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Synopsis 

The limit-state design approach, currently used in codified design of concrete structures 

reinforced with steel reinforcement, is based on semi-probabilistic procedures. Although 

modern concrete codes of practice are more sophisticated than older codes based on the 

permissible stress approach, they still have fundamental uncertainties with regards to 

structural safety. The work reported in this paper investigates these uncertainties for the 

BS8110 and Eurocode-2 codes of practice by performing a structural reliability 

assessment using the Monte-Carlo Simulation method in conjunction with the Latin 

Hypercube and Conditional Expectation variance reduction techniques. The assessment 

considers both the flexural and shear failure modes. In the case of BS8110, it is shown 

that it may be more appropriate to increase the characteristic value of the tensile 

strength of steel reinforcement rather than to use the reduced partial safety factor of 

1.05.  

 

Keywords: Concrete structures, risk & probability analysis, codes of practice & 

standards. 

 

Notation 

di         effective depth of the beam, determined at each simulation cycle 

fc concrete compressive strength  

ni         flexural failure factor calculated at each simulation cycle 

x neutral axis of RC beam 

xi  neutral axis depth calculated, assuming ductile failure, at each simulation cycle 

z lever arm of RC beam 

Fi component for the resistance-capacity at each simulation cycle (it denotes the 

load carrying capacity of the beam for the failure mode under consideration) 

FQ cumulative distribution function of a variable load 

Gi permanent load evaluated at each simulation cycle, i 

Gk  characteristic value of permanent load 

N  number of simulation cycles performed 
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Pf probability of failure  

Pft target structural reliability level 

fP  mean probability of failure, which corresponds to the notional Pf 

Pfi probability of failure evaluated at each simulation cycle 

Q variable load 

Qk characteristic value of variable load 

R Resistance component of limit-state function 

Ri resistance-capacity evaluated at each simulation cycle 

S Action effect component of limit-state function 

Q
G

 ratio of permanent to variable load 

PVL-ratio ratio of permanent to variable load 

RCM resistance-capacity margin 

γG load factor for permanent load 

γms partial safety factor for steel reinforcement 

γQ load factor for variable load 

εc  concrete strain developed in the RC beam 

εy  yield strain of the steel reinforcement 

µFshear mean shear resistance-capacity 

µFflexure mean flexural resistance-capacity 

µG mean value of permanent load 

µQ mean value of variable load 

ρ ratio of longitudinal reinforcement 

 

Introduction 

Modern concrete codes of practice utilise safety level one of structural reliability theory 

to restrict the nominal probability of failure within specific target levels (CEB-FIB 

Model Code 19901). However, when the design and safety philosophy of such codes of 

practice is investigated, a number of fundamental structural safety uncertainties emerge.  
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One such uncertainty arises from the fact that there is a lack of published records 

regarding the derivation of the adopted partial safety factors. The British concrete code 

of practice (BS81102) states that the adopted partial safety factors have been calibrated 

with pre-existing practice and experience by taking into account the uncertainties 

relevant to structural loading and strength of materials. An example of this is the 

reduction in the partial safety factor adopted for the strength of steel reinforcement (γms) 

from 1.15 in the previous code to 1.053. In the case of the Eurocodes, Eurocode 1 (ENV 

1991-14) states that the partial safety factors were derived by calibration to historical 

and empirical design methods, with amendments based on the safety level two method 

of structural reliability theory. Eurocode 1 has also a clear target structural reliability 

level (Pft) of 7x10-5 for the design working life. In the case of BS8110, although there is 

no published evidence about the adopted Pft, it seems that a similar value to Eurocode 1 

is implicitly adopted by BS8110, since the two codes of practice use similar load and 

partial safety factors. 

 

Another safety uncertainty arises from the fact that there is no information regarding the 

resistance-capacity margins (RCM) that exist between the various failure modes (limit 

states). For example, if there is flexural over-strength, it is impossible to predict the 

failure mode that will occur (e.g. shear, bond) and at which load level. Hence, it is 

uncertain whether the application of the adopted partial safety factors would always 

result in the desired type of failure (i.e. flexural yielding) assumed by the codes of 

practice. 
 

Finally, it is not known if the structural reliability levels, (Pf, i.e. probability of failure), 

are uniform for all structural members (beams, slabs, columns, foundations etc). 

Members designed according to these partial safety factors may be either unsafe or 

over-conservatively safe as affirmed by Holicky and Vrouwenvelder5 for the case of RC 

columns designed according to Eurocode 2 (ENV 1992-1-16). Similar findings were 

reported in studies by Duprat et al7 and by Neuenhofer and Zilch8.  

 

The work reported in this paper, which continues along the lines of an earlier study by 

Neocleous and Pilakoutas9 on the use of new materials in concrete construction, 
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investigates some of these safety concerns for the two codes of practice of relevance to 

UK engineers (BS8110 and Eurocode 2). Structural reliability theory is utilised to 

determine the annual, notional Pf of RC beams, designed to resist flexure and shear in 

accordance with the two codes of practice. The RCM between the flexural and shear 

failure modes is also evaluated.  

 

Methodology 

The structural reliability assessment is performed for the case of simply supported, 

singly reinforced concrete beams, which are designed in accordance with the BS8110 

and Eurocode-2 codes of practice to resist uniformly distributed floor loads. The effect 

of the reduction of the BS8110 value of γms on the notional Pf of the beams is also 

examined by performing the assessment for γms equal to 1.15 and 1.05; this is examined 

for both codes of practice for comparative reasons.  

 

The BS8110 value of γms was reduced from 1.15 to 1.05 mainly due to the evidence of 

safe designs3, which were primarily attributed to the fact that the yield stress of 

reinforcing bars - currently used for RC construction in the UK - is significantly higher 

than the characteristic value adopted by BS8110. The effect of this assumption on the 

structural reliability is examined by carrying out a further assessment on the hypothesis 

that the yield stress of steel reinforcement statistically conforms to the characteristic 

value of 460 N/mm2 adopted by the British Standards10. The statistical data for a 

hypothetical yield stress acceptable to BS4449 is shown (as “BS4449” Steel) in Table 3 

together with the other data used for the properties of steel reinforcement.  

 

In addition, the effect of a number of design parameters on Pf and RCM is examined by 

carrying out the examination for forty-eight different beam configurations (summarised 

in Table 1). The design parameters considered are concrete compressive strength (fc), 

ratio of longitudinal reinforcement (ρ) and ratio of permanent to variable load (PVL-

ratio). The beams are designed according to the two codes of practice to avoid shear 

failure and to achieve under-reinforced sections.   

 



 Page 6 of 22 

 

The probability of occurrence of brittle failure due to concrete crushing (Pfc) is also 

determined to examine whether RC beams, designed to attain under-reinforced sections, 

would sustain a brittle failure due to concrete crushing. This will therefore examine, if 

the code’s assumption about the desired mode of failure is valid.  

 

The assessment is performed by applying the Monte Carlo simulation method in 

conjunction with the joint application of the Latin Hypercube11 and Conditional 

Expectation12 variance reduction techniques. The entire procedure followed in the 

assessment, illustrated in Figure 1 and summarised in Appendix A, is elaborated by 

Neocleous13. 

 

Statistical Data 

The statistical data used for the probabilistic modelling of all random variables are 

either taken from published literature or derived from the analysis of experimental data 

supplied by manufacturers. In the case of the geometrical variables, the data presented 

by Mirza and McGregor14 are adopted (Table 2). A truncated normal probability 

distribution is used to model the geometrical variation; the tips of the distribution are 

truncated to avoid generating impossible values, such as values that may result from 

human errors. The geometric tolerance limits recommended by the CEB FIB Model 

code 19901 are used to derive the minimum and maximum allowable values at which 

the probability distribution is truncated.     

 

The statistical data used for the modelling of fc are derived from the analysis of cube 

strengths from concrete batches with different cement contents13, provided by British 

ready mix manufacturers. Figure 2 shows the standard deviation versus the mean 

compressive strength for over 300 specimens presented in 10 groups according to their 

cement range. Based on the results of the analysis, a constant standard deviation (6 

N/mm2) is adopted for all concrete strengths, and the normal probability distribution is 

adopted to model the variation of the concrete compressive strength15. The distribution 

is truncated at both tips to avoid the generation of impossible random values, such as 

negative strength. Although the analysis of the available test data indicated that different 

values could be adopted for the minimum and maximum allowable concrete 
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compressive strength, it is deemed more appropriate to adopt the worst available value. 

Hence, the minimum and maximum allowable values are taken as 3.8 standard 

deviations away from the mean value.   

 

Table 3 shows the statistical data adopted to model the variation in the yield stress of 

steel reinforcement. The statistical data is mainly based on data published by UK 

CARES16 (over 1000 samples) and incorporates the recommendations by Mirza and 

McGregor17 on the probability distributions. It is noted that the minimum value 

provided by UK CARES is not used to truncate the lower tip of the distribution. It is 

deemed more appropriate instead to adopt the UK characteristic value. The variation in 

the cross sectional area of the reinforcement is modelled as a separate random variable, 

since the supplied yield stress was determined using the gross cross-sectional area of the 

reinforcement. Similarly to the other random variables, the adopted probability 

distribution for the cross-sectional area is truncated at both tips to account for the 

quality control procedures applied during the manufacture of the reinforcement and at 

various stages of RC construction.  

 

The variation of the permanent and variable loads is modelled based on data obtained 

from published literature (Table 4). In the case of the intensity variation of the 

permanent floor loads, following the recommendations by Östlund18, a coefficient of 

variation of 5% is adopted. Whereas for the variable loads, a coefficient of variation of 

40% is used for the annual maximum floor loads. These values are similar to the ones 

recommended by the CEB-FIB Model Code 19901. 

 

Discussion of results: 

Flexural Design  

Flexural design of the examined beams is based on the assumption that under-reinforced 

sections will be attained and hence, brittle failure would be avoided. The results 

obtained for Pfc indicate that, for some of the beams considered in this study, there is a 

very small probability (ranging from 10-3 to 10-6) that the beams will sustain brittle 

failure due to concrete crushing. This is due to the fact that a higher γm is adopted for 
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concrete than for steel reinforcement. Hence, this confirms that the limit state approach 

for flexural design is sound.  

 

Partial Safety Factors for Steel Reinforcement  

Analysis of the flexural and shear results shows that the target Pf (7x10-5), adopted by 

Eurocode 1 for the design working life of a structure, is generally satisfied for γms equal 

to 1.05 and 1.15 (for both BS8110 and Eurocode 2).  

 

Figure 3 shows the effects of γms on the flexural Pf of beams. As expected, the results 

obtained for γms equal to 1.15 (red bar) and 1.05 (grey bar) indicate that the flexural Pf 

increases as γms decreases. Analysis of the results also shows that the reduction in γms to 

1.05 (adopted by BS8110 since 1997) affects the flexural structural reliability, in 

particular, when the yield stress of the reinforcement complies strictly with the British 

Standards (blue bar in Figure 3). It is obvious that, since the use of steel statistically 

complying with British Standards can result in a high Pf, the reduction in γms to 1.05 was 

not the best solution. It is proposed that, rather than decrease the value of γms, it is more 

appropriate to increase the characteristic yield stress of steel reinforcement to 500 

N/mm2. This proposal would also put the British Standards in line with the new 

European Standards.  

 

Reliability Differentiation 

Figures 4 to 7 show the effects of the main design parameters on the Pf for flexure and 

shear, both for BS8110 and Eurocode 2. These figures show that the flexural and shear 

values of Pf are not uniform across the range of design configurations considered. This 

is especially true for the shear failure mode, where Pf varies from 10-5 to 10-22 (for γms 

1.05) and 10-6 to 10-20 (for γms 1.15) for BS8110 and Eurocode 2, respectively.  

 

Figures 4 to 7 also show, for both failure modes examined, that Pf is greatly influenced 

by the PVL-ratio. Structural reliability improves as this ratio increases. This is because 

the permanent load, whose variation is much lower than that for the variable load, 

becomes the dominant parameter for the action effect component (S) of the limit-state 

function and hence, the variation of S reduces accordingly. This results in an increase in 
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the margin between S and the resistance component (R) and a subsequent reduction in 

Pf.  

 

Different PVL-ratios are implicitly used in different types of structures (due to their 

geometry and intended application). Hence, the above effect implies that the structural 

reliability of different structures would not be the same, if the same values of γm (or load 

factors) are used for the design of these structures. It is therefore recommended that 

future codes of practice should consider the use of different load factors for different 

types of structure (buildings, bridges, etc) in order to attain a more uniform Pf. 

However, reliability differentiation may be desirable for certain types of safety critical 

structures, such as bridges and hospitals.    

 

For the flexural failure mode, the results show that ρ and fc also influence structural 

reliability, with the effect of ρ being greater than that of fc. In the first instance, the 

variation in flexural Pf as a result of  ρ and fc is surprising, since these design 

parameters are included in flexural design equations. From further examination, this 

variation is found to be caused by the influence of the two parameters on the ratios of 

the mean to design value of the neutral axis depth (x) and lever arm (z). As ρ increases, 

x increases proportionally, whereas z decreases non-linearly (Figure 8). Consequently, 

the ratio of mean to design value of x does not change with ρ, whereas the 

corresponding ratio for z increases with ρ (Figure 9). Hence, this increase causes a 

decrease in Pf (Figure 10). The opposite effect is observed for fc since the ratio of z 

decreases as fc increases (Figure 11). 

 

It is also found that the shear Pf is affected by ρ and fc; however, further examination 

could not identify a clear pattern. This is because shear resistance is the sum of concrete 

shear resistance (influenced by both ρ and fc) and the additional shear resistance from 

shear links. The ratio between the two resistances, for the beams examined, is not 

constant. 

 

Shear-Flexure Resistance Capacity Margins (RCMs) 
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Figure 12 shows that the shear-flexure RCMs, for Eurocode 2 and BS8110, are not 

uniform for all the beams examined. The values determined for BS8110 varied from 0.9 

to 2.1, whereas for Eurocode 2, the range of values was 1.1 to 2.8. Further analysis of 

the results indicates that the RCMs are variable due to the effect of the main design 

parameters, such as ρ and fc, on the flexural and shear resistance capacities of the 

beams. This is illustrated in Figure 13, where the flexural µF increases proportionally 

with ρ, whereas the shear µF increases at a lower rate and, hence, the RCMs decrease as 

ρ increases.  

 

The influence of fc on the RCMs was found to be less important than that of ρ. In the 

case of BS8110, the RCMs in general decrease as fc increases. Whereas, for Eurocode 2, 

it was observed that the RCMs increase with fc.   

 

Code Comparison 

Analysis of the results shows that there is a difference in the flexural and shear values of 

Pf determined from BS8110 and Eurocode 2. In the case of the flexural Pf, the values 

obtained by Eurocode 2 are lower than those obtained by BS8110 due to the different 

load characteristics of each code. In the case of the shear Pf, it is determined that the 

values obtained by Eurocode 2 are again lower than the ones determined by BS8110. 

This can be partly attributed to the higher concrete γm adopted for shear design by 

Eurocode 2.    

 

Conclusions  

The various safety uncertainties that are relevant to BS8110 and Eurocode 2 have been 

examined by assessing the structural reliability of concrete beams singly reinforced with 

steel reinforcement. 

  

One of the main findings of the study is that the calculated flexural and shear structural 

reliability is not uniform across the range of beams examined due to the effect of the 

different design parameters. It is shown that the ratio of permanent to variable load is 

one of the most influential parameters on structural reliability. 
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The reduction in the partial safety factor for steel reinforcement to 1.05, introduced in 

BS8110 in 1997, may reduce the notional structural reliability of RC beams, if the yield 

stress of the steel reinforcement used complies strictly with the characteristic value used 

by British Standards. Hence, to overcome this possibility, it is recommended that the 

characteristic value of the yield stress of steel reinforcement is increased to 500 N/mm2 

to reflect the over-strength currently provided by the manufacturers of reinforcement. 

 

The resistance-capacity margins are found to vary between different beams due to the 

effect of the concrete compressive strength and ratio of longitudinal reinforcement. 

These margins range from 0.9 to 2.8. This highlights the need for a more consistent and 

economic design, but this can only be achieved if a different design philosophy is 

adopted. 

 

Overall, a difference is observed between the results obtained for BS8110 and Eurocode 

2. This is attributed to the different load characteristics and partial safety factors adopted 

by each code of practice.  

 

Further work is required to examine the structural reliability for other modes of failure, 

such as bond (anchorage and splice) and other structural elements, such as continuous 

beams and columns. 
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Appendix A - Description of Assessment 

The structural reliability assessment is performed by utilising the procedure illustrated 

in Figure 1. The assessment is based on the philosophy that the RC beams are designed 

to fail in flexure. It is noted that the assessment is performed separately for each RC 

beam considered in the study. 

 

The first step in the procedure is to define the data relevant to the RC beam under 

consideration. This includes the data used in code based design and the statistical data 

for all basic variables considered in the assessment.  

 

The design flexural resistance of the RC beam is calculated at the second step. The 

flexural resistance is determined by applying the prediction models adopted by the code 

of practice under examination. It is noted that the characteristic value adopted by 

BS8110 (i.e. 460 N/mm2) is only used for the evaluation of the design flexural 

resistance. 

 

The calculation of the design flexural resistance is followed by the evaluation of the 

nominal transverse reinforcement required by the beam to resist a design (shear) load 

equal to the design flexural resistance of the RC beam. It is assumed that the transverse 

reinforcement is provided in the form of vertical shear links.     

 

The next step is to evaluate the characteristic value, mean value and standard deviation 

for both the permanent and variable loads. Equations A.1 and A.2 are used to calculate 

the characteristic values for the variable and permanent loads respectively. The mean 

value and standard deviation for the variable and permanent load are then determined by 

utilising the data tabulated in table 4.  

Q
Gγγ

ResistanceDesign Q
GQ

k

+
=                    (A.1) 

Q
GQG kk =                       (A.2) 
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At step 5, the Latin Hypercube variance reduction technique is applied to generate 

pseudo-random values (at each simulation cycle) for all conditioned basic variables 

(such as depth, width, length, concrete strength, reinforcement strength, and permanent 

load). It is assumed that all basic variables are un-correlated. Furthermore, the variable 

load is selected as the control variable and thus it is kept constant at its mean value.  

 

Step 6 involves the formulation of the limit state functions for both the flexural and 

shear failure modes. The limit state function (G(Ri, Si)), which is evaluated at each 

simulation cycle (equation A.3), represents the structural behaviour for the limit state 

(failure mode) for which the assessment is performed. G(Ri, Si) is represented in terms of 

the structural resistance component (Ri) and action effect component (Si). Both Ri and Si 

are modelled by mathematical relationships of conditioned basic variables, which 

represent structural material properties and actions respectively. Some conditioned basic 

variables are common for both components, for instance the variables representing the 

structural geometry.  This step also calculates the probability of occurrence of brittle 

failure due to concrete crushing, Pfc, (equation A.4). 

G(Ri, Si) = Fi – Gi          (A.3) 

yc

c

i

i
i

yc

c

i

i
i

N

1i
i

εε
ε

d
xif0n

εε
ε

d
xif1n

Where
N

 n

+
≤=

+
>=

=
∑

=
fcP        (A.4) 

 

In addition, the Conditional Expectation technique is used to evaluate the flexural and 

shear Pf. Initially, equation A.5 is used to calculate the Pfi at each simulation cycle. 

Once all simulation cycles are performed, equation A.6 is used to evaluate the average 

probability of failure. This corresponds to the notional (or theoretical) structural 

reliability level, since the effect of human errors is not included in the assessment. At 

the end of the assessment, the shear-flexure RCM is calculated by equation A.7.    

Pfi = P(Q  > G(Ri, Si)) = 1 - FQ(Fi – Gi)                   (A.5) 
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P
P           (A.6) 

Fflexure

Fshear

μ
μ

RCM =          (A.7)  

 



 Page 17 of 22 

 

Table 1 Data for the RC beams considered in the reliability assessment 

Beam Width 
 
 

 (mm) 

Overall 
depth 

 
(mm) 

Longitudinal 
reinforcement. 

ratio 
 

Length 
 
 

(m) 

fcu 
 

 

 
(N/mm2) 

Ratio of 
permanent 
to variable 

load  

1 180 260 0.75% 4.3 25 0.5 

2 180 260 0.75% 4.3 30 0.5 

3 180 260 0.75% 4.3 45 0.5 

4 180 260 0.75% 4.3 50 0.5 
5 355 480 1.25% 8.7 25 0.5 

6 355 480 1.25% 8.7 30 0.5 

7 355 480 1.25% 8.7 45 0.5 

8 355 480 1.25% 8.7 50 0.5 

9 530 700 1.75% 13.1 40 0.5 

10 530 700 1.75% 13.1 45 0.5 

11 530 700 1.75% 13.1 50 0.5 

12 530 700 1.75% 13.1 55 0.5 

13 180 260 2.50% 4.3 48 0.5 

14 180 260 2.50% 4.3 50 0.5 

15 180 260 2.50% 4.3 55 0.5 

16 180 260 2.50% 4.3 60 0.5 

17 355 480 0.75% 8.7 25 1 

18 355 480 0.75% 8.7 30 1 

19 355 480 0.75% 8.7 45 1 

20 355 480 0.75% 8.7 50 1 

21 530 700 1.25% 13.1 25 1 

22 530 700 1.25% 13.1 30 1 

23 530 700 1.25% 13.1 45 1 

24 530 700 1.25% 13.1 50 1 

Notation

fcu is the characteristic concrete cube compressive strength used in BS8110,   

:  

All geometrical dimensions are nominal, concrete cover is 30mm  
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Table 1 (continued) Data for the RC beams considered in the reliability assessment 

Beam Width 
 

 (mm) 

Overall 
depth 

(mm) 

Longitudinal 
reinforcement. 

ratio 

Length 
 

(m) 

fcu
 

 

(N/mm2) 

Ratio of 
permanent 
to variable 

load  

25 180 260 1.75% 4.3 35 1 

26 180 260 1.75% 4.3 40 1 

27 180 260 1.75% 4.3 45 1 

28 180 260 1.75% 4.3 50 1 

29 355 480 2.50% 8.7 48 1 

30 355 480 2.50% 8.7 50 1 

31 355 480 2.50% 8.7 55 1 

32 355 480 2.50% 8.7 60 1 

33 530 700 0.75% 13.1 25 2 

34 530 700 0.75% 13.1 30 2 

35 530 700 0.75% 13.1 45 2 

36 530 700 0.75% 13.1 50 2 

37 180 260 1.25% 4.3 25 2 

38 180 260 1.25% 4.3 30 2 

39 180 260 1.25% 4.3 45 2 

40 180 260 1.25% 4.3 50 2 

41 355 480 1.75% 8.7 35 2 

42 355 480 1.75% 8.7 40 2 

43 355 480 1.75% 8.7 45 2 

44 355 480 1.75% 8.7 50 2 

45 530 700 2.50% 13.1 48 2 

46 530 700 2.50% 13.1 50 2 

47 530 700 2.50% 13.1 55 2 

48 530 700 2.50% 13.1 60 2 

Notation

fcu is the characteristic concrete cube compressive strength used in BS8110,   

: 

All geometrical dimensions are nominal, concrete cover is 30mm  
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Table 2 Statistical data adopted for geometrical basic-variables 14 

Dimension Description Mean Value     
µi (mm) 

Standard Deviation 
σi (mm) 

Probability 
Distribution 

Width Nominal + 2.4 4.8 Normal 
Overall Depth Nominal – 3.2 6.4 Normal 

Concrete Cover Nominal + 1.6 11.6 Normal 
Beam Spacing and Span Nominal 17.5 Normal 
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Table 3. Statistical data adopted for steel reinforcing bars used in the UK16, 17 

 Yield stress at 0.43% total strain 
(N/mm2) 

Cross-sectional 
Area, As/Nominal 

Young's 
Modulus, Es               

(N/mm2) UK CARES steel “BS4449 steel” 

Mean µi 530 507 0.982  201000b 
Standard Deviation σi 32.1 30.9 0.01 6633b 

Minimum imin 474     460a  440 0.90b        0.81c - 
Maximum imax 630 602 1.21b        1.44c - 

Probability 
Distribution  Log-normal Log-normal Normal Normal 

a: value modified by the authors and used in the assessment 

Notation: 

b: value adopted for longitudinal reinforcing bars  

c: value adopted for transverse reinforcing bars  

d: value adopted by BS8110 and used to determine the design flexural resistance 
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Table 4 Statistical data adopted for loading18 

 Permanent Load G Variable Load Q 

Coefficient of variation covi 0.05 0.4 

Characteristic ik µG + 0.082 µQ 
. 1.74a 

µQ 
. 1.98b 

Probability distribution Normal Gamma 
 
a: BS8110 (1997) value, corresponds to the 95th percentile  

b: Eurocode 2 (ENV 1992-1-1, 1992) value, corresponds to the 98th percentile 
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