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Abstract:  In  this  paper,  the  method  of  fundamental  solutions  (MFS)  is  developed  to  solve  

numerically  an  inverse  problem  which  consists  of  finding  an  unknown  cavity  within  a  region  of  

interest based on given boundary Cauchy data. A range of examples are used to demonstrate that the  

technique is very effective at locating cavities in two-dimensional  geometries  for exact  input  data.  

The  technique  is then developed  to include  a regularisation  parameter  that  enables  cavities  to be  

located accurately and stably even for noisy input data.   

Keywords. Electrical impedance tomography, inverse problem, method of fundamental solutions.  
    _________________________________________________________________________________________________________________________________________  

 1 Introduction

Electrical  Impedance  Tomography  (EIT)  is  a  technique in  which  an  image  of  the  permittivity,  or 

conductivity, of the interior of an object is inferred from surface measurements of electrical phenomena. 

Practically,  this  can be achieved by attaching conducting electrodes to the boundary of a person or 

object and applying small alternating currents to some or all of the electrodes. The resulting voltages are 

measured,  and  the  process  repeated  for  numerous  different  configurations  of  applied  current.  The 

electrical  potential produced across the object containing the cavity depends on the particular location 

and  the electrical  properties  of the  cavity  and,  as  such,  it  should  be  possible  to  use  boundary 

measurements of the voltage to detect and locate such cavities [Hanke and Bruhl 2003, Holder 2005]. 

This allows an approximate image of the spatial distribution of the  electrical conductivity within  the 

object to be constructed [Borcea 2002]. 

As a non-invasive technique, EIT can be of particular benefit when it is used for medical imaging. The 

process  uses  no ionising radiation,  and therefore,  it  is  possible  to use  the  procedure  for  continuous 

monitoring.  The problem of recovering the conductivity information is a nonlinear and ill-posed inverse 

problem. As such, one of the current drawbacks to the technique is a low spatial resolution [Boone 

2006].  

We consider the inverse problem of determining an unknown conductor  D compactly contained in a 
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bounded domain   ℝd , d = 2,3, i.e. D⊂ , entering the Laplace equation

 ∇2 u=0 in  \ D ,  with u∣∂ D=0, (1)

from the knowledge of a single Cauchy pair of nontrivial data (u , nu) on the boundary  of , where 

n is the outward unit normal to   and u is the electrical potential.  This type of mathematical model 

appears in many applications of  electric field sensing [Smith 1996, Smith et al.  1998]. In EIT, the 

homogeneous  condition  u∣∂ D=0 means  that  the  inclusion  D is  a  perfect  conductor,  i.e.  of  infinite 

conductivity.

It has been shown in earlier work [Borman et al. 2007] that the MFS procedure is a technique that 

accurately approximates the direct problem solution in both two- and three-dimensions and it will be 

developed in this paper for solving numerically the inverse problem of unknown cavity D identification 

entering in (1). 

 2 Mathematical Formulation

Let us state the inverse problem more mathematically. Let  and D be bounded domains with smooth 

boundaries  such that  D⊂ , and  \  D is  connected.   Let f ∈H 1 /2
()  be  given applied  voltage 

potential,  not identically zero. Then the  f  generates the electric field E=−∇ u , where the electric 

potential u satisfies the following Dirichlet problem:

∇2 u=0 in  \ D , (2)

  u = 0 on D , (3)

  u = f on  . (4)

Note  that  if  the  inclusion  D is  an insulator,  i.e.  of  zero  conductivity,  then  condition  (3)  should  be 

replaced by nu = 0 on D.

When  D is known, it is well-known that the Dirichlet problem for the Laplace equation, as given by 

equations (2) - (4), has a unique solution u∈H 1 . Then we can define a nonlinear operator Ff, 

which  maps  from  the  set  of  admissible  subdomains  D to  the  data  space  of  Neumann  values  in

H−1/ 2∂ as follows:

Ff (D):=   n  u| = g ∈H−1/ 2∂. (5)
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Then the inverse  problem under consideration consists  of  extracting some of the useful  information 

about the domain  D from the data  Ff(D). As opposed to the direct  problem, the inverse  problem is 

nonlinear  and  ill-posed.  The  issue  of  uniqueness,  i.e.  the  identifiability  of  an  unknown  perfectly 

conducting  curve  D from the  Cauchy  data  (f  0,g) on  ,  can  be  found  in  [Kress  2004].  The 

uniqueness can also be established for the identifiability of an unknown perfectly insulated curve  D 

from the Cauchy data (f  constant,  g) on   with ∫
∂

g ds=0, [Haddar and Kress 2005]. Stability 

estimates were obtained in [Alessandrini and Rondi 2001].

Since  the  response  operator  Ff is  a  highly  nonlinear  function  of  the  domain  D,  extracting  useful 

information from the measurements is a difficult computational problem. If one is interested only in the 

location  of  D, then one  can employ  efficiently  the  plane  or  sphere  search  method  for tracking  the 

position of a two- or three-dimensional cavity D, respectively, as described in [Kim et al. 2002].  On the 

other hand, if the location, shape and size of the obstacle D are all of interest then one can use iterative 

schemes which require the solution of many forward problems for each change of geometry and position 

of D, see e.g. [Duraiswami et al. 1997]. These authors used the Boundary Element Method (BEM) as a 

direct solver, and it is the purpose of this paper to develop instead, for the first time, the MFS, due to its 

advantages over the BEM, that stem mostly from the fact that the pointisation of the boundary is needed 

only, which completely avoids any integral evaluation, and makes no significant difference in coding 

between  the  two-  and  the  three-dimensional  cases  [Burgess  and  Mahajerin  1984,  Fairweather  and 

Karageorghis 1998].

 3 The Method of Fundamental Solutions (MFS)

The  MFS  is  a  member  of  a  class  of  boundary-type  techniques  that  involve  computations  being 

undertaken with respect to points on the boundary of the region of interest. As such, they do not involve 

interior points of the region of interest, which is useful in many real world engineering applications. 

Like the BEM, the MFS is an effective technique for solving linear elliptic partial differential equations 

with constant coefficients for which a fundamental solution is available in explicit form, such as the 

Laplace,  biharmonic  and  Helmholtz  equations.  It  is  a  form  of  indirect  boundary  integral  equation 

method and a technique that uses boundary collocation or boundary fitting [Johnston and Fairweather 

1984]. Based on density results for linear elliptic partial differential equations [Bogomolny 1985], in the 

MFS we seek an approximation to the solution of the Laplace equation (1) as a linear combination of 

fundamental solutions, namely,

u x ≈U N  x=∑
j=1

N

C j Gd  x , y j ,        x∈∖D , (6)
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where Gd is a fundamental solution of the Laplace equation in ℝd given by

Gd (x ,  ) =     {− 1
2

ln∣x−∣, if d=2,

1
4∣x−∣

, if d=3, } (7)

and  the  singularities  y j j=1,N are  located  in D∪ℝd∖ . In  the  first  instance,  we  adopt  the 

simpler version of the MFS, usually called the charge simulation method [Golberg and Chen 1997], in 

which  part  of  the  singularities  are  known  at  fixed  positions  on  an  artificial  boundary  located 

outside  . The price to pay for not allowing the singularities to move in an adaptive and optimal way 

is that the location of the fixed artificial boundary has to be dealt with heuristically [Balakrishnan and 

Ramachandran  2000],  although  [Bogomolny  1985]  suggested  that  theoretically  the  locations  of 

singularities can be restricted to any surface embracing  . The remaining singularities are located in 

D and they are moving with the unknown object D throughout the iterative process described below.

In  the  direct  problem given  by  equations  (2)-(4),  in  which  D is  known,  the  unknown  coefficients

C j j=1, N in equation (6) are determined by imposing the boundary conditions (3) and (4). However, 

in the inverse problem (IP), given by equations (2)–(5),  D is unknown. Let us consider a star shaped 

cavity D (with respect to the origin) whose boundary admits the polar (if d=2), or the spherical  (if d=3) 

parametrizations

r = r(  ), 0    2, (8)

or,

r=r( , ), 0    ,  0    2, (9)

respectively. Without reducing the generality of the problem we may assume that  is the unit circle (if 

d=2), or the unit sphere (if d=3). 

For simplicity, let us consider the two-dimensional case. Based on expression (8), the boundary of D is 

pointified by

ri = r( i ), i=1, M ,  (10)

where i = 2i/M, i=1, M .

Then  the  coefficients C j j=1, N and  the  radii r ii=1, M can  be  determined  by  imposing  the 
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boundary  conditions  (3)-(5)  in  a  nonlinear  least-squares  sense  which  recasts  into  minimising  the 

function

S( C , r):= || UN – f ||2H
1/2

() + || n UN - g ||2H
-1/2

() +|| UN ||
2 L

2
(D). (11)

A few remarks about this function are worth mentioning at this stage:

(i)  In the discretised version of (11), for technical computational reasons, we  consider all the norms 

in L2.

(ii) The constraints 0 < ri  < 1, i=1, M , are imposed during the iterative procedure by adjustment at 

each iteration ( is the unit circle).

(iii)  The current  flux Neumann data (5)  comes from practical  measurements which are  inherently 

contaminated with noisy errors and therefore, we replace g in (11) by g, where 

|| g  - g|| L
2

(Ω)  . (12)

Based on the above remarks, it is natural to propose minimising the modified  discretised objective cost 

function

S(C,r):= ∑
i=1

M

[U N x i− f x i]
2∑

i=1

M

[∂n U N  x i−g x i]
2 ∑

i=M1

2M

[U N x i]
2 , (13)

where

xi  = ( cos (i), sin (i) ), i=1, M , (14)

are boundary collocation points uniformly distributed on  = B2(0,1), and

xi+M = (ri cos (i),  ri sin (i) ), i=1, M , (15)

are boundary collocation points on  D.  Essentially, we have  M collocation points taken on the outer 

boundary   and M on the inner boundary D of the cavity. It remains to specify the position of the 

singularities  y j j=1,N in D∪ ( ℝ2 ∖ ). These are taken as

 yj = Rext cos   j , R ext sin   j , j=1, N 1 , (16)

yj+N1 = 
r j

s
cos   j ,

r j

s
sin   j ,  j=1, M , (17)

where s>1, Rext >1,  j = 2j/N1 and N = N1 +M.
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Typically, the values of Rext and s are taken as 2, meaning N1 singularities are located at a radii twice that 

of the outer boundary and M singularities are located at a radii half that of the internal boundary.

In equation (13), UN is given by (6) from which the normal derivative can be calculated as

 nUN(x) = ∑
j=1

N

C j n(x) Gd(x, yj), x ∈ , (18)

where from (7) 

n(x) Gd(x, ) = {− x−⋅n
2∣x−∣2

, if d=2,

−
x−⋅n

4∣x−∣3
, if d=3.}  (19)

The minimisation of the objective function (13) is performed computationally using the NAG routine 

E04FCF,  which  is  a  comprehensive  algorithm for  finding  an  unconstrained  minimum of  a  sum of 

squares of m nonlinear functions in n variables, where no derivatives are required to be provided by the 

user, being calculated internally by the routine using forward finite differences.

The approach assumes that the cavity is star shaped and defined by M radii and the centre located at the 

origin, meaning that this will provide M unknowns to be found during the minimisation.  In addition, the 

MFS procedure  requires  the  vector  of  coefficients  C to  be  found  during  the  minimisation,  i.e.  the 

number of additional unknowns will be N=M+N1. The total number of unknowns to be found therefore, 

becomes M+N = 2M+N1 . The least squares minimisation (13) provides 3M equations. Since the number 

of equations must be greater or equal than the number unknowns then this requires 3M ≥ 2M + N1, 

or  M ≥ N1.

An important point to finally note is that the gradient of the function (13) can be calculated analytically. 

In  section  4  we  will  take  N1=M  and this  means  we  have  3M  unknowns  and  3M equations,  hence

 j= j for j=1, M .  We can re-write (13) explicitly as

S C , r :=∑
i=1

M [ 1
2
∑
j=1

M

C j ln [1Rext
2−2 Rext cos i− j] ] 

[ 1
2
∑

j=M 1

2 M

C j ln [1 r j−M

s 
2

−
2 r j−M

s
cosi− j−M ]− f cos i ,sin i]

2
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     ∑
i=M1

2 M [∑j=1

M

C j

1−Rext cosi−M− j

1Rext
2−2 Rext cos i−M− j ] 

[ ∑
j=M1

2 M

C j

1−
r j−M

s
cos i−M− j−M 

1 r j−M

s 
2

−
2 r j−M

s
cosi−M− j−M 

−gcos i−M  , sini−M ]
2

 ∑
i=2 M1

3 M [ 1
2
∑
j=1

M

C j ln [r i−2 M
2 Rext

2 −2 r i−2 M Rext cos i−2 M− j]]
          

[12 ∑
j=M1

2M

C j ln [ri−2M
2  r j−M

s 
2

−
2 r i−2 M r j−M

s
cos i−2 M− j−M ]]

2

,
(20)

and  then  differentiate  this  expression  with  respect  to  Ck for k=1, 2 M and  rl for l=1, M to 

explicitly find the gradient ∇ S C , r .

 4 Numerical Results and Discussion

As a first example, example 1, we consider a simple two-dimensional detection of an unknown circular 

cavity D=B2 (0, r0) of radius r0 ∈ (0,1) within the unit circle =B2 (0,1). We take f = -ln(r0) on  in 

(4) and then the direct problem given by equations (2)-(4), when D=B2(0,r0) is known, has the unique 

solution

 u r ,=ln r /r0 , r0r1, 02. (21)

The  initial  guess  is  taken  as  a  circle  located  at  the  origin  with  radius  0.5  unless  explicitly  stated 

otherwise. This is typical for problems of this structure where a cavity is being located in a unit circle. 

Numerical results are presented for Rext= s =2 and M=N
1
=30. We have found that further refinements did 

not significantly improve the accuracy of the numerical results. 

 4.1 No noise

The cavity to be identified was located at the origin of radius  r0=0.7 and consider first the case when 

there is no noise added to the measured data (5), i.e. =0. Figure 1(a) shows the results obtained from the 
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minimisation routine following a series of 200 iterations. It can be clearly seen that the routine locates 

the cavity with a high accuracy as the result exactly overlays the analytical desired cavity. Figure 1(b) 

shows the objective function (20) as a function of the number of iterations. From this figure it can be 

seen that for the first 100 iterations the solution remains almost at the initial guess after which it drops 

for  the next 100 iterations and finally it drops to zero after about a total of  200 iterations.  Similar good 

results were obtained when we searched for cavities of radii 0.8, 0.6, 0.4, 0.3 or 0.2.  Small errors in the 

final location accuracy arise when cavities of size 0.1 and below are attempted to be retrieved.

Figure 1: (a) The output from the minimisation routine for example 1 when searching for a circular cavity located  

at the origin of radius r0=0.7, and (b) the objective function as a function of the number of iterations.  

 4.2 Adding noise to the boundary data

To simulate real measured data, random noise is introduced into the Neumann boundary data  g as  g
ε 

given by

g(xi) = 1 + i  
,  i=1, M , (22)

where i are Gaussian random variables with mean zero and standard deviation  =% = percentage of 

noise,  generated using the NAG routine G05DDF.  As expected, since the inverse cavity problem is ill-

posed and no regularisation was included in the objective least-squares functional (13), the addition of 

noise to the data (22) gave inaccuracies and instabilities into the numerically obtained results even when 

very small amounts of noise were used. 
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 4.3 Summary of the results obtained

The results obtained for example 1 show that the technique employed is capable of detecting circular 

cavities of various radii positioned at the origin of a unit circle when an initial guess of a circle of radius 

0.5 located at the origin is used. Using this procedure enables circles as small as radii 0.2 to be located 

accurately when no noise is introduced in the input data.  When noise is added into the normal derivative 

term (22), the routine fails to locate the cavity regardless of the mesh size employed. It is anticipated that 

the inclusion of a regularisation term into the objective function (13) will improve the stability of the 

results. 

 4.4 Incorporating a regularising term

Regularisation is necessary in order to obtain a stable solution when noisy data g is used in (13). In this 

case we modify the  functional S given by equation (13) by adding to it the regularisation term

T 1 ,2 ,3 ,C , r =1∑
j=1

2 M

C j
22∑

j=1

M

r j
23∑

j=2

M

r j−r j−1
2 , (23)

where 1,2,30 are  regularisation  parameters.  The  second  term  imposes  the  continuity  of  the 

boundary D, whilst the third term imposes the smoothness C1of the boundary D. If the boundary D is 

a priori known to be of class C2 then (23) could include an extra term 4∑
j=3

M

r j−2 r j−1r j−2
2 .  

Also we can take 2=0 whenever 30 since the first-order regularisation includes  the zeroth-

order regularisation.

 4.5 Results with regularisation

In the first instance we investigate results when 3=0 and 1=2 , for the  simplicity of having 

only one regularisation parameter to specify. Then, the regularisation term (23) becomes

T 1 , C , r =1 {∑
j=1

2 M

C j
2∑

j=1

M

r j
2}. (24)

The circular cavity to be identified was located at the origin of radius r0=0.4.  Figure 2(a) shows how the 

routine successfully locates the cavity  as the result  exactly overlays the analytical  solution when no 

noise is used. Figure 2(b) shows the objective function when no noise is used and it can be observed that 

the function reaches approximately zero after 200 iterations. 
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                         (a) (b)

     

        (c)                 (d)

Figure 2: The output from the minimisation routine after the final iteration for example 1 when searching for a  

circular cavity located at the origin of radius r0= 0.4 with the addition of (a) no noise, (b) the respective objective  

function, (c)1% noise, and (d) the respective objective function.

A meaningless result is obtained from the results of the minimisation routine when 1% noise is included 

in the data (22) and no regularisation is used, i.e. 1=0 in (24), see Figure 2(c). It can be observed in 

Figure 2(d) that, consistent with the cavity not being located, the objective function fails to minimise. 

The results for 5% noise were  observed to have very similar characteristics to those of 1% noise. Figure 

2(c) further illustrates the ill-posedness of the inverse problem and that  classical  direct methods are 

inappropriate to solve it.

Figure 3 shows the objective function obtained when the regularisation parameter 1=0.05 is used in 
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(24) for 1%, 3% and 5% noise. In comparison to Figure 2(d), it can be observed that the results are 

significantly improved with the objective functions approaching zero in each case. The smaller is the 

amount of noise,  the faster the objective function approaches zero.  

Figure 3: The regularised objective function for example 1, as a function of the number of iterations, with 1=0.05  

for various amounts of noise 1%, 3% and 5%, when searching for a cavity located at the origin of radius r0=0.4.

These objective function results are reflected in the accuracy of the cavity location. In Figure 4(a) it can 

be clearly observed that the cavity is located very accurately when 1% noise is employed and in Figure 

4(b) the r0=0.4 radius cavity is located with reasonable accuracy when 5% noise is used.

 4.6 Searching for a range of cavity sizes 

We  have  observed  that  the  MFS  successfully  solves  problems  with  noisy  data  by  including  a 

regularisation  parameter  for  the  case  of  locating  cavities  of  radius  0.4,  located  at  the  origin.  It  is 

advantageous to validate the technique by attempting to locate other sizes of cavity.

A range of size cavities  located  at the origin with radii  0.2,  0.6,  0.8 were investigated.  In  the  first 

instance, the value of the regularisation parameter is kept the same as in the previous example as this 

helps to indicate if the parameter is robust for a range of cavity sizes.  Figure 4 (a) shows the results 

obtained when a regularisation parameter of 1=0.05 is used for 1% noise and Figure 4 (b) shows 

the equivalent result for 5% noise. It can be observed that the results demonstrate very high accuracy for 

the 1% noise. For 5% noise the large cavities are located with high accuracy, however this accuracy can 

be observed to reduce marginally as the cavity being located is reduced in size.   
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    (a)          (b)

Figure 4: The output of the regularised minimisation routine for example 1 with 1=0.05 after the final iteration  

when searching for circular cavities of radii r 0∈{0.2, 0.4,0.6, 0.8} for (a) 1% noise, and (b) 5% noise. The  

dots represent the analytical targets whilst the continuous lines represent the numerical values retrieved. 

   

The robustness of the technique with the constant regularisation parameter are very encouraging for the 

MFS approach  as  they  show that  when  using  the  same  value  of  the  regularisation  parameter  then 

multiple sizes of cavities can be located with a high level of accuracy, even when up to 5% noise is 

employed. Further values of 1 were investigated without any significant improvement in the results 

obtained for  the 5% example.  The successful  implementation of the MFS technique for solving the 

inverse  problem for  a  circular  geometry  provides  confidence  in  validating  for  examples  with  more 

complex geometries.

 4.7  Validating the approach for more complicated geometries

In this subsection we aim to locate cavities with more complicated geometries such as the bean shaped 

geometry in example 2, given by the parametrisation 

 x  , y =
0.50.4cos0.1 sin 2

10.7 cos 
cos , sin ,            (0,2]. (25)
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Once again the initial guess is a circular cavity of radius 0.5 located at the origin. Unlike the previous 

case, see example 1, a non-analytical example is taken to specify the boundary conditions (3) and (4) as 

u =  0  on  D and  u = x  on   .  Since  the  required  Neumann  boundary  data  nu|   is  not  found 

analytically,  the forward MFS procedure was implemented to calculate these values, as described in 

[Borman et al.  2007]. When using the data  g=nu| from the direct solver,  noise was added to this 

data  and a different  M in the inverse procedure was used in order to avoid committing the inverse 

crime [Colton and Kress 1998]. A wide range of regularisation parameters were investigated. When 

either 1=0 or 2=0, a stable result could not be achieved. An observational approach based on 

trial  and  error  found that  the  most  reliable  result  was  achieved  when 1=0.07 and 2=0.05.

Figure 5 shows the results obtained in this case when 0, 1% and 5% noise are used.  It can be observed 

that the results are encouraging as for all noise levels a reasonable approximation to the bean shape is 

located. Further, the results are as accurate as numerical results obtained by [Ivanyshyn and Kress 2006] 

using a boundary integral approach.  

Figure 5: The output of the regularised minimisation routine for example 2 with 1=0.07  and 2=0.05  after the 

final iteration when searching for a bean shaped cavity given by equation (25). The continuous line represents the  

analytical target whilst the points represent the numerical values retrieved for no noise, 0, 1% and 5% noise. 
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 5 Conclusions 

It has been successfully demonstrated that the MFS procedure can be used to solve inverse problems, as 

a  useful  technique  for  locating  obstacles  from  boundary  data,  as  is  the  requirement  in  EIT.  The 

numerical experiments exhibited very accurate results for exact data, but inaccurate results when noise 

was introduced if no regularisation was employed. The addition of a regularisation parameter was very 

successful and enabled cavities to be found in a stable way for 1-5% noise added into the Neumann 

boundary data. As might be expected intuitively, the larger cavities were located to higher accuracies in 

examples containing noise. Multiple star-shaped cavities can also be located in principle by applying the 

MFS to each cavity as described in Section 3.

Using the spherical parameterisation (9), a similar, but more tedious, analysis can be performed in three 

dimensions and this will be investigated as part of future work.

Acknowledgements

Duncan Borman would like to acknowledge the financial support for this work from the Rothschild 

scheme and the University of Leeds.

References

Alessandrini, G. and Rondi, L. (2001) Optimal stability estimates for the inverse problem of multiple  

cavities, J. Diff. Equations 176: 356-386.

Balakrishnan,  K.  and  Ramachandran,  P.A.  (2000)  The  method  of  fundamental  solutions  for  linear  

diffusion-reaction equations, Math. Comput. Modelling 31: 221-237.

Bogomolny, A. (1985)  Fundamental  solutions method for elliptic boundary value problems, SIAM J. 

Numer. Anal. 22: 644-669.

Barber, D. and Brown, B. (1984) Applied tomography, J. of Phys. E:Sci. Instrum. 17: 723 -733.

Boone, K. (2006) Introduction to Electrical Impedance Tomography,  www.EIT.org.uk, Department of 

Clinical Neurophysiology, Middlesex Hospital.

Borcea, L. (2002) Electrical impedance tomography, Inverse Problems 18: R99-R136. 

Borman, D., Ingham D. B., Johansson, T. and Lesnic, D. (2007), The method of fundamental solutions  

for direct cavity problems in EIT, in Advances in Boundary Integral Methods - Proceedings of the Sixth 

UK Conference on Boundary Integral Methods, (ed. J. Trevelyan), Ch. 21, 193-202.

Burgess, G. and Mahajerin, E. (1984), A comparison of the boundary element method and superposition 

methods, Comput. Struct. 19:697-705.

Colton,  D.  and Kress,  R.  (1998)  Inverse  Acoustic  and  Electromagnetic  Scattering  Theory,  2nd edn., 

Springer-Verlag, Berlin.

Duraiswami, R., Chahine, G. L. and Sarkar, K. (1997)  Boundary element techniques for efficient 2-D 

14

http://www.EIT.org.uk/


and 3-D electrical impedance tomography, Chem. Eng. Sci. 13: 2185-2196.  

Fairweather, G. and Karageorghis, A. (1998) The method of fundamental solution for elliptic boundary  

value problems, Adv.  Comput. Math. 9:69-95.

Goldberg, M. A. and Chen, C. S. (1999) The method of fundamental solutions for potential, Helmholtz  

and diffusion problems, in Boundary Integral Methods: Numerical and Mathematical Aspects, Comput. 

Mech. Publ., Southampton, 103-176.

Haddar, H. and Kress, R. (2005)  Conformal mappings and inverse boundary value problems, Inverse 

Problems 21: 935-953.

Hanke, M. and Bruhl, M. (2003) Recent progress in electrical impedance tomography, Inverse Problems 

19:  S65-S90.

Holder, D. (2005)  Electrical Impedance Tomography: Methods, History and Applications, Institute of 

Physics, Bristol.

Ivanyshyn, O. and Kress, R. (2006)  Nonlinear integral equations for solving inverse boundary value  

problems for inclusions and cracks, J. Integral Equations Appl. 18:13-38.

Johnston,  R.  L.  and  Fairweather,  G.  (1982)  The  method  of  fundamental  solutions  for  problems  in  

potential flow, Appl. Math. Modelling 8: 265-270.

Kim, S., Kwon, O. and Seo, J. K. (2002) Location search techniques for a grounded conductor, SIAM J. 

Appl. Math. 62:, 1283-1293.

Kress, R. (2004)  Inverse Dirichlet  problem  and conformal mapping,  Math. Comput. Simulation  66: 

255-265. 

Smith,  J.  R.  (1996)  Field  mice:  extracting  hand  geometry  from electrical  field  measurements,  IBM 

Systems J. 35:587-608. 

Smith, J.R., White, T., Dodge, C., Paradiso, J., Gershenfeld, N. and Allpost, D. (1998)  Electric field  

sensing for graphical interfaces, IEEE Computer Graphics Appl. 18: 54-60.

15




