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On boosting kernel regression

Marco Di Marzio and Charles C. Taylor

DMQTE, G.d’Annunzio University, ITALY and Department of Statistics, University of
Leeds, UK

Abstract

In this paper we propose a simple multistep regression smoother which is constructed in an
iterative manner, by learning the Nadaraya-Watson estimator with L2boosting. We find, in
both theoretical analysis and simulation experiments, that the bias converges exponentially
fast, and the variance diverges exponentially slow. The first boosting step is analyzed in
more detail, giving asymptotic expressions as functions ofthe smoothing parameter, and
relationships with previous work are explored. Practical performance is illustrated by both
simulated and real data.

Key words: Bias Reduction; Boston Housing Data; Convolution; Cross Validation; Local
Polynomial Fitting; Positive Definite Kernels; Twicing.

1 Introduction

1.1 Objectives and motivation

Due to impressive performance, boosting (Schapire, 1990; Freund, 1995) has be-
come one of the most studied machine learning ideas in the statistics community.
Basically, aB-steps boosting algorithm iteratively computesB estimates by ap-
plying a given method, called aweak learner, to B different re-weighted samples.
The estimates are then combined into a single one which is thefinal output. This
ensemble rule can be viewed as apowerful committee, which is expected to be
significantly more accurate than every single estimate. A great deal of effort is
being spent in developing theory to explain the practical behaviour of boosting,
and at the moment a couple of crucial questions appear to havebeen successfully
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addressed. An important question iswhyboosting works. Now it seems that a sat-
isfying response has been provided in that boosting is viewed as a greedy function
approximation technique (Breiman, 1997; Friedman, 2001),where a loss function
is optimized byB iterative adjustments of the estimate in the function space; at
each iteration the weighting system indicates the direction of steepest descent. A
second question concerns the Bayes risk consistency, and recent theoretical results
(Jiang, 2004) show that boosting is not Bayes risk consistent and regularization
techniques are needed. Recent results suggest that some regularization methods ex-
ist such that the prediction error should be nearly optimal for sufficiently large sam-
ples. Jiang (2004) and Zhang and Yu (2005) analyze boosting algorithms withearly
stopping, whereas alternative regularization methods are considered by Lugosi and
Vayatis (2004) and by Zhang (2004). In practical applications, a stopping rule is
often determined by recourse to cross-validation based on subsamples. However,
an alternative more computationally efficient approach, using AIC-based methods,
has recently been proposed by Bühlmann (2006).

To implement boosting we need to choose a loss function and a weak learner. Ev-
ery loss function leads to a specifically shaped boosting algorithm. For example,
AdaBoost(Schapire, 1990; Freund and Schapire, 1996) corresponds toexponen-
tial losses, andL2Boost(Friedman, 2001; Bühlmann and Yu, 2003) toL2 losses.
Clearly, if a specific weak learner is considered as well, a boosting algorithm can
be explicitly expressed as a multistep estimator, and some statistical properties can
thus be derived.

In the present paper we propose a new higher-order biased nonparametric regres-
sion smoother that results from learning the Nadaraya-Watson (N-W) estimator
by L2boosting. Note that in polynomial regression bias becomes more serious the
higher the curvature of the regression function. In this latter case the use of a higher
polynomial fit — that is asymptotically less biased — is not always preferable
since:i) there is no guarantee that the regression function is sufficiently smooth to
ensure explicit expressions for the asymptotic bias; andii) they require much larger
samples.

In Section 2 we establish the properties of our boosting algorithm for each itera-
tion: exponentially fast bias reduction and exponentiallyslow variance inflation are
proved. In Section 3 we explore the asymptotic behaviour (asn → ∞) in the first
boosting step and make clear links to previous work. The results of some simula-
tion experiments for univariate data are summarized in Section 4. In Section 5 we
investigate the potential of our boosting algorithm when applied to a real multivari-
ate dataset. This extends the methods to higher dimensions,and requires the use of
a data-based approach to select the smoothing parameter andnumber of boosting
iterations. Overall, consistent gains almost always emerge with respect to both the
N-W estimator and other boosting methods present in the literature. A few con-
cluding remarks are contained in Section 6.
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1.2 L2boosting

In what follows a description ofL2boosting suitable for our aims is given; more
details can be found in the references.

Given three real random variables,X, Y andε assume the following regression
model for their relationship

Y = m (X) + ε, with E ε = 0, var ε = σ2, (1)

where X and ε are independent. Assuming thatn i.i.d. observationsS :=
{(Xi, Yi), i = 1, ..., n} drawn from(X, Y ) are available, the aim is to estimate
the mean response curvem(x) = E(Y | X = x). Note thatm(x) = r(x)/f(x)
wherer(x) :=

∫
yg(x, y) dy, f(x) :=

∫
g(x, y)dy and g is the joint density of

(X, Y ). This is the random design model, in the fixed design model we have a
set of fixed, ordered points,x1, . . . , xn that are often assumed equispaced, so the
sample elements ares := (xi, Yi; i = 1, ..., n).

L2boosting is a procedure of iterative residual fitting where the final output is
simply the sum of the fits. Formally, consider aweak learnerM that is a crude
smoother. An initial least squares fit is denoted byM0. For b ∈ [1, . . . , B], Mb

is the sum ofMb−1 and a least squares fit of the residualsSe := {Xi, ei :=
Yi −Mb−1 (Xi)}. TheL2boosting estimator isMB.

Typically, the minimal loss obtainable over all boosting iterations, will be achieved
after a finite number of iterations. Actually, the moreB increases, the moreMB be-
comes complex and tends to closely reproduce the sample (overfitting). Therefore,
a stopping rule is needed.

2 L2boosting and local polynomial fitting

2.1 Local polynomial andL2boosting

Givenp, usually0, 1 or 2, to estimatem(x) we could solve

min
β0,...,βp

n∑

i=1



Yi −

p∑

j=0

βj (Xi − x)j





2

Kh (Xi − x) (2)

by fitting
∑p

j=0 βj (· − x)j to S. This givesm̂(j)(x; S, h) := j!β̂j . Here, the weight
functionKh(·) := K(·/h)/h is non-negative, symmetric and unimodal, andh > 0
is the bandwidth. This class of estimators is known as local polynomial regression
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smoothers (see, for example, Fan and Gijbels, 1996). As mentioned in Section 1.1,
the use of ap-degree polynomial is meaningful only whenm(p+1)(x) exists; this
constraint is regarded as the most severe required by this approach.

Notice thatm̂(j)(x; S, h) is a least squares fit, so each pairh and p identifies a
weak learner forL2boosting. But how to selectp? It is known that for a successful
implementation of boosting we need aweaklearner. Now within the class of the
local polynomial smoothers the casep = 0 — called the N-W smoother — can be
regarded as crude because it is the simplest polynomial (a constant term) to employ
in the fit of the Taylor series expansion ofm.

2.2 The Nadaraya-Watson smoother andL2BoostNW

Given a sampleS, we want to estimatem(x) in model (1). The N-W estimator is

m̂NW (x; S, h) :=
n−1 ∑n

i=1 Kh (x − Xi)Yi

n−1
∑n

i=1 Kh (x − Xi)

which, as stated, is the solution of Equation (2) whenp = 0. For the simplest
interpretation, note that a N-W fit is a locally weighted average of the responses.

Now we recall a bias approximation of̂mNW(x; S, h) useful for the next section.
Härdle (1990) gives a detailed treatment of the subject.

Let this usual set of conditions hold

(1) x is an interior point of the sample space, i.e.inf(suppf) + h ≤ x ≤
sup(suppf) − h;

(2) m andf are twice continuously differentiable in a neighbourhood of x;
(3) the kernelK is a symmetricPDF;
(4) h → 0 andnh → ∞ asn → ∞;
(5) f ′′ is continuous and bounded in a neighbourhood ofx.

Indicate byr̂(·; S, h) and f̂(·; h) the numerator and denominator ofm̂NW(·; S, h),
respectively. Using condition (4), it has been shown that the leading term of a large
sample approximation givesE m̂NW ≈ E r̂/E f̂ . It is easy to show that

E r̂(x; S, h) = r(x) +
h2

2
µ2r

′′(x) + O(h4); (3)

whereµk :=
∫

vkK(v)dv, and that

E f̂(x; h) = f(x) +
h2

2
µ2f

′′(x) + O(h4). (4)
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Therefore, the bias is of orderO(h2), in particular:

m(x) − m̂NW (x; S, h) ≈

h2µ2

2f(x)
{r′′(x) − m(x)f ′′(x)} . (5)

We proposeL2boosting with the N-W estimator as our weak learner using thefol-
lowing pseudocode:

Algorithm: L2BoostNW

1. (Initialization) Given S andh > 0,
(i) m̂0 (x; h) := m̂NW (x; S, h).

2. (Iteration) Repeat forb = 1, ..., B
(i) ei := Yi − m̂b−1 (Xi; h) i = 1, ..., n;
(ii) m̂b (x; h) := m̂b−1 (x; h) + m̂NW (x; Se, h), where Se = {(Xi, ei), i =

1, . . . , n}.

2.3 Properties ofL2BoostNW

Let (x1, y1), ..., (xn, yn) be data from model (1), the Nadaraya-Watson estimates at
the observation points are compactly denoted as

m̂0 = NKy

where m̂T
0 := (m̂0(x1; h), ..., m̂0(xn; h)), N−1 := diag({∑n

i=1 Kh(x1 −
xi)}, . . . , {

∑n
i=1 Kh(xn − xi)}), yT := (y1, ..., yn) and (K)ij := Kh(xi − xj).

Notice that this fit is linear, but unfortunately the hat matrix NK is not symmetric,
therefore the detailed theory established by Bühlmann & Yu(2003) forL2boosting
of symmetric learners is not applicable here. Indicate asspec(A) the set of the char-
acteristic roots of the square matrixA. It will be apparent thatL2BoostNWworks
properly only if spec(NK) ⊂ (0, 1]; in Theorem 1 we define a class of kernels
satisfying such a property. In Theorem 2 we give finite sampleaccuracy measures
of L2BoostNWat stepb ≥ 0.

Theorem 1 If the continuous second-order kernelK is

1) a Fourier-Stieltjes transform of a finite measure; and
2) symmetric and unimodal;

thenspec(NK) ⊂ (0, 1]. Moreover,min spec(NK) < 1.

Proof: See the Appendix.

According to Theorem 1, gaussian and triangular kernels yield strictly positive
characteristic roots,while many popular ones such as Epanechnikov, Biweight and
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Triweight do not. This is somewhat surprising, in view of the fact that the kernel
choice is often influenced by computational convenience.

Now define the mean squared error ofL2BoostNW, averaged over the observation
pointsx1, ..., xn, as

ave-MSE(m̂b; m, σ2) := ave-bias2(m̂b; m) + ave-var(m̂b; σ
2),

wheremT := (m(x1), ..., m(xn)) is the vector of the regression function at the
observation points,

ave-bias2(m̂b; m) :=
1

n

n∑

i=1

(Em̂b(xi; h) − m(xi))
2,

and

ave-var(m̂b; σ
2) :=

1

n

n∑

i=1

var m̂b(xi; h).

Theorem 2 Let (x1, y1), ..., (xn, yn) be data from model (1), then

ave-bias2(m̂b; m) =
1

n
mT (U−1)T diag((1 − λk)

b+1)UT Udiag((1 − λk)
b+1)U−1m ,

ave-var(m̂b; σ
2) =

σ2

n
trace{Udiag(1 − (1 − λk)

b+1)U−1(U−1)T diag(1 − (1 − λk)
b+1)UT}.

whereλ1, ..., λn are the characteristic roots ofNK, b ≥ 0, and U is a n × n
invertible matrix of real numbers.

Moreover, ifspec(NK) ⊂ (0, 1], then

lim
b→∞

ave-bias2(m̂b; m) = 0 ,

lim
b→∞

ave-var(m̂b; σ
2) = σ2 ,

lim
b→∞

ave-MSE(m̂b; m, σ2) = σ2 ;

ave-bias2 converges exponentially fast, whileave-var converges exponentially slow.

Proof: See the Appendix.

For a given stepb, the bias-variance tradeoff emerges: increased characteristic roots
correspond to a bandwidth reduction, with obvious consequences. But it is also
apparent that, if Theorem 1 holds, for eachk ∈ [1, ..., n] we have

lim
h→0

(1 − λk)
b+1 = lim

b→∞
(1 − λk)

b+1 = 0 ; (6)
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this suggests that bandwidth selection needs to be accomplished by taking into
account the boosting iterations planned. However, as in thecase ofL2boosting of
symmetric learners (Bühlmann & Yu (2003)), the bias decreases exponentially fast
towards zero, while variance increases exponentially slowtowardsσ2, which shows
a resistance to overfitting.

3 The first boosting step (B = 1)

3.1 L2BoostNWreduces the bias of the N-W estimator

In this Section we consider the asymptotic bias and varianceat the first boosting
step. This is an alternative perspective to the one used in the previous section in
which conditional expectations were obtained for finite samples.

Theorem 3 Assuming conditions (1)–(5) hold, after the first boosting step we have

E m̂1(x; h) = m(x) + o(h2),

var m̂1(x; h) ≤ 4 var m̂0(x; h).

Proof: See the Appendix.

As a consequence, we observe a reduction in the asymptotic bias fromO(h2) in
Equation (5) too(h2) above. This conclusion is consistent with that found by Di
Marzio and Taylor (2004, 2005), where boosting kernels gives higher order bias
for bothdensity estimationandclassification. More generally, bias reduction was
noted by Friedmanet al. (2000) when consideringAdaboost. Since at the first step
the magnitude order of the variance is preserved, then the mean squared error is
reduced provided thatn is sufficiently large.

3.2 Links to previous work

3.2.1 Twicing and higher order kernels: theory

The procedure of adding the smoothing of the residuals to thefirst smoothing was
firstly suggested by Tukey (1997, p. 526–531) and calledtwicing; he also suggested
the possibility of further iterations. After this, Stuetzle and Mittal (1979) pointed
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out that twicing for kernel regression in a fixed, equispaceddesign is

m̂SM(x; s, h) := 2n−1
n∑

i=1

Kh(x − xi)Yi − n−1
n∑

i=1

Kh (x − xi)
n∑

j=1

Kh(xi − xj)Yj

wherex1 = 0 and xn = 1. They observed that the second summand contains
a discretization of a convolution of the kernel with itself.Thus, for a sufficiently
fine, equispaced, fixed design twicing approximates the estimatorm̂SM(x; s, h) =
n−1 ∑

K∗
h(x− xi)Yi with K∗

h := 2Kh − (K ∗K)h. (The convolution between pdfs
f andg is (f ∗ g)(x) :=

∫
f(x − y)g(y) dy.) Now note thatK∗

h is a higher order
kernel, here called the convolution kernel, consequentlym̂SM is a higher order bias
method.

Note that although both are higher order biased,m̂SM is defined only for the fixed
equispaced design case, whilêm1 is indifferent to the design. An obvious ques-
tion concerns the possibility of extendinĝmSM to the random design, and so we
will compare — both theoretically and numerically — the performance of such
an extension witĥm1. Assume thatKh is a normal density with mean zero and
standard deviationh, denoted asφh, because in this case the convolution is simply
(φ ∗φ)h = φ√

2h. There are two main options of implementing twicing by usingthe
convolution kernel:

m̂∗
1(x; S, h) :=

∑n
i=1 φ∗

h(x − Xi)Yi∑n
i=1 φ∗

h(x − Xi)
=

∑n
i=1

{
2φh(x − Xi) − φ√

2h(x − Xi)
}

Yi

∑n
i=1

{
2φh(x − Xi) − φ√

2h(x − Xi)
}

m̂∗
2(x; S, h) := 2

∑n
i=1 φh(x − Xi)Yi∑n
i=1 φh(x − Xi)

−
∑n

i=1 φ√
2h(x − Xi)Yi∑n

i=1 φ√
2h(x − Xi)

in whichm̂∗
1 can be viewed as the closest one tom̂SM . It simply amounts to dividing

m̂SM — that is a consistent estimator ofr — by a density estimate: it is a ‘higher
order N-W’ smoother derived from a ‘higher order Priestley-Chao’ one. Surelŷm∗

2

appears a more direct implementation of the twicing idea andis most similar to
m̂1. We can compare each of these tom̂1, and all three estimators can be compared
(bias and variance etc.) with the true regressionm in simulations.

Denote the numerator and denominator ofm̂∗
1(x; h) by r̂∗1(x; h) and f̂ ∗

1 (x; h).
Naı̈vely plugging these in to equations (3) and (4) we would get

E m̂∗
1(x; S, h) =

{
2r(x) + h2µ2r

′′(x) − r(x) − (
√

2h)2

2
µ2r

′′(x) + o(h2)

}

×
{

2f(x) + h2f ′′(x) − f(x) − (
√

2h)2

2
µ2f

′′(x) + o(h2)

}−1

= m(x) + o(h2)

and theO(h2) bias terms appears to have been eliminated. However, we notethat,
sincef̂ ∗

1 can easily take the value0, the approximationE m̂∗
1 ≈ E r̂∗1/E f̂ ∗

1 is no
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longer valid. Although the numerator and denominator become zero at the same
time, the denominator can take negative values while the numerator is positive, so
the estimator will be very unstable.

Secondly, if we use equation (5) to obtainE m̂∗
2 we get

E m̂∗
2(x; S, h) = 2 E m̂NW(x; S, h) − E m̂NW(x; S,

√
2h)

= m(x),

and so theO(h2) bias term is apparently eliminated for this estimator also.

3.2.2 Twicing and higher order kernels: some simulations

Our objective here is to compare the estimators and their ability to reduce bias
in different parts of the sample space. We will adopt the experimental design of
Hastie and Loader (1993) who considered adaptive kernels for use at the boundary.
Specifically, we taken = 50 points which are (i) equispaced, and (ii)X ∼ f(x)
with f(x) = 6x(1 − x)I[0,1](x). For eachxi we generateYi = x2

i + εi with εi ∼
N(0, 1). Givenh we can estimate the mean integrated squared errorMISE m̂ =
E

∫
(m̂ − m)2 for each estimator̂m, including the basic N-W estimator.

In Table 1 we give the mean integrated squared bias, and the mean integrated vari-
ance corresponding to the optimal choice of smoothing parameter — to minimize
MISE over the full range — for each estimator. In the case of boosting, the number
of iterations was optimized over all pairs(h, b). As in Hastie and Loader (1993),
we give a breakdown according to the interior, and center of the range[0, 1]. The
results are estimated from 200 simulations of sample sizen = 50.

It can be seen that most of the MISE is due to the contribution at the boundaries,
particularly the bias-squared, which is an order of magnitude greater. All three bias
reduction methods make most of their impact in the boundary contribution, with
the bias showing a substantial decrease and only a modest increase in variance,
with an overall reduction in MISE compared with the standardN-W estimator. For
this example, it seems that̂m1 (boosting one iteration) is the bestsingle iteration
method for both equispaced and random design data. However,we note that the
bias is not as small — even after several boosting iterations— as that obtained by
Hastie and Loader (1993) for their local linear regression estimator, which used an
adaptive smoothing parameter near the boundaries.

4 Simulation study (B ≥ 1)

In this section we report the conclusions of a simulation study which verifies the
finite sample performance ofL2BoostNW. To explore the potential of the method,
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Bias2
Equispaced Random

h Bound. Centre Total h Bound. Centre Total

m̂NW 0.23 0.00772 0.000506 0.008230.20 0.02249 0.001243 0.02374

m̂1 0.33 0.00560 0.000716 0.006320.28 0.01806 0.001102 0.01916

m̂∗
1 0.29 0.00629 0.000540 0.006830.26 0.02032 0.001089 0.02141

m̂∗
2 0.31 0.00572 0.000523 0.006240.26 0.01990 0.001335 0.02123

m̂k 0.46 0.00487 0.001078 0.005950.48 0.01571 0.001208 0.01691

Variance
Equispaced Random

h Bound. Centre Total h Bound. Centre Total

m̂NW 0.23 0.02231 0.01145 0.033750.20 0.02850 0.01087 0.03937

m̂1 0.33 0.02350 0.01062 0.034110.28 0.03120 0.01061 0.04181

m̂∗
1 0.29 0.02324 0.01112 0.034360.26 0.02958 0.01096 0.04055

m̂∗
2 0.31 0.02359 0.01121 0.034800.26 0.02997 0.01060 0.04056

m̂B 0.46 0.02418 0.00988 0.034050.48 0.03274 0.01026 0.04300
Table 1
Best MISEs decomposed for several kernel regression estimators: m̂NW — standard
Nadaraya-Watson;̂m1 — twicing; m̂∗

i , i = 1, 2 — higher order kernel methods;̂mB with
B = 4, 6 (optimal) boosting iterations ofL2BoostNWfor equispaced and random spac-
ing, respectively . Integrated bias-squared and variance evaluated over the boundary region
[0, 0.3)∪(0.7, 1], and centre region[0.3, 0.7] for fixed (equi-spaced) design, and random de-
sign pointsxi, i = 1, . . . , 50. Averages taken over200 simulations, with bandwidth chosen
to minimize MISE in each case.

we defer the selection of the bandwidth and number of boosting iterations, and
present the performance that each method gives when the bandwidth is optimally
selected. Results which use a cross-validation selection of the required parameters
will be discussed in section 5.

Our study is made of two parts. The first one is aimed to illustrate the general
performance ofL2BoostNWas a regression methodper se; here we have chosen
the models used by Fan and Gijbels (1996, pg. 111). In the second part we compare
L2BoostNWwith the L2boosting regression method proposed by Bühlmann and
Yu (2003) using their simulation model. This comparison is particularly interesting
because their method is closely related to ours, in that theylearn a nonparametric
smoother (using splines) byL2boosting.
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4.1 General performance

Fan and Gijbels (1996) characterize their case studies as difficult estimation prob-
lems due to the level of thenoise to signal ratiovalues. Consider model (1) with
ε normally distributed; the simulation models are specified in Table 2, where, as

Model m (x) σ

1 x + 2exp
(
−16x2

)
0.4

2 sin(2x) + 2 exp
(
−16x2

)
0.3

3 0.3 exp{−4 (x + 1)2} + 0.7 exp{−16 (x − 1)2} 0.1

4 0.4x + 1 0.15
Table 2
The simulation models of Fan and Gijbels (1996).

suggested by Fan and Gijbels, a random design was adopted: for models 1, 2 and 3
X ∼ U(−2, 2) and for model4 X ∼ N(0, 1). We performed simulations for sam-
ple sizes50, 100 and200. In Figure 1 we have plotted the integrated mean squared
error forn = 50 for various values of(h, B). The plots confirm that boosting can
reduce the MISE if the smoothing parameter is chosen correctly. Numerical sum-
maries are given in Table 3, which also include information for other sample sizes.
This Table shows the best MISEs (calculated from 200 samples) of L2boosting
with the N-W smoother as the weak learner, as well as the gain in MISE which can
be achieved by boosting with respect to the N-W estimator.

The results for model 4 suggest that a very large smoothing parameter, together
with very many boosting iterations, are preferred for data which are generated by
a straight line. In Figure 2 we plot the estimatesm̂b(x; h) for various values of
b, and then compare the valueŝm255(x; h), m̂1000(x; h) and m̂10000;h(x) with the
true model and the standard (OLS) regression line. It can be seen that the effect
of boosting has given a very similar result to a nonparametric polynomial fit with
degreep = 1. This approximation seems to hold true of the other models aswell,
but we have preferred this example because it shows that boosting fixes one of
the main problems of the N-W smootheri.e. — as pointed out by Müller (1993)
— the difficulty of estimating straight regression lines when X is not uniformly
distributed.

4.2 Comparison with boosted splines

The simulation model used by Bühlmann and Yu (2003) is specified by

m(X) := 0.8 + sin(6X), X ∼ U(−1/2, 1/2), ε ∼ N(0, 4).
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Fig. 1. MISEs forn = 50 for each of the four models given in Table 2. These are given
as a function of the smoothing parameter for various values of B = 1, 2, 3, . . . as shown in
the plots). The points (joined by a dashed line) are the optimal values (overh) for eachB.

They estimatem(x) by using splines as the weak learner inL2Boostwith 100 sam-
ples drawn for each of four sample sizes. The accuracy criterion is equivalent to
MISE and is estimated in the usual way. The values are summarized in Table 4,
where the results of the original study are also shown. Note that both methods are
optimized over their relevant parameters and so the comparison should be mean-
ingful. For very small sample sizesL2boosting is outperformed by its base learner:
marginally in the case of N-W; dramatically in the case of splines. In fact, our
results are uniformly better for all sample sizes, and although our base learner is
asymptotically inferior to splines, for alln L2BoostNWoutperforms the boosted
splines. So the best results were obtained when the N-W estimator is weaker than
splines and the need of a really weak learner to employ in boosting seems con-
firmed.
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Model m̂NW p = 1 p = 2 L2BoostNW gain

n = 50 h MISE h MISE h MISE MISE k h

1 .13 .2477 .17 .2909 .29 .3367 .2268 3 .20 8.4%

2 .1 .1841 .15 .2101 .26 .2459 .1482 4 .19 19.5%

3 .1 .0196 .15 .0250 .27 .0286 .0167 4 .19 14.8%

4 .25 .0205 6∗ .0044 4∗ .0068 .0049 70* 3.3* 76.1%

n = 100

1 .12 .1247 .12 .1346 .20 .1383 .1104 4 .19 11.5%

2 .09 .0866 .10 .0907 .18 .0898 .0687 6 .19 20.7%

3 .09 .0095 .10 .0101 .19 .0104 .0077 6 .19 19.0%

4 .21 .0101 10∗ .0019 4∗ .0029 .0021 200* 5.3* 79.3%

n = 200

1 .09 .0658 .10 .0683 .16 .0642 .0557 5 .14 15.4%

2 .07 .0439 .08 .0445 .15 .0401 .0334 7 .18 24.0%

3 .07 .0049 .08 .0050 .15 .0045 .0037 8 .18 24.5%

4 .14 .0059 10∗ .0011 4∗ .0014 .0011 164-927 6.0* 81.4%
Table 3
Simulation results from boosting kernel regression using Fan & Gijbels models shown in
Table 2. Gain is percentage improvement of the best boostingestimate over the best N-
W smoothing,p = 1, 2 correspond to local polynomial fitting using Equation (2);∗ =
boundary values of the grid used.
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Fig. 2. Fitted line overx ∈ [−3, 3] for 50 observations from Model 4 in Table 2.
Left: various boosting iterations for smoothing parameterh = 5. Right: Fitted line
for B = 255, 1000, 10000 iterations (continuous), regression line (dotted), true model
(dashed).
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Optimal Optimal Optimal Optimal Gain

n N-W spline L2BoostNW L2Boost L2BoostNW L2Boost

estimate estimate spline spline

10 .7423 .7787 .7532 .9968 −1.5% −28.0%

25 .2797 .3338 .2783 .3349 0.5% −0.3%

50 .1505 .1657 .1460 .1669 3.0% −0.7%

100 .0893 .0933 .0873 .0905 2.2% 0.9%

1000 .0148 .0128 .0086 .0113 42.0% 12.2%

Table 4
L2BoostNWperformances when estimating the model used by Bühlmann and Yu (2003).
The performances of smoothing splines andL2Boostused by Bühlamnn and Yu (2003) are
also reported.

4.3 Optimal values ofh andB

The result in Equation (6) suggest thath needs to increase withB. The case stud-
ies of Fan and Gijbels depicted in Figure 1 unequivocally suggest that boosting
reduces oversmoothing effects if intensively iterated. Here we illustrate this by a
new, ad hocexample based on the model used by Bühlmann and Yu. We drew
200 samples withn = 200 and estimated the regression function for various band-
widths and boosting iterations. The accuracy results are shown in Figure 3, where
many MISE/iteration curves are depicted. The best MISE occurs whenh ≈ 0.2,
but values quite close to this occur for each setting of the bandwidth. Remarkably,
note that when the bandwidths are around 3–3.5 times bigger than 0.2, nearly op-
timal MISEs are reached after several hundreds of iterations, and moreover the
best N-W estimate is always beaten forB > 700! Finally, Figure 3 also suggests
how bandwidths of the same magnitude work similarly, another reason to conclude
that boosting is less sensitive to the bandwidth selection task than standard kernel
regression.

Overall, note that regularizing through oversmoothing in conjunction with many
iterations increases the combinations of(h, B) for which boosting works. Thus,
the potential of reducing the need of an accurate bandwidth selection and stopping
rule clearly emerges.

5 Application to multidimensional real data

In this section we investigate the behaviour of our smootherin a more practical
scenario,i.e. by using multivariate data and selecting both the smoothness degree
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Fig. 3.L2BoostNWestimates of the Bühlmann and Yu model. MISEs forn = 200 given
as a function of boosting iteration for various values ofh. Dotted line: best MISE of the
N-W estimator.

and the number of boosting iterations by cross-validation.We extend our smoother
in the most usual way, that lies in building multiplicative kernels with a diagonal
bandwidth matrix. In particular, withD-dimensional data(x1, y1), . . . , (xn, yn),
we employ, with obvious notation, the following weight function

D∏

d=1

Kh (xd − xid) .

We use the normal kernel function because this ensures that the conditions of The-
orem 1 hold in the multivariate setting.

We obtain(hCV, BCV) by leave-one-out cross-validation,i.e.as the pair that solves

min
h,b

=
n∑

i=1

(
yi − m̂

(−i)
b (xi; h)

)2
, (7)

wherem̂
(−i)
b (xi; h) is theL2BoostNWestimate ofm(xi) when theith observation

is omitted.

We exemplify our method with the Boston housing data. This dataset, created by
Harrison and Rubinfeld (1978), has been extensively analyzed in the statistical
learning literature; see, for example, Breiman and Friedman (1985), Doksum and
Samarov (1995) and Chaudhuri et al. (1997). It contains datafor 506 census tracts
in the Boston area taken from 1970 Census. Each of these 506 instances has 14
socio-economic variables (13 continuous and one binary). The response variable
is the logarithm of the median value of owner-occupied homesin $1000’s. Note
that in this dataset many of the explanatory variables have approximately linear re-
lationships, so the curse of dimensionality problem may notbe so evident as the
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number of variables could lead us to believe.

MSE MSEopt hCV hopt BCV Bopt

local linear 0.1593 0.1504 2.00 2.55

m̂NW 0.2575 0.2553 0.55 0.50

L2BoostNW 0.1525 0.1477 2.00 1.70 119 115

parametric linear 0.3340
Table 5
Results from the Boston housing data.

Since we are using a common smoothing parameter for all variables, we have stan-
dardized the data. We randomly chose 350 instances as a training set, and the re-
maining data as a test set. The accuracy criterion was the mean squared error (MSE)
on the test data. As a benchmark we used the plain N-W estimator, the local linear
polynomial estimator (the solution of Equation (2) whenp = 1) and a standard
parametric linear model. Each cross-validation search ofh was performed in the
interval [0, 3]. The results are summarized in Table 5. The parametric linear fit has
a MSE of 0.3340, suggests that a certain linearity is present in the data. This ap-
pears confirmed by the good performance of the local linear estimator that yields
an accuracy of0.1593 which outperforms the N-W fit. Concerning our multistep
estimator, the cross-validation search of a pair(h, B) was performed over the grid
[0, 1, . . . , 3] × [1, 2, . . . , 200], with a MSE of 0.1525. It is clear from Table 5 that
L2BoostNWperforms well in higher dimensions, and that cross-validation can be
used to successfully obtain the pair(h, B). Residual plots, shown in Figure 4 con-
firm this view. Note also that these accuracy values appear quite similar to the
results from model 4 of Table 3 where a univariate linear model was estimated, so
our estimator seems to coherently extend its properties to the multivariate setting.
Another interesting issue is that the cross-validation search was very precise, be-
cause forB ≤ 200 the best possibleMSE of our boosted estimator is0.1477, and
the optimal setting of(h, B) is very similar to the cross-validation solution.

Chaudhuri et al. (1997) have given some motivation for usingonly RM, LSTAT,
DIS as covariates. The results are quite consistent with the‘all variables’ case.
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Fig. 4. Residual plots of the Boston housing test data corresponding to the three best models
in Table 5.

6 Discussion

6.1 Alternative generalizations

Let hT := (h0, . . . , hB), wT := (w0, . . . , wB) be vectors of smoothing parameters
and weights respectively, then

Kw

h
:=

B∑

j=0

wjKhj

is a weighted sum of kernel functions. The convolution kernel used in Section 3.2 is
a special case of this formulation withw = (2,−1) andh = (h,

√
2h) andB = 1.
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We can thus generalizêm∗
2 to

m̂g(x; S, w, h) :=
B∑

j=0

wjm̂NW(x; S, hj). (8)

This is simply a linear combination of N-W estimators, each with its own band-
width. Similar proposals were considered by Rice (1984) andJones (1993) who
used weighted combinations of kernels to improve estimators at the boundary. In
order form̂g to be asymptotically unbiased we require

∑
wj = 1. Given a vector

of bandwidthsh we can choose thewj to eliminate the bias terms which arise as a
consequence ofµk.

Since we have used a normal kernel, for a given bandwidthh we haveµ2k ∝ h2k,
and µ2k−1 = 0 so a simple approach to obtain the weightswj would be to set
hT = (h,

√
ch, . . . , cB/2h) for somec, and then to solveCw = (1, 0, . . . , 0)T for

w, where (forB ≥ 1)

C =




1 1 · · · 1

1 c · · · cB

...
...

...
...

1 cB · · · c2B−1




and this simplification requires the selection of only two parameters (c andh), for
a givenB. Note that the above convolution kernelK∗

h usesc = 2, and that the
solution forw gives the desired value(2,−1).

As an alternative approach, we could consider obtaining thewj by ordinary least
squares regression, i.e. obtainw from ŵ := (XT X)−1XT Y where Y T :=
(Y1, . . . , Yn) is the vector of responses, and thejth column of the matrixX is
given by(m̂NW(X1; S, hj), . . . , m̂NW(Xn; S, hj))

T . This approach could also allow
for the selection ofB through standard techniques in stepwise regression. Also note
the connection between (8) and a radial basis function (RBF) representation. In this
framework thewj are the weights, andmNW(x; S, hj) act as “basis functions” which
are themselves a weighted sum of basis functions. So this formulation is equivalent
to a generalizedRBF network, in which an extra layer is used to combine estimates,
but with many of the weights being fixed.

6.2 Conclusions

We have discussed a multistep kernel regression smoother generated by learning
the N-W estimator byL2boosting. Our main result is that the bias ofL2BoostNW
decreases exponentially fast towards zero, while the variance increases exponen-
tially slow towardsσ2 and consequently could beat the overall MISE performance
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of the ordinary kernel methods in regression. Our experiments show that this su-
periority occurs for several settings of(h, B), and also that cross-validation can
be successfully used for parameter selection. It is clear that the optimal bandwidth
for boosting is greater than the values provided by the standard selection theories.
Finally, note that our method is easily extended to multivariate data.
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Appendix

Proof of Theorem 1: Following Bochner’s theorem (see e.g. Lax, 2002, p. 144),
spec(K) ⊂ [0, +∞) if and only if K is a Fourier-Stieltjes transform of a finite
measure. Due to symmetry and unimodality,Kh(0) > Kh(xi − xj) for eachi 6=
j, so detK > 0. Clearly, spec(N 1/2KN 1/2) = spec(NK), but NK is row
stochastic, so apply the Perron-Frobenius theorem for which

1 = min
i
{

n∑

j=1

(NK)ij} ≤ max spec(NK) ≤ max
i
{

n∑

j=1

(NK)ij} = 1

and conclude thatspec(NK) ⊂ (0, 1]. Finally, trace(NK) < n yields
min spec(NK) < 1. �

Lemma 1 (Bühlmann & Yu, 2003) Consider linear smoothing by a hat matrixL

with characteristic rootsρ1, ..., ρn. OperateL2boosting with weak learnerL. Then
L2boosting at stepb ≥ 0 is a linear smoother as well, whose hat matrix is equal to
I − (I − L)b+1.

Proof: The residual vector at stepb ∈ [1, ..., B], denoted aseb, can be written as

eb = y − m̂b−1 = eb−1 − Leb−1 = (I − L)eb−1

implyingeb = (I−L)by for b ∈ [1, ..., B]. Sincem̂0 = Ly, using a telescope-sum
argument, we obtain

m̂b =
b∑

j=0

L(I − L)jy = (I − (I − L)b+1)y. �
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Proof of Theorem 2: From Lemma 1 it follows that theL2BoostNWfit is m̂b =
Mby. Now, the hat matrixMb can be written as

Mb = UDbU
−1

whereDb := diag(1 − (1 − λ1)
b+1, ..., 1 − (1 − λn)

b+1); λ1, ..., λn, are the char-
acteristic roots ofNK, which are real due to theorem 1. As a consequence, the
matrixU , formed by the characteristic vectors ofMb, has real entries. Notice that
NK is not symmetric, thereforeUUT 6= I. Now

bias2(m̂b; m) = (E[Mby] − m)T (E[Mby] − m)

= ((Mb − I)m)T ((Mb − I)m)

where

Mb − I = U(Db − I)U−1

= Udiag(−(1 − λ1)
b+1, ...,−(1 − λn)b+1)U−1 .

The covariance matrix is

cov(Mby) = Mbcov(y)MT
b = σ2MbM

T
b = σ2UDbU

−1(U−1)T DbU
T ,

so the variance is
var(m̂b; m) = trace(cov(Mby)).

Assume thatspec(NK) ⊂ (0, 1]. For anyk ∈ [1, ..., n] the bias order isO{(1 −
λk)

b+1}, while the variance order isO{(1 − (1 − λk)
b+1)2}. So bias converges

exponentially fast and variance converges exponentially slow. �

Proof of Theorem 3: We have

m̂1(x; h) =
2r̂(x; h) − n−1 ∑n

i=1 Kh (x − Xi) m̂0(Xi; h)

f̂(x; h)
.

Now take the expectation of the numerator and denominator. The expectation of
the second term in the numerator can be written as

E [Kh (x − X1) m̂0(X1; h)] = E


 1

nh
Kh (x − X1)

n∑

j=1

Kh (X1 − Xj) Yj

/
f̂(X1; h)




=
1

h

∫∫∫
Kh (x − u)Kh (u − v) yf(y | v)

×
{

f(u) +
h2

2
µ2f

′′(u) + o(h2)

}−1

f(u)f(v)dy du dv

=
1

h

∫∫
Kh (x − u)Kh (u − v)m(v)

×
{

1 +
h2µ2f

′′(u)

2f(u)
+ o(h2)

}−1

f(v)du dv
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where the second line was obtained by ignoring the non-stochastic term in the sum
(whenj = i), and the third one uses the fact thatm(v) =

∫
yf(y | v)dy.

Making the change of variablet = (v − u)/h and expandingm(v) = m(u + ht)
andf(v) = f(u+ht) in a Taylor series we get the following expansion up to terms
of orderO(h2)

E [Kh (x − X) m̂0(X; h)] ≈
∫∫

Kh (x − u)K(t)

{
m(u) + thm′(u) +

t2h2m′′(u)

2

}

×
{

1 − h2µ2f
′′(u)

2f(u)

} {
f(u) + thf ′(u) +

t2h2f ′′(u)

2

}
dt du

=
∫

Kh (x − u)

[
r(u) +

h2µ2

2
{r′′(u) − m(u)f ′′(u)}

]
du

(9)

= r(x) + h2µ2r
′′(x) − h2µ2

2
m(x)f ′′(x). (10)

The RHS of Equation (9) was obtained on simplification and recalling thatr′′(u) =
m′′(u)f(u) + 2m′(u)f ′(u) + m(u)f ′′(u); the RHS of Equation (10) has been ob-
tained by making a second change of variablew = (x − u)/h, expanding in a
Taylor series, and integrating.

To obtain the expectation of the numerator ofm̂1(x; h), we multiply Equation (3)
by 2, then subtract the RHS of Equation (10) to get

E

[
2r̂(x; h) − 1

n

n∑

i=1

Kh (x − Xi) m̂0(Xi; h)

]
≈ r(x) +

h2µ2

2
m(x)f ′′(x).

Finally we divide this by the approximate (up to the second order) expectation of
the denominator of̂m1(x; h) which is given in Equation (4). We can thus write the
following expression for the asymptotic expectation up to terms of orderO(h2)

E m̂1(x; h) ≈
{

r(x) +
h2µ2

2
m(x)f ′′(x)

} 
 1

f(x)

{
1 +

h2µ2f
′′(x)

2f(x)

}−1



=
r(x)

f(x)

{
2f(x)

2f(x) + h2µ2f ′′(x)
+

h2µ2f
′′(x)

2f(x) + h2µ2f ′′(x)

}

= m(x).

The variance of̂m1(x; h) can be written as

var m̂0(x; h) + 2 cov (m̂0(x; h), m̂NW(x; Se, h)) + var m̂NW(x; Se, h)

where Se are the residuals of the first fit. Now sincevar m̂NW(x; Se, h) ≤
var m̂0(x; h) we have the result.
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For the conditional version of the variance result, we coulduse Theorem 2 substi-
tutingb = 1 andb = 0 into the expression forave-var. Sinceλk < 1, we have

(2λk − λ2
k)

2 < 4λ2
k < 4. �
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