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Coherent magnetic fields are often believed to be generated by the combination of

stretching by differential rotation and turbulent amplification of magnetic field, via

the so-called α effect. The latter is known to exist in helical turbulence, which is

envisioned to arise due to both rotation and convection in solar-type stars. In this

contribution, a turbulent flow driven by a nonhelical inhomogeneous forcing, and

its kinematic dynamo action are studied for a uniform magnetic field in the back-

ground of a linear shear flow. By using a quasi-linear analysis and a non-perturbative

method utilizing a time-dependent wave number, turbulence property and electro-

motive force are computed for an arbitrary shear strength. Due to the large-scale

shear flow, the turbulence is highly anisotropic, as a consequence, the electromotive

force. The latter is found to exist even without rotation due to the combined effect

of shear flow and inhomogeneous forcing, containing not only the α effect but also

magnetic pumping (the γ effect representing a transport of magnetic flux by turbu-

lence). Specifically, without shear, only the magnetic pumping exists, aligned with

the direction of inhomogeneity. For a weak but non-zero shear, the combined effects

of shear and inhomogeneous forcing modify the structure of the magnetic pumping

when the inhomogeneity is in the plane of the shear flow, the magnetic pumping

becoming bi-dimensional in that plane. It also induces an α tensor which has non-

diagonal components. When the inhomogeneity is perpendicular to the plane of the

shear flow, the α effect has three non-zero diagonal components and one off-diagonal

component. However, for a sufficiently strong shear, the γ and α effects are sup-

pressed due to shear stabilization which damps turbulence. A simplified dynamo

model is then proposed where a large-scale dynamo arises due to the combined effect

of shear flow and inhomogeneous forcing. In particular, the growth of a large-scale

axisymmetric magnetic field is demonstrated in the case of an inhomogeneity which is

perpendicular to the plane of the shear flow. Interesting implications of these results

for the structure of magnetic fields in star with slow rotation are discussed.

PACS numbers: 47.65.-d, 91.25.Cw, 95.30.Qd, 96.60.Hv
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I. INTRODUCTION

Magnetic fields observed in astrophysical and laboratory plasmas are thought to be the

result of dynamo action. In mean-field dynamo, the amplification of large-scale magnetic

field relies on two processes: the stretching of magnetic field lines by velocity gradients (the

Ω effect) and the effect of turbulent cyclonic motion (the α effect). The latter is associated

with the helicity of the turbulent flow. For instance, in astrophysical plasmas (e.g. the

Sun), helicity is very likely to be present due to a combination of rotation and convection.

Recently, the efficiency of the α effect in the limit of large magnetic Reynolds number has

been discussed1 and other means of dynamo action have been sought after. For instance

it has been shown that the addition of shear flow in rotating convection could drive a

dynamo2–4. Furthermore, numerical simulations have shown dynamo action at large scale in

non-helical turbulence in the presence of shear5. This is an interesting result as the α effect

is often thought to vanish in a turbulence without helicity. Various mechanisms have been

invoked to explain this large-scale dynamo in non-helical turbulence: stochastic α effect6,

shear amplification of small-scale dynamo7, magnetic effect driven by current helicity flux8

or negative diffusivity9.

Mathematically, the mean-field dynamo10,11 is based on the following averaged induction

equation for a large-scale mean magnetic field 〈B〉 in a conducting fluid U:

∂t〈B〉 + 〈U〉 · ∇〈B〉 = 〈B〉 · ∇ 〈U〉 + η∇2〈B〉 + ∇× E . (1)

Here η is the ohmic diffusivity; the 〈•〉 stands for an average on the realization of the small-

scale fields. The first term on the RHS of Eq. (1) is the Ω effect, representing the stretching

of magnetic field lines by gradient of the mean flow ∇〈U〉. It is an efficient mechanism to

create toroidal field from a poloidal field in a system with differential rotation10. The last

term E = 〈u × b〉 in Eq. (1) is the electromotive force, which is often taken to be linear in

the mean magnetic field 〈B〉 with the following expansion:

Ei = aij〈Bj〉 + bijk

∂〈Bj〉
∂xk

+ . . . . (2)

In the kinematic limit where the magnetic field has no back reaction on the velocity field,

the tensors aij and bijk depend only on the properties of the velocity field. In this paper, a

uniform magnetic field is considered in which case only the first term in Eq. (2) survives.
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By decomposing the tensor aij in its symmetric and antisymmetric part, the electromotive

force can then be written as:

Ei = αij〈Bj〉 + (γ × 〈B〉)i (3)

The first term on the right-hand side (proportional to the symmetric part of the aij tensor:

αij = (aij +aji)/2) is the α effect. It is often believed to be the main source (in combination

with the Ω effect noted previously) for generation of large-scale magnetic field in the Sun.

Note however that it was shown by previous authors11,12 that anisotropy or inhomogeneity

combined with rotation or large-scale shear flow can give rise to the α effect. The second

term on the right-hand side of Eq. (3), proportional to the anti-symmetric part of the aij

tensor, describes the transport of mean magnetic flux by turbulence and is present only in

an anisotropic or inhomogeneous turbulence13.

The purpose of this paper is to investigate the structure of the electromotive force in a

forced turbulence driven by a non-helical inhomogeneous forcing in the presence of a large-

scale shear flow. In the Sun, the inhomogeneous forcing would physically arise due to rotation

and/or convection in the convection zone. While our study is limited to a kinematic dynamo

where the nonlinear backreaction of magnetic field onto the flow is neglected, the turbulent

flow is obtained dynamically by the forcing, and evolves consistently subject to the given

shear flow. That is, the focus of our study is to examine the influences of a shear flow on

magnetic field not only directly but also indirectly through its effect on the turbulent flow. To

this end, we incorporate the effect of the shear non-perturbatively by using time-dependent

wavenumber and compute the electromotive force for arbitrary strength of the shear. Our

non-perturbative approach is thus in contrast to previous works12,14, which are valid only for

weak shear. We first show that the combined effect of shear flow and inhomogeneity leads

to non-vanishing α and γ effects. However, as the strength of shear increases, we show, for

the first time, that these shear-induced α and β effects are severely reduced for sufficiently

strong shear. This is due to shear stabilization which damps turbulence: a strong shear flow

influences large-scale magnetic field 〈B〉 indirectly by reducing turbulent transport15.

In section II, the model is introduced. Sections III, IV and V present the calculations of

the magnetohydrodynamics fluctuations, the statistics of turbulence (intensity and helicity)

and the electromotive force, respectively. Section VI presents the results in the case of a

weak inhomogeneity. Section VII presents a two-dimensional mean-field model where large-
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scale dynamo action arises solely due to the combined action of inhomogeneity and shear.

Discussion of the results and physical implications are presented in Section VIII.

II. MODEL

Calculations are performed in the kinematic limit where the back-reaction of the magnetic

field on the velocity is neglected. From the physical point of view, this amounts to considering

a very weak magnetic field and ignoring the Lorentz force on the fluid which is quadratic in

the magnetic field. For an incompressible conducting fluid, the resulting equations of motion

are:

∂tU + U · ∇U = −∇p + ν∆U + f , (4)

∂tB + U · ∇B = B · ∇U + η∆B ,

∇ · U = ∇ · B = 0 .

Here B is the magnetic field given in units of Alfvén speed, p is the pressure, and f is

a small-scale forcing. To study the effect of shear flows and magnetic fields on small-scale

turbulence, a large scale flow to be a linear shear flow of 〈U〉 = −xAey with a constant shear

A and a uniform large-scale magnetic field 〈B〉 are prescribed. To solve the equations for the

fluctuating velocity field, u = U − 〈U〉, and magnetic field, b = B − 〈B〉, the quasi-linear

approximation is used: the interaction between fluctuating fields is negligible compared to

the interaction between large and small-scale fields. The equations for the fluctuating fields

can then be written as:

∂tu + 〈U〉 · ∇u + u · ∇〈U〉 = −∇p + ν∆u + f , (5)

∂tb + u · ∇〈B〉 + 〈U〉 · ∇b = b · ∇〈U〉 + 〈B〉 · ∇u + η∆b ,

∇ · u = ∇ · b = 0 .

Here, we have ignored nonlinear term (u·∇u) in comparison with the advection by the large-

scale flow (〈U〉·∇u) and the stretching (u·∇〈U〉). Note that this quasi-linear approximation,

strictly valid for a small Rossby number u/Al � 1, has been shown to work well in a strongly

sheared turbulence as turbulence becomes weak by shear stabilization (e.g. see16,17, and

references therein). Here, u is the magnitude of the turbulent intensity and l is the turbulence

scale.
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In this paper, we compute the turbulence intensity (given by 〈u2〉), the turbulence helicity

(given by 〈u · ∇u〉) and the electromotive force (given by 〈u × b〉). To compute these

quantities, the two-point correlation of the forcing needs to be prescribed. Here, a short

correlated (with correlation time τf ) forcing is considered. Specifically, in Fourier space, the

correlation function of the forcing is taken as:

〈f̃i(k1, t1)f̃j(k2, t2)〉 = τf (2π)3 δ(t1 − t2)φij(k1,k2) , (6)

where φij is the power spectrum. The inhomogeneous turbulence model of Kichatinov18 is

used. In this model, the power spectrum function is given by:

φij(k1,k2) =
E(k, s)

8πk4

[

k2δij −
(

1 +
s2

4k2

)

kikj +
sikj − sjki

2
+

sisj

4

]

. (7)

where k = (k1 − k2)/2 and s = k1 + k2. Note that the homogeneous isotropic forcing is

recovered by setting E(k, s) = E(k)δ(s). E(k, s) in Eq. (7) is related to the correlation

functions of the forcing as:

〈f(t1,x) · f(t2,x)〉 = δ(t1 − t2)
τf

(2π)3

∫

d3s
∫ +∞

0
dk cos [s · x]E(k, s) , (8)

∇〈f(t1,x) · f(t2,x)〉 = −δ(t1 − t2)
τf

(2π)3

∫

d3s
∫ +∞

0
dk s sin [s · x] E(k, s) .

It is clearly seen that the gradient of the forcing is the source of inhomogeneity. Note that

the positivity of the forcing intensity at any spatial point x implies the following inequality:

E0(k,x) ≡
∫

d3s cos [s · x] E(k, s) ≥ 0 , (9)

for all values of k and x (as E0(k,x) is the energy density in k-space). Similarly, the k-space

density of the gradient of forcing intensity is defined as:

G0(k,x) ≡
∫

d3s s sin [s · x] E(k, s) . (10)

Note that unlike E0(k,x), the components of this vector G0 do not need to be positive.

In the following three sections, the details of our calculations are presented in three steps:

1. Computation of the fluctuating velocity and magnetic field u(x, t) and b(x, t) in Sec.

III

2. Computation of the turbulence intensity and helicity in Sec. IV
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3. Computation of the electromotive force in Sec. V

As the next three sections involve technical details of calculations, the reader who is only

interested in main results may wish to go directly to Section VI where the calculations are

completed in the limit of weak inhomogeneity and the results are presented.

III. MAGNETOHYDRODYNAMICS FLUCTUATIONS

In this paper, an unit magnetic Prandtl number (ν = η) and, following the seminal

work of Lord Kelvin19, a time-dependent Fourier transform20 is used to non-perturbatively

incorporate the effect of shearing by large-scale shear flow:

Y (x, t) =
1

(2π)3

∫

dk ei[kx(t)x+kyy+kzz]Ỹ (k, t) . (11)

Transforming the time variable t to τ = kx(t)/ky = kx(t0)/ky +A(t− t0) and using the new

variables û = ũ exp[ν(k2
Ht + k3

x/3kyA)] (and similarly for b̂, f̂ and p̂) where k2
H = k2

y + k2
z to

absorb the diffusive term, Eq. (5) can be written:

∂τ ûi = ûxδi2 − ikyθip̂/A + f̂i/A , (12)

∂τ b̂i = −b̂xδi2 +
iky

A (〈B〉 · θ)ûi ,

τ ûx + ûy + βûz = τ b̂x + b̂y + βb̂z = 0 .

Here, β = kz/ky; θi = (τ, 1, β). Note that since the first equation of (12) does not involve

the magnetic field, the solution to ûi is the same as in the hydrodynamical case (see Eq. (7)

of Kim20):

ûx(k, τ) =
∫ τ

a
ĥ1(t)Jx(t, τ) dt , (13)

ûy(k, τ) =
∫ τ

a

[

−ĥ1(t)Jy1(t, τ) − ĥ2(t)Jy2(t, τ)
]

dt ,

ûz(k, τ) =
∫ τ

a

[

−ĥ1(t)Jz1(t, τ) + ĥ2(t)Jz2(t, τ)
]

dt .

Here, κ = 1 + β2; a = kx(t0)/ky is the initial value of the x-component of the wave vector

(non-dimensionalized by the y-component); the following functions are defined :

ĥ1(t) =
[

κf̂x(t) − af̂y(t) − aβf̂z(t)
]

/A , (14)
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ĥ2(t) =
[

−βf̂y(t) + f̂z(t)
]

/A ,

T (x) =
1√
κ

arctan

(

x√
κ

)

,

Jx(t, τ) =
1

κ + τ 2
,

Jy1(t, τ) =
1

κ

{

τ

κ + τ 2
− β2 [T (τ) − T (t)]

}

,

Jy2(t, τ) =
β

κ
,

Jz1(t, τ) =
β

κ

{

τ

κ + τ 2
+ T (τ) − T (t)

}

,

Jz2(t, τ) =
1

κ
.

For the calculation of the fluctuating magnetic field, the following two cases are consid-

ered:

1. for B0 = B0ex where B0 is parallel to the gradient of the shear flow. Note that in this

case, the term (〈B〉 · θ) in the second equation of (12) is proportional to τ

2. for B0 = B0ey and B0 = B0ez where B0 is perpendicular to the gradient of the shear

flow where (〈B〉 · θ) in Eq. (12) is independent of τ .

1. Magnetic field in the x direction

In the case where the large-scale magnetic field is in the direction of the shear (〈B〉 =

B0ex), the second equation of (12) can be rewritten:

∂τ b̂i = −b̂xδi2 +
ikyB0

A τ ûi . (15)

Using the expression (13) for the fluctuating velocity, the magnetic fluctuations can be

obtained from Eq. (12) by integration as:

b̂x =
ikyB0

A
∫ τ

a
dtĥ1(t)Kx(t, τ) dt , (16)

b̂y =
ikyB0

A
∫ τ

a
dt
[

−ĥ1(t)Ky1(t, τ) − ĥ2(t)Ky2(t, τ)
]

,

b̂z =
ikyB0

A
∫ τ

a
dt
[

−ĥ1(t)Kz1(t, τ) + ĥ2(t)Kz2(t, τ)
]

.

Here, the following functions are defined as:

J1(t, τ) = (τ 2 − κ) {T (τ) − T (t)} + (τ − t) , (17)

8



Kx(t, τ) =
1

2
log

[

κ + τ 2

κ + t2

]

,

Ky1(t, τ) =
1

2κ

{

−β2J1(t, τ) + κτ log

[

κ + τ 2

κ + t2

]}

,

Ky2(t, τ) =
β

2κ

(

τ 2 − t2
)

,

Kz1(t, τ) =
β

2κ
J1(t, τ) ,

Kz2(t, τ) =
1

2κ

(

τ 2 − t2
)

.

2. Magnetic field in the y or z direction

In the case where the large-scale magnetic field is in the y-direction (〈B〉 = B0ey), the

second equation of (12) can be rewritten:

∂τ b̂i = −b̂xδi2 +
ikyB0

A ûi . (18)

Using expression (13) for the fluctuating velocity, the magnetic fluctuations can be obtained

from Eq. (12) by integration as:

b̂x =
ikyB0

A
∫ τ

a
dtĥ1(t)Lx(t, τ) dt , (19)

b̂y =
ikyB0

A
∫ τ

a
dt
[

−ĥ1(t)Ly1(t, τ) − ĥ2(t)Ly2(t, τ)
]

,

b̂z =
ikyB0

A
∫ τ

a
dt
[

−ĥ1(t)Lz1(t, τ) + ĥ2(t)Lz2(t, τ)
]

.

Here,

J2(t, τ) = τ {T (τ) − T (t)} , (20)

Lx(t, τ) = T (τ) − T (t) ,

Ly1(t, τ) =
J2(t, τ)

κ
,

Ly2(t, τ) =
β

κ
(τ − t) ,

Lz1(t, τ) =
β

κ
J2(t, τ) ,

Lz2(t, τ) =
1

κ
(τ − t) .

Finally, the results in the case where a large-scale magnetic field is in the z-direction (〈B〉 =

B0ez) can be obtained by replacing kyB0 by kzB0 in Eq. (18) and in front of the integrals

in Eq. (19).
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IV. TURBULENCE STATISTICS TRIGGERED BY AN

INHOMOGENEOUS FORCING

We start with the calculation of the turbulence intensity in the x direction, which can be

written as:

〈u2
x〉 =

1

(2π)6A
∫

dk1

∫

dk2 ei(k1+k2)·xφ11(k1,k2)
∫ ∞

a
e−2ξ{Q(τ)−Q(a)}Jx(k1)Jx(k2)dτ (21)

=
1

(2π)6A
∫

ds
∫

dk eis·xφ11(k + s/2,k − s/2)
∫ ∞

a
e−2ξ{Q(τ)−Q(a)}Jx(k + s/2)Jx(k − s/2)dτ

Here: ξ = νk2
y/A and Q(x) = κx + x3/3 + G2x; the functions Jx is defined in Eq. (14).

To find the overall behavior of the turbulence intensity, one needs to take into account all

the wave-numbers and perform the k-integration. To this end, we write the wave-vector in

spherical coordinates (kx = k cos θ, ky = k sin θ cos φ and kz = k sin θ sin φ) and perform

the average over θ and φ. By setting φ11 ≡ f11E(k, s)/(8πk2) and performing the angular

integration, Eq. (21) can be rewritten as:

〈u2
x〉 =

τf

(2π)2

∫

ds
∫

dk cos [s · x]
E(k, sx)

8πνk2
I∗
x(ξ∗, s) (22)

where:

I∗
x(ξ∗, s) =

1

2π

∫ +π

−π
dφ
∫ π

0
dθ

1

sin θ cos2 φ
ξ
∫ ∞

a
e−2ξ{Q(τ)−Q(a)}f11J

+
x J−

x dτ (23)

Here, ξ∗ = νk2/A and the superscript + means that the argument is k + s/2 whereas the

superscript − means that the argument is k− s/2. Similarly, the turbulence intensity in the

other two directions can be obtained as:

〈u2
y〉 =

τf

(2π)2

∫

ds
∫

dk cos [s · x]
E(k, sx)

8πνk2
I∗
y (ξ∗, s) , (24)

〈u2
z〉 =

τf

(2π)2

∫

ds
∫

dk cos [s · x]
E(k, sx)

8πνk2
I∗
z (ξ∗, s) ,

where the following integrals have been defined:

I∗
y (ξ∗, s) =

1

2π

∫ +π

−π
dφ
∫ π

0
dθ

1

sin θ cos2 φ
ξ
∫ ∞

a
dτe−2ξ{Q(τ)−Q(a)} × (25)

[

f11J
+
y1J

−
y1 + f22J

+
y2J

−
y2 + f12J

+
y1J

−
y2 + f21J

−
y1J

+
y2

]

,

I∗
z (ξ∗, s) =

1

2π

∫ +π

−π
dφ
∫ π

0
dθ

1

sin θ cos2 φ
ξ
∫ ∞

a
dτe−2ξ{Q(τ)−Q(a)} ×

[

f11J
+
z1J

−
z1 + f22J

+
z2J

−
z2 + f12J

+
z1J

−
z2 + f21J

−
z1J

+
z2

]

.
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Here the following definitions have been used: φ12 ≡ f12E(k, s)/(8πk2), φ21 ≡ f21E(k, s)/(8πk2)

and φ22 ≡ f22E(k, s)/(8πk2). Note that only the terms in even power of s have to be kept

as the terms in odd power in s would vanish after angular integration over θ and φ in Eqs

(22-24).

Note that two cases must be considered separately, the inhomogeneity being in the plane

of the shear or perpendicular to it. Indeed, the values of f11, f12, f21 and f22 are different

in these two cases. First, in the case where the inhomogeneity is in the x direction, setting

E(k, s) = E(k, sx)δ(sy)δ(sz) in Eq. (7) leads to:

f11 = κ(κ + a2) + G2
∗κ(3κ − a2) + G4

∗κ
2 , (26)

f22 = κ ,

f12 = f21 = 0 ,

where G∗ = sx/(2k). Secondly, when the inhomogeneity is in the z direction, using E(k, s) =

E(k, sz)δ(sx)δ(sy) in Eq. (7) gives four relevant components of the power spectrum forcing

correlations as:

f11 = κ(κ + a2) − G2
∗κ(a4 − κa2 + 2κ2 − 4κ) − G4

∗(3a
4 + κa2 + a2 − κ2) − G6

∗a
2(κ + a2) ,(27)

f22 = κ + G2
∗(3 − a2 − β2) + G4

∗ ,

f12 = −a
[

2
√

κ + a2G∗ + 4βG2
∗ + 4

√
κ + a2G3

∗ + βG4
∗ +

√
κ + a2G5

∗

]

,

f21 = −a
[

−2
√

κ + a2G∗ + 4βG2
∗ − 4

√
κ + a2G3

∗ + βG4
∗ −

√
κ + a2G5

∗

]

.

Here G∗ = sz/(2k).

Next, the helicity of the flow can be shown as

〈u · ∇ × u〉 = − τf

(2π)2

∫

ds
∫

dk sin [s · x]
E(k, s)

8πνk
H∗(ξ∗, s) , (28)

where:

H∗(ξ∗, s) =
1

2π

∫ +π

−π
dφ
∫ π

0
dθ

1

cos φ
ξ
∫ ∞

a
dτe−2ξ{Q(τ)−Q(a)} ×

{

(29)

f11

[

a(J+
z1J

−
y1 − J−

z1J
+
y1) − J+

x J−
z1 + J−

x J+
z1 + β(−J−

x J+
y1 + J+

x J−
y1)
]

+f22a(J+
y2J

−
z2 − J−

y2J
+
z2)

+f12

[

a(J+
z1J

−
y2 + J−

z2J
+
y1) + J+

x J−
z2 + βJ+

x J−
y2

]

+f21

[

−a(J+
z2J

−
y1 + J−

z1J
+
y2) + J+

z2J
−
x − βJ−

x J+
y2

] }
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Note that only the terms in odd power of s have to be kept as the terms in even power

would vanish after integration in Eqs (28). It can be shown that the flow does not possess

helicity when the inhomogeneity is in the x-direction: H∗ = 0 for all values of ξ∗ and s. On

the contrary, when the inhomogeneity is in the z-direction, the helicity does not vanish.

Note that Eqs (22), (24) and (28) involve an integration with respect to s. It is thus

not straightforward to relate I∗
x, I∗

y , I∗
z and H∗ to the energy density (9) and the density

of the gradient forcing (10). The s-integral cannot be performed in the general case as the

prescription of the dependence of the densities on the s variable is necessary. The calculation

will be carried out in the case of a weak inhomogeneity in Section VI.

V. ELECTROMOTIVE FORCE

The three components of the electromotive force can be written as:

E =













〈uybz − uzby〉
〈uzbx − uxbz〉
〈uxby − uybx〉













(30)

=
1

(2π)6

∫

dk1

∫

dk2e
i(k1+k2)·x













〈ũy(k1)b̃z(k2) − ũz(k2)b̃y(k1)〉
〈ũz(k1)b̃x(k2) − ũx(k2)b̃z(k1)〉
〈ũx(k1)b̃y(k2) − ũy(k2)b̃x(k1)〉













.

To compute the electromotive force, the two cases identified in Sec. III 1 and III 2 are

considered separately.

In the case of a large-scale magnetic field in the x-direction, the electromotive force is

computed from E = 〈u × b〉. Using Eqs. (13) and (16), we obtain

Ei =
τf

(2π)3A2

∫

dk
∫

ds eis·x (iB0ky)
∫ +∞

a
dτe−2ξ{Q(τ)−Q(a)} ×

[

(31)

φ11(k1,k2)













J−
y1K

+
z1 − J−

z1K
+
y1

J−
x K+

z1 − J−
z1K

+
x

J−
y1K

+
x − J−

x K+
y1













+ φ22(k1,k2)













J−
z2K

+
y2 − J−

y2K
+
z2

0

0













+φ12(k1,k2)













J−
y2K

+
z1 + J−

z2K
+
y1

J−
z2K

+
x

J−
y2K

+
x













− φ21(k1,k2)













J−
y1K

+
z2 + J−

z1K
+
y2

J−
x K+

z2

J−
x K+

y2













.
]

(32)
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Here, the Ji’s and Ki’s functions are defined in Eq. (14) and Eq. (17), respectively; the

superscript + means that the argument is k + s/2 whereas the superscript − means that

the argument is k − s/2.

On the other hand, when 〈B〉 = B0ey, by using Eqs. (13) and (19), the electromotive

force is obtained as:

Ei =
τf

(2π)3A2

∫

dk
∫

ds eis·x (iB0ky)
∫ +∞

a
dτe−2ξ{Q(τ)−Q(a)} ×

[

(33)

φ11(k1,k2)













J−
y1L

+
z1 − J−

z1L
+
y1

J−
x L+

z1 − J−
z1L

+
x

J−
y1L

+
x − J−

x L+
y1













+ φ22(k1,k2)













J−
z2L

+
y2 − J−

y2L
+
z2

0

0













+φ12(k1,k2)













J−
y2L

+
z1 + J−

z2L
+
y1

J−
z2L

+
x

J−
y2L

+
x













− φ21(k1,k2)













J−
y1L

+
z2 + J−

z1L
+
y2

J−
x L+

z2

J−
x L+

y2













]

.

Here, the Ji’s and Ki’s functions are defined in Eq. (14) and Eq. (20), respectively; the

superscript + means that the argument is k + s/2 whereas the superscript − means that

the argument is k − s/2. In the case where a large-scale magnetic field is in the z-direction

(〈B〉 = B0ez), the electromotive force is easily obtained by replacing B0ky with B0kz on the

first line of the Eq. (33).

A. Inhomogeneity in the x direction

By substituting Eq. (26) in Eq. (33), the tensor aij can be computed in the following

form:

aij =
τf

(2π)3A2

∫

dk
∫

dsx eisxx (iky)
E(k, sx)

8πk2













0 0 X3(k, sx)

0 0 X4(k, sx)

X1(k, sx) X2(k, sx) 0













ij

(34)

Components that are odd functions of β and thus vanish upon k-angular integration were

not included in Eq. (34). In Eq. (34), the following integrals are defined :

X1(k, sx) =
∫ +∞

a
dτe−2ξ{Q(τ)−Q(a)}f11

(

J−
y1K

+
x − J−

x K+
y1

)

, (35)

X2(k, sx) =
∫ +∞

a
dτe−2ξ{Q(τ)−Q(a)}f11

(

J−
y1L

+
x − J−

x L+
y1

)

,
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X3(k, sx) = β
∫ +∞

a
dτe−2ξ{Q(τ)−Q(a)}

[

f11

(

J−
y1L

+
z1 − J−

z1L
+
x

)

+ f22

(

J−
z2L

+
y2 − J−

y2L
+
z2

)]

,

X4(k, sx) = β
∫ +∞

a
dτe−2ξ{Q(τ)−Q(a)}f11

(

J−
x L+

z1 − J−
z1L

+
y1

)

.

Here, ξ = νk2
y/A and Q(x) = κx + x3/3 + G2x, with G = sx/(2ky).

From the tensor aij in Eq. (34), the turbulent transport of magnetic flux γi = −εijkajk/2

is obtained from its antisymmetric part and the α effect from its symmetric part αij =

(aij + aji)/2. First, the magnetic pumping can be shown to be

γ =
τf

(2π)3

∫

dk
∫

dsx eisxx E(k, sx)

16πν2k4
yk

2
(iky) ξ2













X2(k, sx) − X4(k, sx)

X3(k, sx) − X1(k, sx)

0













, (36)

Secondly, the symmetric part of the tensor aij is the α tensor:

αij =
τf

(2π)3

∫

dk
∫

dsx eisxx E(k, sx)

16πν2k4
yk

2
(iky) ξ2 × (37)













0 0 X1(k, sx) + X3(k, sx)

0 0 X2(k, sx) + X4(k, sx)

X1(k, sx) + X3(k, sx) X2(k, sx) + X4(k, sx) 0













ij

.

To find the overall behavior of the γ and α effect, one needs to take into account all the

wave-numbers and perform the k-integration. To this end, we write the wave-vector in

spherical coordinates (kx = k cos θ, ky = k sin θ cos φ and kz = k sin θ sin φ) and perform the

integration over θ and φ. Eqs. (36) and (37) can then be reduced to

γ = − τf

(2π)2

∫ +∞

0
dk
∫ +∞

−∞
dsx sin [sxx]

E(k, sx)

8πν2k3













γ∗
x(ξ∗,G∗)

γ∗
y(ξ∗,G∗)

0













, (38)

and

αij = − τf

(2π)2

∫ +∞

0
dk
∫ +∞

−∞
dsx sin [sxx]

E(k, sx)

8πν2k3













0 0 α∗
xz(ξ∗,G∗)

0 0 α∗
yz(ξ∗,G∗)

α∗
xz(ξ∗,G∗) α∗

yz(ξ∗,G∗) 0













ij

.(39)

The coefficients in Eqs (38-39) are functions only of ξ∗ = νk2/A and G∗ = sx/(2k):

γ∗
x(ξ∗,G∗) =

1

2π

∫ +π

−π
dφ
∫ π

0
dθ

1

sin3 θ cos4 φ
ξ2 [X2(k, sx) − X4(k, sx)] , (40)
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γ∗
y(ξ∗,G∗) =

1

2π

∫ +π

−π
dφ
∫ π

0
dθ

1

sin3 θ cos4 φ
ξ2 [X3(k, sx) − X1(k, sx)] ,

α∗
xz(ξ∗,G∗) =

1

2π

∫ +π

−π
dφ
∫ π

0
dθ

1

sin3 θ cos4 φ
ξ2 [X1(k, sx) + X3(k, sx)] ,

α∗
yz(ξ∗,G∗) =

1

2π

∫ +π

−π
dφ
∫ π

0
dθ

1

sin3 θ cos4 φ
ξ2 [X2(k, sx) + X4(k, sx)] .

As previously, it is not possible to relate these quantities in a straightforward manner to the

energy density (9) and the density of the gradient forcing (10) and the calculation will be

carried out in the case of a weak inhomogeneity in Section VI. However, a few interesting

observations can be made regarding the structure of the γ and α effects. First, Eq. (38)

shows that the γ effect is bi-dimensional in the plane of the shear. Second, without shear

(A = 0), analysis of the two first equations of (40) shows that γ∗
x 6= 0 and γ∗

y = 0. This

is in agreement with previous results12: when inhomogeneity is the only source of preferred

direction, the α effect vanishes and the magnetic pumping is aligned with the inhomogeneity.

On the other hand, the analysis of the α effect in Eq. (39) shows that there are only non

diagonal components in the α tensor (αxz and αyz). Third, without shear (A = 0), a closer

analysis of the two last equations of (40) shows that α∗
xz 6= 0 and α∗

yz = 0. That is, there is

no α effect without shear.

B. Inhomogeneity in the z direction

By substituting Eq. (27) in Eq. (33), the tensor aij can be obtained in the following

form:

aij =
τf

(2π)3A2

∫

dk
∫

dsz eiszz (iky)
E(k, sz)

16πk2













Z1(k, sz) Z3(k, sz) 0

Z2(k, sz) Z4(k, sz) 0

0 0 Z5(k, sz)













ij

. (41)

Components that would vanish upon k-angular integration were not shown in Eq. (41). In

Eq. (41), the following integrals are defined

Z1(k, sz) =
∫ +∞

a
dτe−2ξ{Q(τ)−Q(a)}

[

f11

(

J−
y1K

+
z1 − J−

z1K
+
y1

)

+ f22

(

J−
z2K

+
y2 − J−

y2K
+
z2

)

(42)

+f12

(

J−
21K

+
z1 − J−

z2K
+
y1

)

− f21

(

J−
z1K

+
y2 + J−

y1K
+
z2

)]

,

Z2(k, sz) =
∫ +∞

a
dτe−2ξ{Q(τ)−Q(a)}f11

(

J−
x K+

z1 − J−
z1K

+
x + f12J

−
z2K

+
x − f21J

−
x K+

z2

)

,

Z3(k, sz) =
∫ +∞

a
dτe−2ξ{Q(τ)−Q(a)}

[

f11

(

J−
y1L

+
z1 − J−

z1L
+
y1

)

+ f22

(

J−
z2L

+
y2 − J−

y2L
+
z2

)

15



+f12

(

J−
21L

+
z1 − J−

z2L
+
y1

)

− f21

(

J−
z1L

+
y2 + J−

y1L
+
z2

)]

,

Z4(k, sz) =
∫ +∞

a
dτe−2ξ{Q(τ)−Q(a)}f11

(

J−
x L+

z1 − J−
z1L

+
x + f12J

−
z2L

+
x − f21J

−
x L+

z2

)

,

Z5(k, sz) = (β + G)
∫ +∞

a
e−2ξ{Q(τ)−Q(a)}f11

(

J−
y1L

+
x − J−

x L+
y1

)

.

Here, ξ = νk2
y/A, Q(x) = κx + x3/3 + G2x, and G = sz/(2ky).

From the tensor aij in Eq. (41), the turbulent transport of magnetic flux and the α effect

are obtained as:

γ =
τf

(2π)3

∫

dk
∫

dsz eiszx E(k, sz)

16πν2k4
yk

2
(iky) ξ2













0

0

Z2(k, sz) − Z3(k, sz)













, (43)

and

αij =
τf

(2π)3

∫

dk
∫

dsz eiszz E(k, sz)

8πν2k4
yk

2
(iky) ξ2 × (44)













2Z1(k, sz) Z2(k, sz) + Z3(k, sz) 0

Z2(k, sz) + Z3(k, sz) 2Z4(k, sz) 0

0 0 2Z5(k, sz)













ij

.

To find the overall behavior of the γ and α effects, all possible values of k have to be

considered and the integration over k has to be performed as in the previous section. This

k integration can be shown to reduce Eqs. (43) and (44) to

γ = − τf

(2π)2

∫ +∞

0
dk
∫ +∞

−∞
dsz sin [szz]

E(k, sz)

8πν2k3













0

0

γ∗
z (ξ∗,G∗)













, (45)

and

αij = − τf

(2π)2

∫ +∞

0
dk
∫ +∞

−∞
dsz sin [szz]

E(k, sz)

8πν2k3













α∗
xx(ξ∗,G∗) α∗

xy(ξ∗,G∗) 0

α∗
xy(ξ∗,G∗) α∗

yy(ξ∗,G∗) 0

0 0 α∗
zz(ξ∗,G∗)













ij

.(46)

In Eqs (45-46), the following coefficients are functions only of ξ∗ = νk2/A and G∗ = sz/(2k):

γ∗
z (ξ∗,G∗) =

1

2π

∫ +π

−π
dφ
∫ π

0
dθ

1

sin3 θ cos4 φ
ξ2 [Z2(k, sz) − Z3(k, sz)] , (47)

α∗
xx(ξ∗,G∗) =

1

2π

∫ +π

−π
dφ
∫ π

0
dθ

1

sin3 θ cos4 φ
ξ2Z1(k, sz) ,
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α∗
yy(ξ∗,G∗) =

1

2π

∫ +π

−π
dφ
∫ π

0
dθ

1

sin3 θ cos4 φ
ξ2Z1(k, sz) ,

α∗
zz(ξ∗,G∗) =

1

2π

∫ +π

−π
dφ
∫ π

0
dθ

1

sin3 θ cos4 φ
ξ2Z5(k, sz) ,

α∗
xy(ξ∗,G∗) =

1

2π

∫ +π

−π
dφ
∫ π

0
dθ

1

sin3 θ cos4 φ
ξ2 [Z2(k, sz) + Z3(k, sz)] .

As previously, it is not possible to relate these quantities directly to the energy density (9)

and the density of the gradient forcing (10) and the calculation will be carried out in the

case of a weak inhomogeneity in Section VI. However, a few interesting observations can

be made regarding the structure of the γ and α effects. First, Eq. (45) shows that the γ

effect is unidimensional and perpendicular to the plane of the shear. Second, without shear

(A = 0), a closer analysis of the first equation of (47) shows that γ∗
z 6= 0. This is in agreement

with previous results12: when inhomogeneity is the only source of preferred direction, the α

effect vanishes and the magnetic pumping is aligned with the inhomogeneity. Third, with

regard to the α effect, Eq. (46) shows that there are three diagonal components in the α

tensor and one off-diagonal component (recall that α is a symmetric tensor, i.e. αxy = αyx).

Finally, without shear (A = 0), analysis of the last four equations of (40) shows that all the

components of the α effect vanish without shear.

VI. WEAK INHOMOGENEITY

As mentioned previously, to find the overall dependence of the magnetic pumping and α

effects on the shear, one needs to perform the integration over the s variables, characterizing

the scale of the inhomogeneity. This requires us to prescribe the dependence of the forcing

on s and perform the integration for all values of x. Since this is numerically too demanding,

we compute exactly only in the case of a weak inhomogeneity. To this end, we first write

the function defined in Eqs. (22), (24), (29), (40) and (47) in powers of the inhomogeneity

parameter G∗ � 1:

I∗
i (ξ∗, s) = I0

i (ξ∗) + I2
i (ξ∗)G2

∗ + . . . , (48)

H∗(ξ∗,G∗) = H1(ξ∗)G∗ + H3(ξ∗)G3
∗ + . . . ,

γ∗
i (ξ∗,G∗) = γ1(ξ∗)G∗ + γ3(ξ∗)G3

∗ + . . . ,

α∗
ij(ξ∗,G∗) = α1

ij(ξ∗)G∗ + α3
ij(ξ∗)G3

∗ + . . . .
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Keeping only the leading order terms by assuming that

∫ +∞

−∞
s2 cos[s · x]E(k, s)ds �

∫ +∞

−∞
cos[s · x]E(k, s)ds , (49)

turbulent intensity and helicity are obtained in the following form:

〈u2
x〉 =

τf

(2π)2

∫ +∞

0
dkI0

x(ξ∗)E0(k, s) , (50)

〈u2
y〉 =

τf

(2π)2

∫ +∞

0
dkI0

y (ξ∗)E0(k, s) ,

〈u2
z〉 =

τf

(2π)2

∫ +∞

0
dkI0

z (ξ∗)E0(k, s) ,

〈u · ∇ × u〉 = − τf

(2π)2

∫ +∞

0
dkH1(ξ∗)G0(k, s) .

Here E0(k, s) and G0(k, s) are the spectra for the kinetic energy and the inhomogeneity

gradient which have been defined in Eqs. (9) and (10). The turbulence intensity is shown

on Figure 1 for inhomogeneity in the x and z directions; the helicity is shown on Figure 2 for

inhomogeneity in the z direction (the helicity vanishes for inhomogeneity in the x direction).

In either case when the shear is in the x or z-direction, a weak shear increases the turbulent

intensity. It is because a large-scale shear flow transfers energy toward small-scale thus

strengthening small-scale turbulence. On the other hand, for strong shear, the turbulent

intensity is decreasing with shear, ultimately vanishing for sufficiently strong shear. This

is due to shear stabilization which damps turbulence and reduces transport: flow shear

facilitates the cascade of various quantities such as energy to small scales, enhancing the

dissipation rate15 and thus leading to weak turbulence. A similar behavior is observed for

the turbulent helicity except for the fact that it is zero for vanishing shear whereas the

turbulent intensity is small but non-zero in that case. That is, a shear flow, interestingly,

causes non-zero flow helicity in inhomogeneous turbulence driven by a non-helical forcing.

As seen in the previous sections, not all the components of the γ and α effects are present.

In the case where the inhomogeneity is in the x-direction, the magnetic pumping and α effect

can be written as:

γ = − τf

(2π)2

∫ +∞

0
dkG0(k)













γ1
x(ξ∗)

γ1
y(ξ∗)

0













, (51)
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FIG. 1. Dependence of the function I0

x + I0
y + I0

z on the dimensionless shear ξ−1
∗ = A/(νk2). Note

that the turbulence intensity is the same when the inhomogeneity is in the x and z direction.
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FIG. 2. Dependence of the function H1 on the dimensionless shear ξ−1
∗ = A/(νk2) for inhomo-

geneity in the z-direction and for a weak inhomogeneity.

and

αij = − τf

(2π)2

∫ +∞

0
dkG0(k)













0 0 α1
xz(ξ∗,G∗)

0 0 α1
yz(ξ∗,G∗)

α1
xz(ξ∗,G∗) α1

yz(ξ∗,G∗) 0













ij

. (52)

Figures 3 shows the dependence ofγ1
x, γ1

y , α1
xz, and α1

yz on the dimensionless shear ξ−1
∗ =

A/(νk2). Note that for ξ−1
∗ = 0, we have γ1

x 6= 0, γ1
y = 0 and α1

xz = α1
yz = 0.

In the case where the inhomogeneity is in the z-direction, the magnetic pumping and α
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FIG. 3. Dependence of the coefficient γ1
x, γ1

y , α1
xz, and α1

yz on the dimensionless shear ξ−1
∗ =

A/(νk2). The inhomogeneity is in the plane of the shear (i.e. in the x-direction). Note that for

ξ−1
∗ = 0, we have γ1

x 6= 0, γ1
y = 0 and α1

xz = α1
yz = 0.

effect can be written as:

γ = − τf

(2π)2

∫ +∞

0
dkG0(k)













0

0

γ1
z(ξ∗)













, (53)

and

αij = − τf

(2π)2

∫ +∞

0
dkG0(k)













α1
xx(ξ∗) α1

xy(ξ∗) 0

α1
xy(ξ∗) α1

yy(ξ∗) 0

0 0 α1
zz(ξ∗)













ij

. (54)

Figures 4 shows the dependence of the coefficient γ1
z , α1

xx, α1
yy, α1

zz, and α1
xy on the dimen-

sionless shear ξ−1
∗ = A/(νk2). Note that For ξ−1

∗ = 0, we have γ1
z 6= 0 and α1

xx = α1
yy =

α1
zz = α1

xy = 0. The results in Figures 3 and 4 can be summarized as follows:
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FIG. 4. Dependence of the coefficient γ1
z , α1

xx, α1
yy, α1

zz, and α1
xy on the dimensionless shear

ξ−1
∗ = A/(νk2). The inhomogeneity is orthogonal to the plane of the shear (i.e. in the z-direction).

Note that For ξ−1
∗ = 0, we have γ1

z 6= 0 and α1
xx = α1

yy = α1
zz = α1

xy = 0.

• Without shear (A = 0), the magnetic pumping is in the direction of the inhomogeneity

and the α effect vanishes.

• For weak but non-vanishing shear, the magnetic pumping becomes bi-dimensional

when the inhomogeneity is in the plane of the shear flow whereas it remains in the

21



U(x)

z
x

yTachocline

2 Zb

FIG. 5. Sketch of the mean-field dynamo model considered in this paper. Note that the dynamo

equations are solved only in a thin layer where the shear is located (the tachocline) and that the

convection in the outer-envelope provides the inhomogeneous forcing. Zb is the scale on which the

forcing is varying (i.e. the size of a convective roll).

direction of the inhomogeneity if the direction of the inhomogeneity is orthogonal to

the plane of the shear flow.

• For weak but non-vanishing shear, the α effect increases with shear. Furthermore,

when the inhomogeneity is in the plane of the shear, the α effect has only non-diagonal

components. In contrast, when the inhomogeneity is orthogonal to the plane of the

shear, the α effect has both diagonal and non-diagonal components.

• For sufficiently strong shear, both the γ and α effects vanish due to shear stabilization.

VII. A SIMPLE MEAN-FIELD DYNAMO MODEL

The previous sections show that α and γ effects can arise from the combined effect of

a large-scale shear flow and an inhomogeneous forcing even in the absence of rotation. To

demonstrate the possible existence of dynamo due to these two effects, we consider a simple

mean-field dynamo model in which a large-scale magnetic field is amplified. This is a toy

model of α-Ω dynamo in stars and is illustrated on Figure 5. Specifically, both the shear

and the turbulence are assumed to be located inside a thin layer (the solar tachocline in the
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case of the Sun) in the interior of the star. We use a (local) Cartesian coordinates where

(x, y, z) are the radial, azimuthal and latitudinal coordinates. Note that for the Sun, the

x-direction would correspond to the radial direction, e.g. in the tachocline it corresponds to

the direction of the shear due to radial differential rotation. Consequently, the shear flow

due to differential rotation is written 〈U〉 = −Axy. The turbulence in this layer is assumed

to be triggered by an inhomogeneous forcing whose statistics is given by Eq. (6). From

the physical point of view, this external forcing could be due to turbulent plumes coming

from convection of the outer convective envelope. In that case, the forcing is likely to be

highly inhomogeneous as the forcing ought to be stronger in places where the convective

motions are parallel to the radial direction (see Figure 5). We express the magnetic field

as the sum of a toroidal part (B̄(x, z)ey) and a poloidal part [∇×(Ā(x, z)ey)]. Note that B

depends only on the (local) radial x and latitudinal z directions and is independent of the

azimuthal coordinate y (i.e. it represents an axisymmetric field). The toroidal and poloidal

components of this axisymmetric field are governed by the system of equation:

∂tB̄ = A∂zĀ + ∂zEx − ∂xEz + (η + β)∆B̄ , (55)

∂tĀ = Ey + (η + β)∆Ā .

Here, the term proportional to β in Eq. (55) is the turbulent magnetic diffusivity which was

computed in the kinematic limit in a previous contribution21:

β =
τf

(2π)2

∫ +∞

0

E(k, sx)

8πν2k4
β∗(ξ∗) . (56)

Note that the effect of the inhomogeneity on the β effect22 should be included in Eq. (56).

However, this effect is expected to be very small in the weak inhomogeneity limit and thus

Eq. (56) is used as an approximation for the turbulent diffusivity. The dependence of the

coefficient β∗ with shear is plotted on Figure 6.

Eq. (55) shows that there can be magnetic field amplification only if the component

Ey does not vanish and depends on the toroidal component of the magnetic field B̄. This

implies that the diagonal component αyy must be non-zero. As can be seen from Eqs. (39)

and (46), this is the case only for an inhomogeneity in the z direction. Therefore, we study

the case where the inhomogeneity is in the z direction and accordingly simplify Eq. (55) as:

∂tB̄ = ξ−1
∗ ∂zĀ − ∂z

[

b(ξ∗, z)∂zĀ
]

− ∂x

[

c(ξ∗, z)∂xĀ
]

+ ∂z

[

a(ξ∗, z)B̄
]

+ ∂z

[

d(ξ∗, z)∂zB̄
]

+ ∂x

[

d(ξ∗, z)∂xB̄
]

,(57)

∂tĀ = −e(ξ∗, z)∂zĀ + f(ξ∗, z)B̄ + d(ξ∗, z)∂z2Ā + d(ξ∗, z)∂x2Ā .
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FIG. 6. Dependence of the coefficient β∗ on the dimensionless shear ξ−1
∗ = A/(νk2),

.

Here, the units are non-dimensionalized by using the turbulent length scale l and the diffusion

time l2/η; the coefficients are defined as:

a(ξ∗, z) = −∇〈f 2〉
64η4k7

[

α∗
xy − γ∗

z

]

, (58)

b(ξ∗, z) = −∇〈f 2〉
64η4k7

α∗
xx ,

c(ξ∗, z) = −∇〈f 2〉
64η4k7

α∗
zz ,

d(ξ∗, z) =
〈f 2〉

32η4k6
β∗ ,

e(ξ∗, z) = −∇〈f 2〉
64η4k7

[

α∗
xy + γ∗

z

]

,

f(ξ∗, z) = −∇〈f 2〉
64η4k7

α∗
yy .

The z-dependence of these functions comes from the fact that the forcing and its gradient

depend on spatial coordinate x. In the following, the dependence is prescribed to be:

〈f 2〉 =
F0

N(z0)

z2
0

z2
0 + z2

, i.e. − ∇〈f 2〉
2

=
F0

N(z0)

z2
0z

(z2
0 + z2)2

. (59)

Note that z0 represents the length-scale on which the forcing is varying. We introduce the

following normalization factor N(z0) = z0/Zb arctan(Zb/z0) to enforce that the total forcing

(averaged over the simulation box [−Zb Zb]) is independent of z0 and equal to F0. The

24



coefficients in Eq. (57) can then be rewritten as:

a(ξ∗, z) = −F̃0
z2
0z

(z2
0 + z2)2

[

α∗
xy − γ∗

z

]

, (60)

b(ξ∗, z) = −F̃0
z2
0z

(z2
0 + z2)2

α∗
xx ,

c(ξ∗, z) = −F̃0
z2
0z

(z2
0 + z2)2

α∗
zz ,

d(ξ∗, z) = F̃0
z2
0

z2
0 + z2

β∗ ,

e(ξ∗, z) = −F̃0
z2
0z

(z2
0 + z2)2

[

α∗
xy + γ∗

z

]

,

f(ξ∗, z) = −F̃0
z2
0z

(z2
0 + z2)2

α∗
yy ,

where F̃0 = F0/(32η4k6). Note that the ratio of the turbulent (β∗) and the molecular

diffusivity (η) is of order F̃0. The ratio of the two is the magnetic Reynolds number: Rm ∼
F̃0.

Eq. (57) is a partial differential equation (PDE) for two spatial and one time coordinates.

By following Parker23, we assume the typical variation in the radial direction (x) to be of

order µ−1 and approximate the spatial derivative with respect to x as ∂2
xF ∼ −µ2F . In

the following, the value µ−1 = 0.05Ro/l is used corresponding to a shearing region (the

tachocline in the solar case) of extent 5% of the solar radius Ro (note that all quantities

are non-dimensionalized by the turbulent length scale l). With these assumptions, Eq. (57)

reduces to the following 1D-PDE system of equations:

∂tB̄ = ξ−1
∗ ∂zĀ − ∂z

[

b(ξ∗, z)∂zĀ
]

+ µ2c(ξ∗, z)Ā + ∂z

[

a(ξ∗, z)B̄
]

+ ∂z

[

d(ξ∗, z)∂zB̄
]

− µ2d(ξ∗, z)B̄ ,(61)

∂tĀ = −e∂zĀ + fB̄ + d(ξ∗, z)∂z2Ā − µ2d(ξ∗, z)Ā .

The parameters are fixed by characteristic value of the tachocline: F̃0 ∼ Rm = 105 (e.g.

see Ref.24). The following equality between the turbulent length scale and the solar radius

(Ro) is assumed: l ∼ R−1
m Ro. This suggests the value of the parameter µ to be roughly

µ = 0.0002. Other parameters to be fixed are the size of the box of the simulation 2Zb (z

varying from −Zb to +Zb) and the boundary conditions. First, as can be seen from Figure

5, the scale of the inhomogeneity is set by the size of a convective cell. The size of the

box is thus chosen to be 2Zb = 10000 corresponding to 10 convective cells per hemisphere.

Second the boundary condition is fixed to be a vanishing magnetic field at the boundaries:
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FIG. 7. Evolution of the magnetic energy with time for different values of the dimensionless shear

ξ−1
∗ = A/(νk2). The left-hand panel is for z0 = 10 and the right-hand panel is for z0 = 1000. The

other parameters are fixed to µ = 0.0002 and F̃0 = 105.

Ā(t, z) = B̄(t, z) = 0 for z = ±Zb and system (61) is solved using MATLAB PDE solver.

Note that periodic boundary conditions can also be used as more than one convective cell

forcing the turbulence is expected in the tachocline. For simplicity and in order to identify

key aspects in the generation of magnetic field, we only consider fixed boundary conditions

in this paper. Figure 7 shows the magnetic energy defined as E(t) =
∫

dz[A(z, t)2 +B(z, t)2]

for different values of the shear parameter ξ−1
∗ and for two values of z0. Note that the

larger value of z0 represents a wider distribution of inhomogeneity. It is seen that there

is dynamo for z0 = 10 and z0 = 1000 provided that the shear is strong enough. In order

to investigate the spatial structure of the growing magnetic field, we show in Figure 8 a

spatio-temporal diagram of the magnetic field in the case z0 = 1000 and ξ−1
∗ = 10. The x

and y axes show the time and the z-direction, respectively; the color coding represents the

intensity of the toroidal magnetic field (on the left) and the poloidal magnetic field (on the

right). This shows that the magnetic field is created near z = 0 and that it is migrating

towards the boundary of the domain as time goes by. To understand this, recall that the

β-effect (the turbulent diffusion) is strongest at z = 0. In comparison, a simple calculation

shows that the gradient of the forcing, and consequently the γ and α effect, is maximum at

z = ±z0/
√

3. This is illustrated on Figure 9 which shows the profile of the forcing intensity

and its gradient. Since γ1
z < 0 (see Figure 4), the pumping effect expels the magnetic field

from z = 0 towards the boundary of the domain. These profiles of α and γ thus imply that

the magnetic field is created near z = ±z0/
√

3 and is expelled towards the boundaries of
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FIG. 8. Spatio-temporal diagram of the growing magnetic field. The parameters are fixed to

µ = 0.0002, F̃0 = 105, z0 = 1000 and ξ−1
∗ = 10.

the domain.

Figure 10 shows the spatial structure of the magnetic field at late times (t = 100). It is

easy to see that the magnetic field is concentrated near the boundaries of the integration

domain. Furthermore, one can see that the magnetic field is oscillating near the boundary.

This is to be expected as the magnetic energy has to accumulate on the boundary of the

domain while preserving the boundary condition Ā(±Zb, t) = B̄(±Zb, t) = 0. Note that for

periodic boundary conditions, there might not be such an oscillation as the magnetic field

could take any value on the border of the domain.

To summarize, a simple mean field dynamo model with differential rotation and inhomo-

geneous γ and α effects is introduced. The magnetic field is shown to be created primarily

where the gradient of the forcing is the strongest. Due to magnetic pumping (γ effect), the

magnetic field is expelled from the region of the strongest inhomogeneity and migrates to-

wards the region where the inhomogeneity is the weakest. We also observe that the magnetic

field is oscillating more and more as time goes by. Due to the simplicity of our mean-field

model (e.g. boundary conditions), some of these results might be unphysical. Specifically, we
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FIG. 9. Sketch of the spatial structure of the intensity of the forcing (left) and its gradient (right)

for a parameter z0 = 1000. On the right we put the sign of the magnetic pumping in the z direction:

γz = γ1
z∇F with γ1

z < 0.

expect the magnetic field generation and the migration of the magnetic field to the bound-

aries as suggested by the sketches in Figure 9. However, the oscillations of the magnetic

field near boundaries may be artifact due to the boundary conditions of vanishing magnetic

fields.

VIII. CONCLUSION

This paper provided a theoretical prediction of the electromotive force induced in a

sheared turbulence driven by a non-helical inhomogeneous forcing. Without shear, the
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FIG. 10. Spatial structure of the magnetic field. The parameters are fixed to µ = 0.2, F̃0 = 100,

z0 = 0.1 and ξ−1
∗ = 10.

electromotive force reduces to a magnetic pumping γ parallel to the direction of the inho-

mogeneity. As shear is increased, an additional component of the γ effect appears in the

perpendicular (y) direction when the inhomogeneity is in the x-direction. Furthermore, the

α effect, which vanishes without shear as expected, was shown to arise due to the combined

effects of the inhomogeneous forcing and the shear. The structure of this α effect depends on

the direction of the inhomogeneity. Specifically, when the inhomogeneity is in the direction

of the shear (x), the α effect has only two non-zero off-diagonal components whereas in the

case of an inhomogeneity in the z direction, perpendicular to shear flow, the α effect involves

all three diagonal components and one off-diagonal component. For sufficiently strong shear,

both α and γ effects are however reduced by shear stabilization: a strong shear favors a cas-

cade of energy towards small scales and therefore increases the dissipation in the system15,

leading to weak turbulent transport. We note that this shear induced kinematic dynamo in

inhomogeneous turbulence can intuitively be understood from symmetry considerations.

By using the theoretical prediction, the possibility of an axisymmetric (y-independent)

mean-field dynamo due to the combined effect of an inhomogeneous forcing and a large-

scale shear flow is investigated. By numerically solving a simplified model of alpha-Omega

dynamo, we show that a coherent magnetic field is created primarily where the gradient of
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the forcing is the strongest. Due to magnetic pumping (gamma effect), the magnetic field

is then expelled from the region of the strongest inhomogeneity and migrates towards the

region where the inhomogeneity is the weakest. The growing magnetic field thus tends to

accumulate in the region of weakest forcing intensity.

This could have interesting implications for the structure of magnetic field in non-rotating

stars. Since various sources of inhomogeneity are present due to convection in the outer

envelope (see Figure 5), our results suggest that a strong magnetic field is likely to be

observed in the middle of every convection cell where the inhomogeneity is weakest. In

this case, a strong magnetic field would be observed at various latitude corresponding to

the location of convective cells, leading to a series of stripes on the surface of the star.

Furthermore, this pattern is likely to be stationary. It is interesting to contrast this to

what is observed on the Sun where the dynamo is a result of differential rotation and alpha

effect with opposite signs in the two hemispheres. In that case, sunspots (corresponding to

a strong magnetic field) appear around a mid-latitude and migrates towards the equator,

leading to the well-known butterfly diagram.

Finally, it is worth emphasizing that the purpose of this paper was to elucidate some

key aspects of dynamos in sheared, inhomogeneous turbulence without a (global) rotation.

The understanding of coherent magnetic fields in astrophysical and laboratory plasmas in

general would involve other physical processes that were not included in this paper, i.e.,

Ω × J effect25, W × J effect14, magnetic instabilities26, etc, as well as the extension to

nonlinear dynamos by including backreaction of magnetic fields. This will be investigated

in future papers.
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