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Abstract

We consider local smoothing of datasets where the desigrespdhed-dimensionald > 1) torus and the response
variable is real-valued. Our purpose is to extend leastreguacal polynomial fitting to this situation. We give both
theoretical and empirical results.
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1. Introduction

A circular observation can be regarded as a point on the unit circle dineation in the plane. Once an initial
direction and an orientation of the unit circle have beensehg any circular observation may be represented by an
angled € [0, 2r). Typical examples include flight direction of birds from aiit of release, wind and ocean current
direction, energy demand over a period of 24 hours when tlsurements are taken over a time interval much longer
than the day and when the times of the day are recorded. Alairobservation is periodic, i.ef, = 6 + 2mn for
m € Z. This periodicity sets apart circular statistical anayfsom standard real-line methods. Recent accounts are
given by Jammalamadaka & SenGupta (2001) and Mardia & Jugo{1

A much less studied subject is local regression in the casiraflar predictors and real-valued responses. Its
practical relevance is easily seen when considering thiysiaaf meteorological data, or more generally in earth
and environmental sciences. Silverman (1986, sec. 2.g)esits fitting data replicated along the intervef, 4r),
with a smoothing degree depending on the original sampée 3ize only alternative approach appears to be periodic
smoothing splines, introduced by Cogburn & Davis (1974)tH\w specific and reasonably simple appears to exist
for the high-dimensional case, although this seems needediny applications. For example, it could be of interest
to predict ozone concentration given the wind direction8aah and at noon. In this example, the number of angles
isd = 2, but this could easily be extended by considering moretilmes: or time points for the explanatory wind
directions; see Mardia & Jupp (1999, pp. 1-12) for furthearegles.

In this paper we extend least squares local polynomial dittRuppert & Wand 1994, for example) to the case
when a design poirtt is a vector of anglesi(, - - - ,6q)" € [0, 27)%, and the response is real-valued. Geometrically,
identifies a point of @-dimensional torus made of the cartesian product it circles. Our strategy is twofold. We
i) introduce a class of circular weight functions {@rneld, andii) locally approximate the design density and the
regression function by thgth degree polynomial

p
o+ ). " Bisin(- - 6)). (1)

d
j=1 t=1

Pointii) is motivated by the fact that theftBrence between two angular observations needs to be miai#air, m €
Z. Moreover, because s#)(= 6 as6 tends to 0, the polynomial (1) satisfies a Taylor series metation.
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In Section 2 we define the kernels suitable for our polynofitiithg, and explore theirféiciency properties. In
Section 3 we consider the local linegr £ 1) regression estimator, along with conditional mean segliarror and
optimal smoothing. We also extend the analysis, for undétarpredictors, to generpl Finally, Section 4 contains a
small simulation study to illustrate the finite sample bebawrof the results.

2. Circular kernels

2.1. Definitions
We introduce our kernels in the one-dimensional settingh%un approach seems adequate in that we will use as
weight functions products of univariate kernels, as thagsgeometry allows for.

Definition 1. (Circular kernels of order r) A circular kernel, of order r and concentration (smoothirggrameter
k> 0, is a function K : [0, 27) — R such that

i) it admits, até € [0, 2r), a convergent Fourier series representatibii2r){1+ 2 3132 v(k) cos(6)};

ii) denotingrn;(K,) := fozn sin' (6)K,(6)dd , then
no(Ke) =1, nj(Ky) =0 for 0< j<r, and n(K,) #0;

i) as« increasesf€ K.(9)de tends tol for € € (O, 7).

Conditioni) specifies that the kernel is symmetric around the null meaattion. The quantity;(K,) in i) plays
a similar role as thgth moment of a symmetric kernel in the linear theory, being ziej is odd.

Remark 1. Most of the usual circular densities, which are symmetriowttihe null mean direction, are included in
Definition1 as second-order kernels — this includes the kernel unifamin@/{«x + 1}, 7/{«x + 1}). Dirichlet and Fejér
kernels

eN

PO= "snern O mn| T snera)

are both circular kernels. In particular, Phas orderx + 1 if « is odd, and + 2 otherwise, while Ehas order2.

sin((k + 1/2)6) 1 [sin(x+ 1}3/2)]2

Remark 2. Our order definition is consistent with the techniques usedbtaining higher order kernels starting
from second-order ones. As an instance, we apply a techmifjuejeune& Sarda (1992), to get a result useful in
Theorem 4. Given a second-order circular kerngl ket E, be a matrix of order + 1 with (i, j) entry given by
ni+j-2(Ky), andU, be the same ag, with the first column replaced 4, sin@), - - - ,sinf(6)}7. Then

U]

Kio(6) = 2 1Ku(6).

is a circular kernel of orde¥ + 1 when¢ is odd, and of ordef + 2 otherwise.

Remark 3. The univariate setting allows for a comparison with presauork. Our kernels include kernels on the
sphere which are functions efl — cos@)} studied by Beran (1979), Hall et al. (1987), Bai et al. (1988¥ Klemela
(2000). However, the kernels,PF, and the wrapped Cauchy are not of this latter form, yet fulf@ tonditions of
Definition 1.

2.2. Kernel giciency
We discuss theflciency of our kernels in the density estimation setting lovaleasy comparisons with the
standard theory.

Definition 2. (Kernel circular density estimator) Let®,, - - -, ®, be a random sample from a bounded, continuous
circular density f. Given a circular kernel Kthe kernel estimator of f @e [0, 2r) is defined as

f(6; 1) = %ZKK(H—G)i). )
i=1
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The dficiency theory of euclidean kernels (p. 42 Silverman 1986 ,efcample) is based on the fact that the
bandwidth and the kernel have separable contributiongtotan integrated squared emtiBE[g] : = f E[(§-0)] =
f(E[g] -0)%+ fVar[g], whered gives the kernel estimate of the cuiyat a point of the domain. Unfortunately, this
is not the case for thelISE of (2). In fact, we have

Theorem 1. Given a random sampl®, - - - , ®, drawn from a density f, Ief(- ; k) be the kernel circular density
estimator equipped with the second-order kerngliK

i) limyeyj(k) = 1, for each je Z*;
i) limp_een™t X yJ?(K) =0
iii)y f” is continuous and square-integrable;
then
+0(1),

232 92
iSE [ ] = g5ttt [ (7@ an ot

Proof. See Appendix. O

Remark 4. The MISE of Hall et al. (1987) is very similar to that above. For examptonsider the von Mises
kernel, for whichy;(x) := I'j(x)/Zo(x), I ;(-) being the modified Bessel function of the first kind and ordedging
the notation of (3.7) in Hall et al. (1987), we havé(g)ca(k) = Zo(2¢)/[27{Zo(k)}] = {1+ 232, ¥3(x)}/(2r) and
1-co(k)ci(k) = 1 — T1(x)/To(k) = 1 - y1(k), consequently their asymptotitiSE differs from the leading terms in
the aboveMISE of an order of @x™*).

In our dficiency analysis we need

Result 1. Let ®4,---,®, be a random sample from a circular density f having Fourierieseexpansion ) =
1/(2m)[1 + 2 X2, faj cos(j0) + o sin(je)})] for 6 € [0, 2x). Then

MISE|[f(- ;#)] = EZ i) - V(@2 +6) + — Zy WA -a? - 2.
T
=1

Without loss of generality we can suppose that the meantdireis 0, and we consider only densities and kernels
which are fully specified by their concentration parametaspectively denoted asand«. For the above decom-
position, when considering the (relativejieiency of two circular kernels, the smoothing parametersatdcancel”
and so their equivalence needs first to be established as/®lFor fixegp andn, we can obtair to minimizeMISE
for a given kernel function. Thefliciency of one kernel relative to another may then be meadwyréaking the ratio
of the minimizedVISEs.

As the Dirichlet kernel¥;j(«) = 1;j<q) is of higher order fok > 1 — and so expected to be asymptotically more
efficient — we have measured thffieiency of other kernels relative to this one. In Figure 1 wevslthe relative
efficiency of the von Miseswrapped normal(k) = sz), and Fejér ¢j(k) = Ljj<y(k + 1 - j)/(x + 1)) kernels for
n = 5,25, 125625 for the von Mises and wrapped Cauchy & p’;5; = 0) distributions. Not surprisingly, the
wrapped Normal and von Mises kernels are very similar, aritl bee better than the Fejér kernel. For stmalthe
von Mises kernel is morefigcient that the Dirichlet kernel; markedly so for the Cauchstribution, or for data with
low concentration.

3. Local polynomial regression

3.1. Linear fitting with von Mises based kernels
Consider the datas¢{®;,Y;),i = 1,---,n}, where®; := (®;1,---,0i4)", andY; € R are both observable, ab-
solutely continuous, random variables taking values retsgdy in [0, 27)¢ andR. ¢From now on we will assume
that
Y|=m(®i)+0'(®i)8i, i=1,---,n
3
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Figure 1: Relative &iciency of Fejéer (——), wrapped normal (- - - - - ), and von Miges ) kernels to the Dirchlet kernel, for various valuesnof
With respect to the underlying true density, the left groopresponds to the von Mises distribution with= 71(v)/Zo(v), while the right group
corresponds to the wrapped Cauchy distribution.

whereo?(-) is the conditional variance &f ands;s are real-valued random variables with zero mean and unginGe.
Our objective is to construct an estimatoma(®) as a function of the dataset when b@ifs ande;s arei.i.d..

Let Po(:;B8) = Bo + Z?zlﬁj sin(- — 6;), and suppose than(y) ~ Py(y; B) for y in a neighborhood of. Here
P4(0; B) = Bo, which motivates estimating(6) by 3. Recalling that for very small values éfwe have sinf) ~ 6,
then a Taylor series expansion justifies hégtand the valueéj, j=1,---,d, as estimates of the partial derivatives
B; = dm(0)/d0;. Viewed as local least squares estimatges; - - , 3¢ minimize X1, {Y; — Py(O;; B)1°W(O;, 6) where
w(0;, 6) is the weight function, (a symmetric, continuous funciimegrating to 1) which, if strictly positive, decreases
with some distance betwe®) andd. Now we provide an explicit expression {8 together with its, properties.

Lety :=(Y1,---,Y,)" be the response vector,

1 sin(@ll — 9]_) ce 5in(®ld - ed)
0:=|": : : :
1 sin(@nl — 9]_) cee 5in(®nd - ed)

the design matrix, and
W := diag {Kc(®1 - 6), - - - , Kc(Oy, - 6)}

the weight matrix, wher€ := «l, | denoting the identity matrix of ordel, and
d
K@i -6):= [ [ K@ -6), i=1..n (3)
=1
The local linear kernel estimator of(6) is given by the first entry of the vector
n
pi=argmin ) (Vi - fTO)’Kc(0; - 6),
i=1

whereg = (6o, 1, ,B4)T. Assuming the non-singularity @"W®, standard weighted least squares theory yields
B =(0"WO)@"Wy, and
m(6; C) = e (0'WO) '0'Wy, (4)
4



wheree; is a d + 1) x 1 vector having 1 as thigh entry and O elsewhere.
Given its dficiency, as well as its prevalence in kernel smoothing ofutarcdata, we firstly give results when the
von Mises kerneV/, () := expk cos()}/{2n1o(x)} is used to define theé-dimensional weight function.

Theorem 2. Given the datase(®;, Y;),i = 1,---,n}, where®;s are i.i.d. observations from the circular design
density f, and 6 are i.i.d. real-valued random variables , take the locakkr kernel regression estimatéy- ; C)
equipped with the weight functiors{®; — 0) := l—l?:l V(®ij — 6;). Assume that
) liMpoek™t = 0;
i) liMmpoen %2 = 0;
iii) the conditional variancer? is continuous, and the density f is continuousffedéntiable;
iv) all second-order derivatives of the regression funttio are continuous.

Then atf € [0, 27)° the conditional mean squared error 3{6 ; C) is given by

I1(x)
kT o(x)

+ 0p (K’2 + n’lkd/z) , (B

To(24) ]“ 2(6)
2r{ZTo())2| nf(6)

2
E[{M(- ;C) - m(8)}* | Oy, -+, O] = %{ } tr’{Hm(6)} + [

whereH,(0) denotes the Hessian matrix of méat
Proof. See Appendix. O

Once more, in the proof of the above theorem a major techisisag is that the concentration parameteannot
be “separated” from the kernel.

Remark 5. Sincek corresponds to the inverse of the squared bandwidth of tbédean smoother, the remainder
term in (5) is consistent with that obtained by Rup@eivand (1994).

Finally, the optimal smoothing degree is given by

Corollary 1. The concentration parameter which minimizes the asyngptodan squared erroi.e. the first two
summands in RHS of formula (5), is

tr4{H m(6)}{n £(9) 22200 [V 4+
d204(6) .
Proof. See Appendix. ]

3.2. Generalizations and extensions
The results of Theorem 2 can be generalized to the class ohdearder circular kernelk,. Given the square-
integrable functiomy, defineR(g) := fgz, then

Theorem 3. Given the datase(®;, Y;),i = 1,---,n}, where®;s are i.i.d. observations from the circular design
density f, and )¢ are i.i.d. real-valued random variables, take the locakhr kernel regression estimatdgy- ; C)
equipped with the weight function in (3) with, Ibeing a second-order circular kernel. Assume conditionsfi)
Theorem 1, and iii) of Theorem 2, together with

i) limpLentR(Kc) = 0.
Then, a#d € [0, 2x)°,
R(Kc)o*(6)
nf(6)
Proof. See Appendix. O

1
E[{M(- ;C) - m(6)}? | O,--- , 0] = E{l — Y2 PAr{Hm(6)} + + 0p(1).

It would be of interest to determine the optimal smoothingrde in this case, but since the fodentsy;s
depend om in a specific way for each kernel, the result in Corollary 1dsdto generalize. Concerning the extension
to higher-degree polynomials and whatever second-ordarlar kernel, we have

5



Theorem 4. Given the datase{(®,,Y;),i = 1,---,n}, where®;s are i.i.d. observations from the circular one-
dimensional density f, andare i.i.d. real-valued random variables, take the locdl gegree polynomial regression
estimatom(- ; ) equipped with a second-order circular kernel.KAssume conditions i) of Theorem 1, iii) and iv) of
Theorem 2. Moreover, assume that

i) for the kernelK{p in Remark2, limy.N*R(K(p) = 0;

i) m(P+2 js continuous in a neighborhood éf

Then, for any) € [0, 27),

mP+D () PR .
. np+1(Kip) Torr + (1) if p is odd:;
E[I’T‘(O, K) - m(é?) | @1’ e, @n] = (F;pgl)(g)f/(e) me+2)(g) .
77p+2(7((p)){ oD T () } +0p(1), otherwise;
and
N a?(h)
Varffio : ) | O, ©n] = R(K(p) 71+ 0n(L).
Proof. See Appendix. O

4. Simulation results

We briefly explore the asymptotic result given by Theorem Zisimulation study. We first investigate the
dependence of the mean squared errof,orand« whend = 1 and choose a sharp-peaked response

2
m(@) =2+sin@-1.27)+3 exp{_10(15(92—ﬂﬂ)) }’

with & ~ N(0, 1),0%(®;) = 1/2,and®;, i = 1,--- , ncoming from a von Mises density with meamnd concentration
parameter 1. We estimata(d) atd = 0,2,3 and compare the average squared error of (4) with the asyimpt
mean squared error given in Theorem 2 oxvdor n = 50 andn = 500. The results are displayed in Figure 2,
and the asymptotic nature of the result is clear. Note thav#iues of the second derivativerfatd = 0,2, 3 are
—0.59,0.98, 14089, respectively, which explains the poorer performanee-as.

Secondly, we explore the dependencealoimn this case we use the model

d
1 . 1
m(0) = a z]; sing; + m '; COSH; COS@j (d > 2)
I= i#]

wheref = (61, ,6q)T, ?(®;) = 1/2,i = 1,---,n, andf is a product of (independent) von Mises densities with
mean zero and concentration parameter 1. We estim@®eatd = (0,--- ,0)" and /2, -- ,x/2)" for a range ok,

for n = 500. Figure 3 shows good agreementdot 2 between the average squared error and the asymptotic mean
squared error. However, we note increasingly poor behaesd increases, indicating that the asymptotic nature of
the result also depends dpand again illustrating the well-known phenomenon ofdhese of dimensionality

Appendix
Proof of Theorem 1 ExpressK,(d) in terms of a Fourier series, and, recalling that for verabmalues ofu

sin(u) = u, use the expansiof(u + 6) = f(6) + sinu) f’(6) + 1/2 sirf(u) f”(6) + Ofsin>(u)}. Then, starting from (2),
make a change of variable and use assumplitmget

R 21
E[1(6; )] = fo Ko — ) F(g)dly

2n
= f K () f(u+ 6)du
0

= 10) + 311~ 7201 1(6) + o(0).
6
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Figure 2: Comparison of averaged squared error as a funationver 200 simulations (dashed line), and asymptotic meaarsdterror given by
Theorem 2 (continuous line) with locations of minima. Toprre = 50; lower row:n = 500, withm estimated a# = 0 (left), = 2 (middle) and
0 = 3 (right).

6=0:n=500 0=1/2;n=500
S 4 o |
o o
w
8 ] 5
S
<
= = o
5 5
5 8 5
o © b=}
o 14
] s 24
g g °
{ {
s ° s o
o
o
8
S =
S
8 4 o
o o
T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20
K K

Figure 3: Comparison of averaged squared error as a funatioover 200 simulations (dashed line), and asymptotic meaarsdterror given by
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Now, recalling assumptioriy andii), we have
- 1 (= 5 1z 2
Varlf6:0] = 5 [ (. - P H ) - 1 ELF@ )
0 n

21
- % fo (K (U)12(f(6) + o(1)}du— %{f(@) +0(1))?

_ z_rlm {1+ 212712(@} £(6) + o(1).

Proof of Theorem 2 Put
Se,-0 := {SiN@i1 — 61), - , SIN@a — )}, i=1---,n

and useDy(6) to denote the first-order partial derivatives vector offinectiong até. To derive the conditional bias,
we firstly note that (4) yields
E[/(6;C) | O1,--- , 0] = €](@"WO)'@"Wm, (6)

wherem := {M(@4), - - - ,M(®,)}7, andW := diag {Vc(®1 - 6), - - -, Vc(0O,, — 6)}. Using the expansion
SgreHm(a)S@ré’

m(6)

Dm(@) | *

m:@[ + Rn6) .

Sgn,g H m(o) S®n—6’
whereRm(0) denotes the remainder, we have that the first term in thenskpaof (6) ism(6). Thus
1 Sglngm(g)%l—e
E[/(@;C) — m(6) | O, - ,0,] = Ee{(GTWO)*l(E)TW : + Rn(6)
Sgn_gHm(g)S@n—é’

NI =

Observe that 0 Ve(O; - 6) SN V(O — B)S]
T _ i=1 VC\Yi — i=1 Vel — -0
0O'Wo = [ L Ve(O - 0)Se—s XL, V(O - 0)S®i—HSTi_g ] @)
and S 05
@TW 0:-0 m 1= ~ { in:l VC(Oi - O)Sg)i_gHm(H)S@i_e :| (8)
~| 2 Ve(®i - 0){S],_,Hm(8)Se, -0} So. -0

S(Tan_eHm(G)S@n,e
then, using the expansion

f(u+6) = f(0) + S, D¢(0) + O(S|Sy) .
and recalling assumptidh, a change of variables leads to these approximations

1 n
- zl: Ve(®i - 6) = f[o - Ve(a — 6) f(@)da + 0p(1)

= 1(6) + 0p(1);

1 n
=3 Ve(@1 - 0)Sg.-0 = f Ve(@ - 0)Su_o f(@)da + 0p(L)
N [0.27)¢

_ T1(x)
To(x)
8

C'D¢(6) + 0p(C™11);



Y Vel®i - )0 48 = [ Vel@ -8, 4], (@)der + 0p(1)
ey [0,27)d

_1iW)
To(x)

C1(0) + 0p(C™Y);

L Ve(®i - 0)Sh yHr(®)So. = f Ve(@ - 0)S]_oHn(®)Ss-o (@)der + 0p(1)
—~ [0,27)¢

_ I1(x)
~ kIo(x) tr

{Hm(0)} () + 0p (Kﬁl) ;

: Z}Vc(‘ai = 0) {5, H(6)So, 0} So, o = L ., Vel@ = O (S (05, o] S-of (@)da + 0x(D)
= O0p(C™?1);
wherel s the unit vector of lengtl. Hence, recalling assumpti@gnwe have
e (nTO™WO) = [ {1(B)) ™+ 0p(1) ~Dr(B)T(FO)2+0p(1) . ©)
thus

1 Il(K) _
émtr{Hm(H)} +0p(k7Y).

For the conditional variance, according to multivariatealdinear regression theory

E[M(6;C) - m(6) | Oy, -+, O] =

Var[(9; C) | @1, --,Op] = €](0"WO) '0"WZWO(O'WO) ‘e,
whereX := diag {c%(0@4), - - - , ?(0y)}. Consider that

nt 1{Ve(0; - 6)}20?(6) nt 11Ve (i - 0)} st 90'2(@|)

n—l@TWZW('D:[ 1 n VC(®| 0)}25&_60_2(@0 n-1 n VC(@| 6)) 25® _0S 90-2((»)) (20)

and approximate the components of the above matrix usinfptioging relationships

L S Ve(®) - 0)/%®) = [ Vel - )o@ (ayda + o)
n = [0,27)d

_ [ To(2¢)

d
zn{.ro(K)}Z} OO+ op(L)

L S Ve(® - B)Sh (@) = [ elar - ST 0%@) Ha)da + 0,0
n = [0,27)d
= 0p(1);

1
= D Ve(®i ~ 0)17So S, _,0?(®) = f (Ve(ai = 0)1°S,-4S]_g0*(e) f(a)dar + 0p(1)
< [0,2”)d

_ T2 [ Zo(2¢)

d-1
~ 4nlTo(K)P? %{JO(K)}Z} X (O) O + 0p(1)}.



whereF (2,x2) = {To(K))2 + {T1(K)}? + 2352, Ti(1L (k) = Tj-2(x)} is the regularized confluent hypergeometric
function of the first kind. Combining the previous resultshwthe approximations in (9), and recalling assumptijgn
we finally obtain

L [ To2) 1Pe*®) 1o
Var[rn(oa C) | ®l, s On] - |:27T{I0(K)}2 n f(0) + Op(n K ) .
O

Proof of Corollary 1. Replacel 1(«)/Zo(x) by 1 with an error of magnitud®(x1), and use

) To(2) 1 Kk \9/2

lim|———F=]| = (—) )

k=00 | 21{To(x)}? An
then minimize the asymptotic MSE. O

Proof of Theorem 3. Follow the proof of Theorem 2, witKc(®; — 6) asith entry of the weight matrix,= 1,--- ,n.
In particular, to derive the conditional bias firstly notath

f(6) + 0p(1) 1/2{1 - y2(k)} D{(6) + 0p(1) ]
1/2{1 - y2(x)}D1(6) + 0p(1)  1/2{1 - y2(x)}£(O)1 +0p(1) |’

and, in virtue of assumptioiy of Theorem 1,

nO'WO « [

el(N'O'WE) ™ = | {f(O)) " +0p(1) -DI(O)(F(6))>+0p(D) |.
Moreover, observe that

Sh,_oHm(6)So,-0

nte’w - [ 1/2{1 - y2()}tr{Hm(6)} 1 (6) + 0p(1) }

: Op(1
ST, _oHm(®)So0,0 o

to get
N 1
E[M(6;C) —m(60) | O, -+, O] = Z{l — y2(K)}tr{Hm(0)} + 0p(1).
To derive the conditional variance, observe that the upgfeentry of the matrix (10) generalizes as

L) (Kel®1 - 0)0() = RKe)r (@) (O)(1+ 0p(L).
i=1

whereR(Kc) = {R(K)}? = {(2r) {1 + 2 X2, ¥%(x)))", the diagonal blocks am(1), whereas letting

[Y30) + Y5() + 2 25, vi(tyi (k) — yi-2()HR(K))

A(Kc) = ym ,

whereyo(k) := foz" K. (8) cos(0W6 = 1, the lower-right entry is

% Z{KC(@i — 0)°Se,-0Sh,_g0(04) = A(Kc)a?(6) F(0){1 + op(1)} .
i=1

Hence, it finally results

2
Var[i(@;C) | Oy, - ,0,] = %{;@)

{1+0p(1)}.
O
Proof of Theorem 4. Follow the proof of Theorem.4 of Ruppert & Wand (1994) with these two recommendations:
in the design matrix replac&{(—x)!, with sin' (®; —6), and use the expansidiu+6) = f(6)+sin(u) f’(8) + Ofsir’(u)}.
10



In particular, to derive the conditional bias, [@p be the matrix of ordep + 1 having asi( j) entryzni,j-1(K,), and
observe that, in virtue of assumptignof Theorem 10 1@'™WO = f(A)E, + f'(6)Qp + 0p(1), with Ep being the
matrix defined in Remark 2, to get

rn(ne'™wWe) ! = f(O) HriE, - /() f(6) 'r1Ex QpELY + 0p(1).

wherer; is a (p + 1) x 1 vector having 1 as first entry and O elsewhere. For the donditvariance, denoting as
Tp the matrix of ordemp + 1 havingfsin'”‘z(u){KK(u)}Zdu as (, j) entry, and recalling conditioi), it follows that
n1O@™W20 = f(6)Tp + op(1). O
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