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On boosting kernel regression

Marco Di Marzio and Charles C. Taylor

DMQTE, G.d’Annunzio University, ITALY and Department @itiStics, University of
Leeds, UK

Abstract

In this paper we propose a simple multistep regression smouethich is constructed in an
iterative manner, by learning the Nadaraya-Watson estinvéith L,boosting. We find, in
both theoretical analysis and simulation experimentg,ttieabias converges exponentially
fast, and the variance diverges exponentially slow. The iogsting step is analyzed in
more detalil, giving asymptotic expressions as functionthefsmoothing parameter, and
relationships with previous work are explored. Practieafgrmance is illustrated by both
simulated and real data.

Key words: Bias Reduction; Boston Housing Data; Convolution; Crodgfdtion; Local
Polynomial Fitting; Positive Definite Kernels; Twicing.

1 Introduction

1.1 Objectives and motivation

Due to impressive performance, boosting (Schapire, 198&yrel, 1995) has be-
come one of the most studied machine learning ideas in thistgts community.
Basically, aB-steps boosting algorithm iteratively computBsestimates by ap-
plying a given method, calledwaeak learnerto B different re-weighted samples.
The estimates are then combined into a single one which iSrtakeoutput. This
ensemble rule can be viewed apawerful committeewhich is expected to be
significantly more accurate than every single estimate. @agdeal of effort is
being spent in developing theory to explain the practicdlaveour of boosting,
and at the moment a couple of crucial questions appear tollesse successfully
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addressed. An important questionnby boosting works. Now it seems that a sat-
isfying response has been provided in that boosting is \deagea greedy function
approximation technique (Breiman, 1997; Friedman, 20@hgre a loss function
is optimized byB iterative adjustments of the estimate in the function spate
each iteration the weighting system indicates the diracbibsteepest descent. A
second question concerns the Bayes risk consistency, aedtrineoretical results
(Jiang, 2004) show that boosting is not Bayes risk condigted regularization
techniques are needed. Recent results suggest that samegrizagion methods ex-
ist such that the prediction error should be nearly optimestifficiently large sam-
ples. Jiang (2004) and Zhang and Yu (2005) analyze boodtyogitoms withearly
stopping whereas alternative regularization methods are coresiidey Lugosi and
Vayatis (2004) and by Zhang (2004). In practical appligaica stopping rule is
often determined by recourse to cross-validation basedibsasnples. However,
an alternative more computationally efficient approacimagilC-based methods,
has recently been proposed by Biithimann (2006).

To implement boosting we need to choose a loss function anelk Vearner. Ev-
ery loss function leads to a specifically shaped boostingralgn. For example,
AdaBoost(Schapire, 1990; Freund and Schapire, 1996) corresponespianen-

tial losses, and.;Boost(Friedman, 2001; Buhlmann and Yu, 2003)/tg losses.

Clearly, if a specific weak learner is considered as well, @sbing algorithm can
be explicitly expressed as a multistep estimator, and soatistscal properties can
thus be derived.

In the present paper we propose a new higher-order biasqhrametric regres-
sion smoother that results from learning the Nadaraya-oMa(bl-W) estimator
by L,boosting. Note that in polynomial regression bias becoma®reerious the
higher the curvature of the regression function. In thitelatase the use of a higher
polynomial fit — that is asymptotically less biased — is novays preferable
since:i) there is no guarantee that the regression function is sritigi smooth to
ensure explicit expressions for the asymptotic bias;igriley require much larger
samples.

In Section 2 we establish the properties of our boostingrdtya for each itera-
tion: exponentially fast bias reduction and exponentiglby variance inflation are
proved. In Section 3 we explore the asymptotic behavioun(as oo) in the first
boosting step and make clear links to previous work. Theltesfisome simula-
tion experiments for univariate data are summarized ini@edt In Section 5 we
investigate the potential of our boosting algorithm whepligl to a real multivari-
ate dataset. This extends the methods to higher dimensindsequires the use of
a data-based approach to select the smoothing parameteuarizer of boosting
iterations. Overall, consistent gains almost always emuiith respect to both the
N-W estimator and other boosting methods present in theatitee. A few con-
cluding remarks are contained in Section 6.



1.2 [Lsboosting

In what follows a description of.sboosting suitable for our aims is given; more
details can be found in the references.

Given three real random variableX, Y ande assume the following regression
model for their relationship

Y=m(X)+e, with Ee=0, var € = o2, Q)

where X and ¢ are independent. Assuming that i.i.d. observationsS :=
{(X:,Y:),i = 1,...,n} drawn from(X,Y) are available, the aim is to estimate
the mean response curvgx) = E(Y | X = x). Note thatm(z) = r(x)/f(x)
wherer(z) = [yg(z,y)dy, f(z) := [g(z,y)dy andg is the joint density of
(X,Y). This is the random design model, in the fixed design model ae fa

set of fixed, ordered points;, ..., z, that are often assumed equispaced, so the
sample elements are= (x;,Y;;i = 1,...,n).

Loboosting is a procedure of iterative residual fitting where final output is
simply the sum of the fits. Formally, considemeak learnerM that is a crude
smoother. An initial least squares fit is denotedbly. Forb € [1,..., B], M,
is the sum ofM,_; and a least squares fit of the residu8ls := {X;,e; =
Y; — M1 (X;)}. The Lyboosting estimator i3 .

Typically, the minimal loss obtainable over all boostingrétions, will be achieved
after a finite number of iterations. Actually, the mdsencreases, the mouve1 z be-
comes complex and tends to closely reproduce the sampldi{brng). Therefore,
a stopping rule is needed.

2 L,boosting and local polynomial fitting
2.1 Local polynomial and.;boosting
Givenp, usually0, 1 or 2, to estimaten(z) we could solve

Bmm Z{ Zﬁ] xj} K (X; —x) (2)

by fitting >>%_, 5; (- — z)’ to S. This giveSm/G) (z; S, h) == j!3,. Here, the weight
function K,(-) :== K(-/h)/h is non-negative, symmetric and unimodal, @nd 0
is the bandwidth. This class of estimators is known as loohimomial regression



smoothers (see, for example, Fan and Gijbels, 1996). Asiomett in Section 1.1,
the use of g-degree polynomial is meaningful only when»+1) (z) exists; this
constraint is regarded as the most severe required by thisagh.

Notice thatmU)(z; S, h) is a least squares fit, so each phiand p identifies a
weak learner fot.,boosting. But how to selegf? It is known that for a successful
implementation of boosting we needageaklearner. Now within the class of the
local polynomial smoothers the case- 0 — called the N-W smoother — can be
regarded as crude because it is the simplest polynomiah@gtaat term) to employ
in the fit of the Taylor series expansioniaf

2.2 The Nadaraya-Watson smoother diaBoostNW

Given a sampl&, we want to estimate:(z) in model (1). The N-W estimator is

Y K= X) Y,
n=i> Ky (v — X5)

mnw (25 S, h) =

which, as stated, is the solution of Equation (2) wher= 0. For the simplest
interpretation, note that a N-W fit is a locally weighted ag® of the responses.

Now we recall a bias approximation @iyw(z; S, h) useful for the next section.
Hardle (1990) gives a detailed treatment of the subject.

Let this usual set of conditions hold

(1) z is an interior point of the sample space, iigf(suppf) + h < z <
sup(suppf) — h;

(2) m and f are twice continuously differentiable in a neighbourhobd;o

(3) the kernelK is a symmetri®DF;

(4) h — 0andnh — oo asn — oc;

(5) f”is continuous and bounded in a neighbourhood.of

Indicate by#(-; S, k) and f(-; h) the numerator and denominator gy (-; S, h),
respectively. Using condition (4), it has been shown that¢lding term of a large
sample approximation givésmyw ~ E7/E f. It is easy to show that

h2
E7(x; S, h) = r(z) + 3#27""(55) +O(h"); 3)
wherep,, ;= [v*K(v)dv, and that

2

E fla; ) = £(2) + i f" () + O(1) @



Therefore, the bias is of ordér(h?), in particular:
(@) i (25 5,1) = 2 (17(0) = () ()} ®
m(x mnw (235, ~2f(x)rx m(x x)y.

We proposéd.,boosting with the N-W estimator as our weak learner usingdhe
lowing pseudocode:

Algorithm: L,BoostNW

1. (Initialization) Given S andh > 0,
(i) mo (x; h) == mnw (255, h).
2. (Iteration) Repeatfob =1, ..., B
() e;: =Y, —mp1 (Xi;h) i=1,....m
(i) my (x;h) = mp_q1(z;h) + mnw (x;Se, h), where S, = {(X;,¢;),i =
1,...,n}.

2.3 Properties of ;BoostNW

Let (x1,v1), .., (zn, yn) be data from model (1), the Nadaraya-Watson estimates at
the observation points are compactly denoted as

ﬁzozNKy

where m! = (ig(z1;h),....mo(xn; h)), N7 = diag({>Tr, Kn(z1 —
zi)boo A Kn(zn — 2) 1), y7 = (Y1, 0 yn) @nd (K = Kl — 25).
Notice that this fit is linear, but unfortunately the hat maiN K is not symmetric,
therefore the detailed theory established by Buhlmann &003) for L,boosting

of symmetric learners is not applicable here. Indicatpas( A) the set of the char-
acteristic roots of the square matuk It will be apparent that.,BoostNWworks
properly only ifspec(NK) C (0,1]; in Theorem 1 we define a class of kernels
satisfying such a property. In Theorem 2 we give finite samapt®iracy measures
of L,BoostNWat steph > 0.

Theorem 1 If the continuous second-order kern€lis

1) a Fourier-Stieltjes transform of a finite measure; and
2) symmetric and unimodal,

thenspec(INK) C (0, 1]. Moreovermin spec(NK) < 1.
Proof: See the Appendix.

According to Theorem 1, gaussian and triangular kernelkl ys&ictly positive
characteristic rootsyhile many popular ones such as Epanechnikov, Biweight and



Triweight do not This is somewhat surprising, in view of the fact that thenleér
choice is often influenced by computational convenience.

Now define the mean squared errorlgBoostNW averaged over the observation
pointsxy, ..., z,, as

ave-MSE(7i,; m, 0°) := ave-bias®(71i,; m) + ave-var(my; 0?),

wherem?® := (m(z;),...,m(x,)) is the vector of the regression function at the
observation points,

S|

ave-bias® (71, m) 1=

i(Embm; B — m(z))?,

and

1 n
ave-var(my; 0°) := = _varmiy(z;; h).
n =1
Theorem 2 Let (z1,11), ..., (xn, y,) be data from model (1), then

1
ave-bias®(m; m) = ﬁmT(U_l)Tdiag((l — ) THUTUdiag((1 — M) HU 'm,

2
ave-var(imy; 02) = —trace{Udiag(1 — (1 — \)"* U1 (U~")Tdiag(l — (1 — \,)**HUT}.
n

where \, ..., \,, are the characteristic roots odNK, b > 0, andU isan x n
invertible matrix of real numbers.

Moreover, ifspec(N K) C (0, 1], then

lim ave-bias®(my; m) = 0,

b—o00

lim ave-var(my; 0?) = o2,

b—o00

lim ave-MSE(m;; m, 02) = o?;

b—oo
ave-bias® converges exponentially fast, whilee-var converges exponentially slow.
Proof: See the Appendix.

For a given step, the bias-variance tradeoff emerges: increased chaistteoots
correspond to a bandwidth reduction, with obvious conseces But it is also
apparent that, if Theorem 1 holds, for edch [1, ..., n] we have

lim (1 — Xg)"™ = lim (1 =\ =0; (6)



this suggests that bandwidth selection needs to be accsimegliby taking into
account the boosting iterations planned. However, as icdlse ofL,boosting of
symmetric learners (Buihlmann & Yu (2003)), the bias desegaxponentially fast
towards zero, while variance increases exponentially sbovardss2, which shows
a resistance to overfitting.

3 The first boosting step B = 1)

3.1 L,BoostNWreduces the bias of the N-W estimator

In this Section we consider the asymptotic bias and variamdke first boosting
step. This is an alternative perspective to the one usedeiptévious section in
which conditional expectations were obtained for finite gka®.

Theorem 3 Assuming conditions (1)—(5) hold, after the first boostiregpsve have
Emi(x; h) = m(x) + o(h?),

varmy(z; h) < 4 var mg(x; h).

Proof: See the Appendix.

As a consequence, we observe a reduction in the asymptascflimO(h?) in
Equation (5) too(h?) above. This conclusion is consistent with that found by Di
Marzio and Taylor (2004, 2005), where boosting kernels gjivigher order bias
for both density estimatioand classification More generally, bias reduction was
noted by Friedmaeet al. (2000) when consideringdaboostSince at the first step
the magnitude order of the variance is preserved, then tla reguared error is
reduced provided that is sufficiently large.

3.2 Links to previous work

3.2.1 Twicing and higher order kernels: theory

The procedure of adding the smoothing of the residuals tdinstesmoothing was
firstly suggested by Tukey (1997, p. 526-531) and cadlleding; he also suggested
the possibility of further iterations. After this, Stuetzhind Mittal (1979) pointed



out that twicing for kernel regression in a fixed, equispatesign is

msm(x; s, h) = on ! Z Kp(x —x)Y; — n! Z Ky (z — x;) Z Ky (x; — ;)Y
=1

i=1 i=1

wherez; = 0 andz, = 1. They observed that the second summand contains
a discretization of a convolution of the kernel with itsélhus, for a sufficiently
fine, equispaced, fixed design twicing approximates thenestirim g, (z; s, h) =

n 'Y Kj(z — z;)Y; with K} := 2K, — (K * K),,. (The convolution between pdfs
fandgis (f xg)(x) := [ f(x —y)g(y) dy.) Now note that/; is a higher order
kernel, here called the convolution kernel, consequently is a higher order bias
method.

Note that although both are higher order biasedy, is defined only for the fixed
equispaced design case, whilg is indifferent to the design. An obvious ques-
tion concerns the possibility of extendimgs,; to the random design, and so we
will compare — both theoretically and numerically — the penmhance of such
an extension withn;. Assume thatk(;, is a normal density with mean zero and
standard deviatioh, denoted a®;,, because in this case the convolution is simply
(¢*@)n = ¢/, There are two main options of implementing twicing by uding
convolution kernel:

S g — XY S {20n(e = X)) = dug(r — X0} Vi
S OXLidie=X) o {20m(r - X)) — oz — X,)}
sy Ol — X3)Y; B Y1 Oyan(z — X0)Y,

iy On(z — Xi) Y1 byan(r — Xi)

in whichm} can be viewed as the closest onetg,,. It simply amounts to dividing
mgy — that is a consistent estimator of— by a density estimate: it is a ‘higher
order N-W’ smoother derived from a ‘higher order Priest&yao’ one. Surelyn;
appears a more direct implementation of the twicing ideaiandost similar to
my. We can compare each of theserig, and all three estimators can be compared
(bias and variance etc.) with the true regressiom simulations.

it (2 S, h) -

ik (a; S, h) = 2

Denote the numerator and denominatoridf(z; k) by 7% (x;h) and f;(x;h).
Naively plugging these in to equations (3) and (4) we wowt g

Emi(x; S, h) = {2’/’(1‘) + h2por” (z) — r(x) — (\/_%h),ugr”(x) + 0(h2)}

(v2h)*
2

X {Qf(fc) +h2f"(x) = f(z) - paf" () + O(hz)}
= m(x) + o(h?)

and theO(h?) bias terms appears to have been eliminated. However, weaite
since f; can easily take the valug the approximatiort m; ~ E7;/E f; is no



longer valid. Although the numerator and denominator bexaero at the same
time, the denominator can take negative values while theenator is positive, so
the estimator will be very unstable.

Secondly, if we use equation (5) to obt&ms we get

Em(z; S, h) = 2Eminw(x; S, k) — Eminw(z; S, V/2h)

=m(x),

and so the)(h?) bias term is apparently eliminated for this estimator also.

3.2.2 Twicing and higher order kernels: some simulations

Our objective here is to compare the estimators and thelityabd reduce bias
in different parts of the sample space. We will adopt the arpental design of
Hastie and Loader (1993) who considered adaptive kerneisstoat the boundary.
Specifically, we take: = 50 points which are (i) equispaced, and (K) ~ f(x)
with f(z) = 6x(1 — z)Ijpy(x). For eachs; we generatd; = z? + ¢; with &; ~
N(0,1). Givenh we can estimate the mean integrated squared ®ISE m =

E [ (m — m)” for each estimataii, including the basic N-W estimator.

In Table 1 we give the mean integrated squared bias, and the megrated vari-
ance corresponding to the optimal choice of smoothing petanm— to minimize
MISE over the full range — for each estimator. In the case olttiog, the number
of iterations was optimized over all paif8, b). As in Hastie and Loader (1993),
we give a breakdown according to the interior, and centehefrang€0, 1]. The
results are estimated from 200 simulations of samplersize50.

It can be seen that most of the MISE is due to the contributidheaboundaries,
particularly the bias-squared, which is an order of magiatgreater. All three bias
reduction methods make most of their impact in the boundangribution, with
the bias showing a substantial decrease and only a modesasggcin variance,
with an overall reduction in MISE compared with the standds@d/ estimator. For
this example, it seems that; (boosting one iteration) is the besihgle iteration
method for both equispaced and random design data. Howeeenpte that the
bias is not as small — even after several boosting iteratieras that obtained by
Hastie and Loader (1993) for their local linear regress&tm&ator, which used an
adaptive smoothing parameter near the boundaries.

4 Simulation study (B > 1)

In this section we report the conclusions of a simulatiomgtwhich verifies the
finite sample performance @f,BoostNW To explore the potential of the method,



i Equispaced Random
Bias?
h Bound. Centre Total K Bound. Centre Total
MNW 0.23 0.00772 0.000506 0.00823.20 0.02249 0.001243 0.02374
m1 0.33 0.00560 0.000716 0.006320.28 0.01806 0.001102 0.01916
mj 0.29 0.00629 0.000540 0.00683.26 0.02032 0.001089 0.02141
ms 0.31 0.00572 0.000523 0.00624€.26 0.01990 0.001335 0.02123
My, 0.46 0.00487 0.001078 0.0059%.48 0.01571 0.001208 0.01691
i Equispaced Random
Variance
h Bound. Centre Total K Bound. Centre Total
MNW 0.23 0.02231 0.01145 0.033790.20 0.02850 0.01087 0.03937
m1 0.33 0.02350 0.01062 0.034110.28 0.03120 0.01061 0.04181
mj 0.29 0.02324 0.01112 0.034380.26 0.02958 0.01096 0.04055
ms 0.31 0.02359 0.01121 0.034800.26 0.02997 0.01060 0.04056
mp 0.46 0.02418 0.00988 0.034090.48 0.03274 0.01026 0.04300
Table 1

Best MISEs decomposed for several kernel regression dstisnanny — Standard
Nadaraya-Watsonj, — twicing; m},i = 1,2 — higher order kernel methods}z with

B = 4,6 (optimal) boosting iterations af,BoostNWfor equispaced and random spac-
ing, respectively . Integrated bias-squared and varianalei@ed over the boundary region
[0,0.3)U(0.7, 1], and centre regiofi).3, 0.7] for fixed (equi-spaced) design, and random de-
sign pointse;, i = 1,...,50. Averages taken ove@00 simulations, with bandwidth chosen
to minimize MISE in each case.

we defer the selection of the bandwidth and number of bogstarations, and
present the performance that each method gives when thevizithds optimally
selected. Results which use a cross-validation selecfidmeaequired parameters
will be discussed in section 5.

Our study is made of two parts. The first one is aimed to ilatstthe general
performance of.,BoostNWas a regression methqekr se here we have chosen
the models used by Fan and Gijbels (1996, pg. 111). In thensgzart we compare
LoBoostNWwith the L;boosting regression method proposed by Buhimann and
Yu (2003) using their simulation model. This comparisonagtigularly interesting
because their method is closely related to ours, in that léseay a nonparametric
smoother (using splines) b boosting.
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4.1 General performance

Fan and Gijbels (1996) characterize their case studiedfasitfiestimation prob-
lems due to the level of theoise to signal ratiovalues. Consider model (1) with
¢ normally distributed; the simulation models are specifiedable 2, where, as

Model m () o
1 T+ 2exp (—16::32) 0.4
2 sin(2z) + 2 exp (—162?) 0.3
3 0.3exp{—4 (z +1)*} + 0.7exp{—16 (z — 1)*} 0.1
4 0.4z 41 0.15

Table 2
The simulation models of Fan and Gijbels (1996).

suggested by Fan and Gijbels, a random design was adoptedottels 1, 2 and 3

X ~ U(—2,2) and for modell X ~ N(0,1). We performed simulations for sam-
ple sizes>0, 100 and200. In Figure 1 we have plotted the integrated mean squared
error forn = 50 for various values ofh, B). The plots confirm that boosting can
reduce the MISE if the smoothing parameter is chosen ctyréaamerical sum-
maries are given in Table 3, which also include informati@ndther sample sizes.
This Table shows the best MISEs (calculated from 200 samples,boosting
with the N-W smoother as the weak learner, as well as the gdH SE which can

be achieved by boosting with respect to the N-W estimator.

The results for model 4 suggest that a very large smoothingnpeter, together
with very many boosting iterations, are preferred for dakeclv are generated by
a straight line. In Figure 2 we plot the estimatés(x; h) for various values of
b, and then compare the valugs;(z; h), migoo(x; k) andmigeo.n(x) with the
true model and the standard (OLS) regression line. It careba that the effect
of boosting has given a very similar result to a nonparameiiynomial fit with
degreep = 1. This approximation seems to hold true of the other modelsedls
but we have preferred this example because it shows thatibgdsxes one of
the main problems of the N-W smoothies. — as pointed out by Muller (1993)
— the difficulty of estimating straight regression lines wh¥ is not uniformly
distributed.

4.2 Comparison with boosted splines

The simulation model used by Bilhimann and Yu (2003) is $ijgelcby

m(X) =08 +sin(6X), X ~U(=1/2,1/2), ¢~ N(0,4).

11



Model 1; n=50 Model 2; n=50
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Model 3; n=50 Model 4; n=50

0.8
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Fig. 1. MISEs forn = 50 for each of the four models given in Table 2. These are given
as a function of the smoothing parameter for various valfigs & 1,2, 3, ... as shown in
the plots). The points (joined by a dashed line) are the gitimlues (over) for eachB.

They estimaten(z) by using splines as the weak learneriyBoostwith 100 sam-
ples drawn for each of four sample sizes. The accuracy ionites equivalent to
MISE and is estimated in the usual way. The values are sumeathin Table 4,
where the results of the original study are also shown. Nwehoth methods are
optimized over their relevant parameters and so the cosgashould be mean-
ingful. For very small sample sizdsboosting is outperformed by its base learner:
marginally in the case of N-W; dramatically in the case ofirggd. In fact, our
results are uniformly better for all sample sizes, and aigfioour base learner is
asymptotically inferior to splines, for all L,BoostNWoutperforms the boosted
splines. So the best results were obtained when the N-W a&stins weaker than
splines and the need of a really weak learner to employ intb@pseems con-
firmed.
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Model MNW p=1 p=2 LyBoostNW gain
n=>50 | h MISE | h MISE | A MISE | MISE k h
1 A3 2477 | A7 2909 | .29 .3367 | .2268 3 .20 8.4%
2 1 .1841 | .15 .2101 | .26 .2459 | .1482 4 19| 19.5%
3 1 .0196 | .15 .0250 | .27 .0286 | .0167 4 19| 14.8%
4 .25 .0205 | 6* .0044 | 4 .0068 | .0049 70* 3.3*| 76.1%
n = 100
1 A2 1247 | .12 1346 | .20 .1383 | .1104 4 .19 11.5%
2 .09 .0866 | .10 .0907 | .18 .0898 | .0687 6 .19| 20.7%
3 .09 .0095| .10 .0101| .19 .0104 | .o077 6 .19| 19.0%
4 .21 .0101 | 10* .0019 | 4* .0029 | .0021 200* 5.3*| 79.3%
n = 200
1 .09 .0658 | .10 .0683 | .16 .0642 | .0557 5 .14] 15.4%
2 .07 .0439| .08 .0445| .15 .0401 | .0334 7 .18| 24.0%
3 .07 .0049 | .08 .0050 | .15 .0045 | .0037 8 .18| 24.5%
4 .14 .0059 | 10* .0011 | 4* .0014 | .0011 164-927 6.0% 81.4%
Table 3

Simulation results from boosting kernel regression usiag & Gijbels models shown in
Table 2. Gain is percentage improvement of the best boosstighate over the best N-
W smoothing,p = 1,2 correspond to local polynomial fitting using Equation (2)=
boundary values of the grid used.

estimated curves for model 4, bandwidth=5 boosting estimate at iteration 255, 1000, 10000

2.0
2.0

estimate
0.5 1.0 15
I I I
estimate
1.0 15
I

0.5
1

0.0
1
0.0

Fig. 2. Fitted line overz € [—3,3] for 50 observations from Model 4 in Table 2.
Left: various boosting iterations for smoothing parameter= 5. Right: Fitted line
for B = 255,1000, 10000 iterations (continuous), regression line (dotted), truedei
(dashed).
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Optimal Optimal | Optimal Optimal Gain
n | N-W spline LoBoostNW L,Boost| LoBoostNW| L,Boost
estimate estimate spline spline
10 | .7423 1787 7532 .9968 —1.5% | —28.0%
25 | .2797 3338 2783 .3349 0.5% -0.3%
50 | .1505 1657 .1460 .1669 3.0% —0.7%
100 | .0893 .0933 .0873 .0905 2.2% 0.9%
1000 | .0148 .0128 .0086 .0113 42.0% 12.2%

Table 4

LoBoostNWperformances when estimating the model used by Biuhimadr¥ar{2003).
The performances of smoothing splines dn@oostused by Buhlamnn and Yu (2003) are
also reported.

4.3 Optimal values of and B

The result in Equation (6) suggest thliaheeds to increase witR. The case stud-
ies of Fan and Gijbels depicted in Figure 1 unequivocallygesg that boosting
reduces oversmoothing effects if intensively iteratedreHee illustrate this by a
new, ad hocexample based on the model used by Buhlmann and Yu. We drew
200 samples witlh = 200 and estimated the regression function for various band-
widths and boosting iterations. The accuracy results avershn Figure 3, where
many MISE/iteration curves are depicted. The best MISE cailnenh =~ 0.2,

but values quite close to this occur for each setting of threlaédth. Remarkably,
note that when the bandwidths are around 3-3.5 times biggerQ.2, nearly op-
timal MISEs are reached after several hundreds of iteratiand moreover the
best N-W estimate is always beaten f8r> 700! Finally, Figure 3 also suggests
how bandwidths of the same magnitude work similarly, anotéason to conclude
that boosting is less sensitive to the bandwidth selectisk than standard kernel
regression.

Overall, note that regularizing through oversmoothing amjanction with many
iterations increases the combinations(bf B) for which boosting works. Thus,
the potential of reducing the need of an accurate bandwelédtgon and stopping
rule clearly emerges.

5 Application to multidimensional real data

In this section we investigate the behaviour of our smoothexr more practical
scenarioj.e. by using multivariate data and selecting both the smoothdegree

14



0.11 4 h=.70 h=.18
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i
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0.044 h=.56

0 500 1000 1500 2000 2500 3000
boosting iteration

Fig. 3. LoBoostNWestimates of the Buhlmann and Yu model. MISEs#oe 200 given
as a function of boosting iteration for various valuesioDotted line: best MISE of the
N-W estimator.

and the number of boosting iterations by cross-validatée extend our smoother
in the most usual way, that lies in building multiplicativerkels with a diagonal
bandwidth matrix. In particular, wittD-dimensional datdx;,v:), .. ., (€., Yn),
we employ, with obvious notation, the following weight fiion

Kh ({L‘d — xid) .

Mo

d=1

We use the normal kernel function because this ensuredhabnditions of The-
orem 1 hold in the multivariate setting.

We obtain(hcy, Bey) by leave-one-out cross-validatidre. as the pair that solves

min =
b

(v — 7§ (@) (7)

-

I
—

7

wherem! ") (x;; h) is the LyBoostNWestimate ofn(x;) when theith observation
is omitted.

We exemplify our method with the Boston housing data. Thisskt, created by
Harrison and Rubinfeld (1978), has been extensively apdlyn the statistical
learning literature; see, for example, Breiman and Friedi&85), Doksum and
Samarov (1995) and Chaudhuri et al. (1997). It contains f@&ta06 census tracts
in the Boston area taken from 1970 Census. Each of these S@taes has 14
socio-economic variables (13 continuous and one binaiyg. fEsponse variable
is the logarithm of the median value of owner-occupied home®1000’s. Note
that in this dataset many of the explanatory variables hppeoximately linear re-
lationships, so the curse of dimensionality problem mayhb®so evident as the
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number of variables could lead us to believe.

MSE MS E)pt hCV hopt BCV Bopt

local linear 0.1593 0.1504 2.00 2.55
MNW 0.2575 0.2553 0.55 0.50
L-,BoostNW 0.1525 0.1477 2.00 1.70 119 115

parametric linean 0.3340

Table 5
Results from the Boston housing data.

Since we are using a common smoothing parameter for allblasawe have stan-
dardized the data. We randomly chose 350 instances as mdyaiet, and the re-
maining data as a test set. The accuracy criterion was the suggred erron{SE)

on the test data. As a benchmark we used the plain N-W estintlagdocal linear
polynomial estimator (the solution of Equation (2) when= 1) and a standard
parametric linear model. Each cross-validation search whs performed in the
interval [0, 3]. The results are summarized in Table 5. The parametricrliitdzas

a MSE of 0.3340, suggests that a certain linearity is presentenddita. This ap-
pears confirmed by the good performance of the local line@mnator that yields
an accuracy 00.1593 which outperforms the N-W fit. Concerning our multistep
estimator, the cross-validation search of a pairB) was performed over the grid
0,1,...,3] x [1,2,...,200], with a MSE of 0.1525. It is clear from Table 5 that
L,BoostNWperforms well in higher dimensions, and that cross-vaiiatan be
used to successfully obtain the péir, B). Residual plots, shown in Figure 4 con-
firm this view. Note also that these accuracy values appeide gimilar to the
results from model 4 of Table 3 where a univariate linear rha@des estimated, so
our estimator seems to coherently extend its propertigsearultivariate setting.
Another interesting issue is that the cross-validatiomde®as very precise, be-
cause forB < 200 the best possibl®se of our boosted estimator 81477, and
the optimal setting ofh, B) is very similar to the cross-validation solution.

Chaudhuri et al. (1997) have given some motivation for usinty RM, LSTAT,
DIS as covariates. The results are quite consistent withatheariables’ case.
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Fig. 4. Residual plots of the Boston housing test data cporeding to the three best models
in Table 5.

6 Discussion
6.1 Alternative generalizations

Leth” := (hg,...,hg),w! := (wy,...,wp) be vectors of smoothing parameters
and weights respectively, then

B
w o, __
ICh . ijKhJ
J=0

is a weighted sum of kernel functions. The convolution kbaused in Section 3.2 is
a special case of this formulation with = (2, —1) andh = (h,+/2h) andB = 1.
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We can thus generalize; to

B
my(z; S, w, h) = Zwﬁn\NW(z; S, hj). (8)

J=0

This is simply a linear combination of N-W estimators, eadthvts own band-
width. Similar proposals were considered by Rice (1984) &mks (1993) who
used weighted combinations of kernels to improve estirsabthe boundary. In
order form, to be asymptotically unbiased we requiftw; = 1. Given a vector
of bandwidthsh we can choose the; to eliminate the bias terms which arise as a
consequence Qfy.

Since we have used a normal kernel, for a given bandwidtle havey,, o« h%,
and u9,—1 = 0 so a simple approach to obtain the weightswould be to set
h"” = (h,\/ch,...,cP/?h) for somec, and then to solv€w = (1,0,...,0)” for
w, where (forB > 1)

11 - 1

1le - (P
C =

1¢B ... 2B

and this simplification requires the selection of only twogpaeters € andh), for
a givenB. Note that the above convolution kernk}. usesc = 2, and that the
solution forw gives the desired valug, —1).

As an alternative approach, we could consider obtaining«thby ordinary least
squares regression, i.e. obtain from w = (X7X)'XTY whereY? :=
(Y1,...,Y,) is the vector of responses, and tfth column of the matrixX is
given by (mnw(X1; S, b)), ..., mnw(Xn; S, hj))T. This approach could also allow
for the selection o3 through standard techniques in stepwise regression. Algo n
the connection between (8) and a radial basis functa®) representation. In this
framework thev; are the weights, ananw (z; S, ;) act as “basis functions” which
are themselves a weighted sum of basis functions. So thmauation is equivalent

to a generalize&BF network, in which an extra layer is used to combine estimates
but with many of the weights being fixed.

6.2 Conclusions

We have discussed a multistep kernel regression smootheraed by learning
the N-W estimator by.,boosting. Our main result is that the biasiglBoostNW
decreases exponentially fast towards zero, while the megiancreases exponen-
tially slow towards>? and consequently could beat the overall MISE performance
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of the ordinary kernel methods in regression. Our expertmshow that this su-
periority occurs for several settings ¢, B), and also that cross-validation can
be successfully used for parameter selection. It is clesrttie optimal bandwidth
for boosting is greater than the values provided by the stahselection theories.
Finally, note that our method is easily extended to muliatardata.
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Appendix

Proof of Theorem 1 Following Bochner’s theorem (see e.g. Lax, 2002, p. 144),
spec(K) C [0,+o0) if and only if K is a Fourier-Stieltjes transform of a finite
measure. Due to symmetry and unimodality,(0) > Kj,(z; — z;) for eachi #

j, sodetK > 0. Clearly,spec(N'2KN'?) = spec(NK), but NK is row
stochastic, so apply the Perron-Frobenius theorem fortwhic

1= miin{i(NK)ij} < max spec(NK) < mzax{i(NK)l-j} =1

J=1 Jj=1

and conclude thatpec(NK) < (0,1]. Finally, trace(NK) < n Yyields
min spec(NK) < 1. O

Lemma 1 (Bihlmann & Yu, 2003) Consider linear smoothing by a hat matdx
with characteristic rootg, ..., p,. OperateL,boosting with weak learnek. Then
Lsboosting at step > 0 is a linear smoother as well, whose hat matrix is equal to
I—(I-L)".

Proof: The residual vector at stép< [1, ..., B], denoted ag,, can be written as

€, =Y — ’l/’l’\lb,1 = €p_1 — L6b71 = (I — L)eb,1

implyinge, = (I — L)y forb € [1, ..., B]. Sincem, = Ly, using a telescope-sum
argument, we obtain

my =3 LI — L)y = (I = (I-L)"")y. O
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Proof of Theorem 2 From Lemma 1 it follows that thé,BoostNWfit is m, =
M,y. Now, the hat matrixVf, can be written as

M,=UD,U!

whereD,, := diag(1 — (1 — X)L, .., 1 — (1 — X)) )5 Ay, ..., A\, are the char-
acteristic roots offV K, which are real due to theorem 1. As a consequence, the
matrix U, formed by the characteristic vectorsdf,, has real entries. Notice that
N K is not symmetric, therefol®@U” # I. Now
bias®(71y; m) = (E[Mhy] — m)" (E[M,y] — m)
= ((My — I)m)" (M, — I)m)

where
M,-I=UD,-NU"
= Udiag(—(1 — A\, .., —(1 = \)"HUu .
The covariance matrix is
cov(Myy) = Mycov(y) M} = *M, M} = F*UD,U (U D,U",
so the variance is

var(my; m) = trace(cov(Myy)).

Assume thatpec(NK) C (0, 1]. For anyk € [1, ..., n] the bias order i©){(1 —
\e)?*1}, while the variance order i©{(1 — (1 — X\z)"*1)?}. So bias converges
exponentially fast and variance converges exponentikdly.s O

Proof of Theorem 3 We have
f(a:, h) '

Now take the expectation of the numerator and denominatw. éixpectation of
the second term in the numerator can be written as

my(z; h) =

n

E [Ky (z — X,)mo(X1; k)] =E { 1hKh T — X)) Z Xj)Yj/f(Xl;h)]

= [ =) w0 s | )
{10+ s+ o)} s)pauan
_% /Kh(x—u)Kh(u—v)m(v)

X {1 + %{;5@ + o(hQ)}_ f(v)dudv
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where the second line was obtained by ignoring the non-asiichterm in the sum
(whenj = i), and the third one uses the fact thatv) = [y f(y | v)dy.

Making the change of variable= (v — u)/h and expandingn(v) = m(u + ht)

andf(v) = f(u+ ht) in a Taylor series we get the following expansion up to terms
of orderO(h?)

E [K) (z — X)mo(X;h)] = //Kh (x —u) K(t) {m(u) + thm/(u) + M}

2
APl oy« L@
{1 27 () }{f()+thf()+ 5 }dtd
= [ Ko=) [+ 4 070 = m @)
®
h2M2

= (@) + W par”(x) = —=m(x) " (). (10)
The RHS of Equation (9) was obtained on simplification andlieg thatr” (u) =
m"(u) f(u) + 2m/(u) f'(u) + m(u) f”(u); the RHS of Equation (10) has been ob-
tained by making a second change of variable= (x — u)/h, expanding in a
Taylor series, and integrating.

To obtain the expectation of the numeratomof(x; k), we multiply Equation (3)
by 2, then subtract the RHS of Equation (10) to get

n 2

€ |2r(ast) £ 37K o = X)X )| = )+ L2 0,

Finally we divide this by the approximate (up to the secondkorexpectation of
the denominator off2; (x; ) which is given in Equation (4). We can thus write the
following expression for the asymptotic expectation upetorts of ordeiO (h?)

2 (v 2f(2)
SECYJN. L, W 1 B
Fa) \2@) + Whaf (@) 2f(@) + WPpaf"(2)

=m(x).

The variance ofn (x; h) can be written as
var mo(z; h) + 2 cov (g (z; h), maw(x; Se, b)) + var maw(x; Se, h)

where S, are the residuals of the first fit. Now sinear myw(x;Se, h) <
var 1o(z; h) we have the result.
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For the conditional version of the variance result, we caidd Theorem 2 substi-
tutingb = 1 andb = 0 into the expression fatve-var. Since)\;, < 1, we have

(20 — A7) < 4] < 4. O
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