen on the 

specific activity of palletized methanogenic sludge”, 1984, Agric. Wastes, 9, 205–

216. 

 

10



Kim, H.W. and Shin, H.S., “Response surface optimisation of substrates for 

thermophilic anaerobic codigestion of sewage sludge and food waste”, 2007, J. 

Air and Waste Management, 57, 309–318. 

 

Kim, S.H., Han, S.K. and Shin, H.S., “Feasibility of biohydrogen production by 

anaerobic co-digestion of food waste and sewage sludge”, 2004, Int. J. Hydrogen 

Energy, 29, 1607–1616. 

 

Kim, W.H., Han, S.K. and Shin, H.S., “The optimisation of food waste addition as 

a co-substrate in anaerobic digestion of sewage sludge”, 2003, Waste 

Management Research, 21,515–526. 

 

Lahoz, C.G., Fernandez-Gimenez, B.F., Garcia-Herruzo, F., Rodriguez-Maroto, 

J.M. and Vereda-Alonso, J.M., “Biomethanization of mixtures of fruits and 

vegetables solid wastes and sludge from a municipal wastewater treatment plant”, 

2007, Journal of Environmental Science and Health Part A, 42,481–487. 

 

McCarty, P. L. and McKinney, R., “Salt toxicity in anaerobic digestion”, 1961, J. 

Water Pollution and Control Federation, 33, 399–415. 

 

Rizk, M.C., Bergamasco, R. and Tavares, C.R.G., “Anaerobic co-digestion of 

fruit and vegetable waste and sewage sludge”, 2007, Intl. J. Of Chemical Reactor 

Engineering, 5, A29, 173–185. 

 

Shanmugam, P. and Horan, N.J.,  “Simple and rapid methods to evaluate methane 

potential and biomass yield for a range of mixed solid wastes”, 2009, Bioresource 

Technology, 100, 471-474 

 

Sievers, D.M. and Brune, D.E., “Carbon/nitrogen ratio and anaerobic digestion of 

swine waste”, 1978, Transactions of the ASAE, 21, 537–549. 

 

Sosnowski, P., Weiczorek, S. and Ledakowicz, S., “Anaerobic co-digestion of 

sewage sludge and organic fraction of municipal solid waste”, 2003, Advances in 

Environmental Resources, 7, 609–616. 

 

Sweenie P., “The Future of AD”, 2009, CIWM, Macnhester, UK, May, 44-45.  

 

Tchobanoglous, G. Theisen, H. and Vigil, S. “Integrated solid waste management: 

engineering principles and management issues”, 1993, McGraw-Hill, New York. 

USA. 

 

11Siddiqui et al.: Optimisation of C:N Ratio Using the BMP Test

Published by The Berkeley Electronic Press, 2011



Val Velsen, A.F.M, “Adaptation of methanogenic sludge to high ammonia-

nitrogen concentrations”, 1979, Water Research, 13, 995–999. 

 

Watson J. D. “Sludge digestion”, 1923, Assoc. Man. Sew. Disp. Works. 117 – 

122. 

 

12


