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Adaptive Cancelation of Self-Generated Sensory
Signals in a Whisking Robot

Sean R. Anderson, Martin J. Pearson, Anthony Pipe, Tony Prescott, Paul Dean, and John Porrill

Abstract—Sensory signals are often caused by one’s own active
movements. This raises a problem of discriminating between self-
generated sensory signals and signals generated by the external
world. Such discrimination is of general importance for robotic
systems, where operational robustness is dependent on the correct
interpretation of sensory signals. Here, we investigate this problem
in the context of a whiskered robot. The whisker sensory signal
comprises two components: one due to contact with an object (ex-
ternally generated) and another due to active movement of the
whisker (self-generated). We propose a solution to this discrim-
ination problem based on adaptive noise cancelation, where the
robot learns to predict the sensory consequences of its own move-
ments using an adaptive filter. The filter inputs (copy of motor com-
mands) are transformed by Laguerre functions instead of the often-
used tapped-delay line, which reduces model order and, therefore,
computational complexity. Results from a contact-detection task
demonstrate that false positives are significantly reduced using the
proposed scheme.

Index Terms—Force and tactile sensing, internal model, learning
and adaptive systems, neurorobotics, noise cancelation.

I. INTRODUCTION

A
CTIVE exploration of the environment is a necessary be-

havioral feature of both animals and mobile robots, for the

purposes of navigation, object localization, and object recog-

nition (see, e.g., [1]). However, active movements will often

generate sensations in their own right, leading to a discrimi-

nation problem: What sensory signals are caused by one’s own

movements, and what sensory signals are caused by the external

world? It is essential that an autonomous agent, either animal or

robot, is able to make this distinction in order to interact with the

environment in a robust manner. Falsely interpreting sensations

could lead to catastrophic consequences for a robot, especially

when dealing with threats or opportunities.
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Recently, we have encountered an instance of this very prob-

lem in the operation of a whisking mobile robot, a prototype

of which is described in [2] and [3]. Robotic whisking, which

is a current area of active research [2], [4]– [8], has potential

advantages for exploration when other senses such as vision

are compromised, for instance, underground, underwater, and

in smoky environments [9]. When our robot actively whisks

against an object, a “contact” signal is generated due to vibration

of the whisker. The contact is sensed by a biomimetic follicle,

which records movements of the whisker base. However, ac-

tively moving the whisker also generates a sensory signal due to

inertial movement of the whisker base in the follicle. Here, we

regard this “whisking” signal as self-generated noise because it

interferes with the contact signal, which is of primary interest.

One simple task that we require the robot to perform is object

detection using its whiskers, as a prelude to more complex tasks,

such as object recognition and building a spatial map. Currently,

the sensitivity of object detection in the robot is poor because

the threshold level for detecting contacts must be raised rela-

tively high, to prevent activation by the self-generated whisking

signal.

Consideration of the problem of discriminating between self

and externally generated sensations is long established in the bi-

ological and neurosciences literature (for a discussion, see [10]).

As early as the 1950s, von Holst coined the term reafference

principle1 to describe self-generated sensations [11]. To solve

the reafference problem, von Holst suggested that a copy of the

motor command could be retained in the central nervous system,

which would be used to cancel the re-afferent signal [11]. This

idea has been refined further over the years, leading to the notion

that the brain could learn internal dynamical models that pre-

dict the sensory consequences of motor actions, thus leading to

an ability to discriminate between self-generated and externally

generated signals [12]–[16]. An associated interpretation of this

principle was made in the study of electric fish, where the no-

tion of reafference was specifically connected to adaptive noise

cancelation (ANC) [17]–[19], which is where an adaptive filter

learns to cancel additive noise from a signal of interest [20].

Although the uses of predictive models for robotic control

are well known (e.g., Smith predictor, generalized predictive

control, and self-tuning regulator), it is only more recently that

investigation into their related use in recognizing and suppress-

ing self-generated signals has emerged in the field of robotics

1In the neurosciences, inputs and outputs to and from the central nervous
system are known as afference and efference, respectively. Hence, “reafference”
describes sensory signals produced by motor actions of the individual. The
term “exafference,” on the other hand, describes sensory signals caused by the
external environment.

1552-3098/$26.00 © 2010 IEEE
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Fig. 1. Link between ANC, the generic cancelation of self-generated sensory signals (using copy of the motor command), and the specific cancelation of the
whisking component from combined whisker/contact sensory signals. (a) Classic ANC. The reference noise signal is assumed to be known and correlated with the
noise but uncorrelated with the signal. (b) Conceptual mapping of the ANC scheme into the framework of canceling self-generated sensory signals. This scheme
uses motor command in analogy to the reference noise. (c) Robot whisker control and sensory scheme with noise canceling adaptive filter. The controller, plant,
and follicle sensor are represented by linear transfer functions C, P, and F, respectively. (d) Robot whisking scheme reinterpreted in the architecture of classic ANC.

[21]–[23]. This, we suggest, is likely to be a crucial area of

work to improve autonomous robotic behavior. Here, we pro-

pose a generic framework to cancel self-generated sensations

in robotic systems, motivated from the biological suggestions

to utilize motor command to predict the sensory consequences

of movement. We show that, for linear systems, our proposed

scheme corresponds to classic ANC [20], where the input from

the external environment is filtered by a combination of con-

troller and plant dynamics.

For small mobile robotic applications, such as that considered

here, it is important to minimize the computational complexity

of signal processing algorithms in order to reduce power con-

sumption and maximize energy efficiency. Hence, in this inves-

tigation, we use linear filter basis functions to implement the

adaptive filter in the noise cancelation scheme. This leads to

reduced model order compared with the standard tapped-delay

line (TDL) implementation, which is computationally advan-

tageous for embedded applications in autonomous robots. To

demonstrate the utility of the scheme, we apply the noise can-

celation algorithm to the contact detection problem (described

earlier) in our whisking robot. The noise-cancelation algorithm

is based on the standard method described in [20]. The key point

is that we use a bioinspired method of defining the reference

noise as the copy of whisking motor command. This scheme

links to the biological perspective on internal models: The robot

learns to represent its own movement dynamics. Previously, we

have presented elements of this work in abstract form, where the

self-generated sensations of the robot rat were canceled using a

TDL adaptive filter [24].

The paper is organized as follows. The ANC scheme, adap-

tive filter structure, and algorithm are derived in Section II. The

results from predicting sensory consequences of movement dur-

ing free-whisking and enhancing contact detection are presented

in Section III. A discussion of results is given in Section IV.

Finally, the investigation is summarized in Section V.

II. METHODS

The noise cancelation problem can be solved optimally us-

ing the Wiener filter [25], the principles of which lead to a

fixed filter. However, the design of fixed filters relies on a priori

knowledge of signal statistics and also assumes that the signal

will be stationary. The ability to adapt based on changes in task,

environment, and robot dynamics (e.g., a broken whisker) is an

essential feature of an autonomous robot. Hence, the solution

framework we develop here is based on the adaptive filter ap-

proach. We first explain the ANC method and then relate it to

self-generated noise and, specifically, the whisker contact de-

tection problem. We then present a computationally efficient

implementation of the adaptive finite-impulse response (FIR)

filter using Laguerre functions (LFs).

A. ANC for Self-Generated Sensory Signals

ANC makes use of a reference noise u to cancel additive

noise v from a signal of interest s, where only the combined

signal x = s + v is observed [20]; see Fig. 1(a). The key point

is that the reference noise is uncorrelated with the signal, but is

correlated, via a “noise channel,” with the additive signal noise.
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An adaptive filter learns the dynamics of the noise channel

and produces the output y, which is the noise canceling signal.

Therefore, the noise cancelation scheme output z at sample time

t is as follows:

zt = xt − yt (1)

zt = st + vt − yt . (2)

Let us assume that all signals are zero mean and that the ref-

erence noise ut is uncorrelated with st but is correlated with

vt ; then, by squaring (2) and taking expectations, we obtain an

expression for the covariance, or power, in the noise-cancelation

scheme output

E
[

y2
t

]

= E
[

s2
t

]

+ E
[

(vt − yt)
2
]

. (3)

Inspection of (3) shows that adjustments in the filter output

will not affect the signal power E
[

s2
t

]

. Therefore, the power in

E[(vt − yt)
2 ] is minimized when the cancelation scheme output

power is minimized

minE
[

y2
t

]

= E
[

s2
t

]

+ minE
[

(vt − yt)
2
]

. (4)

Hence, minimizing the total output power of the cancelation

scheme is equivalent to minimizing the output noise power.

Therefore, the output of the cancelation scheme may be used

as the error signal et to drive filter adaptation, i.e., et = zt ,

which minimizes the filter prediction error of the noise in a

least-squares sense.

In the context of canceling self-generated noise, we can write

down a conceptual model of the self-generated noise cancelation

scheme by analogy with Fig. 1(a), replacing the reference noise

with motor command, as shown in Fig. 1(b). To obtain the

cancelation scheme for the specific case of the whisking robot,

it is necessary to consider the robot whisker control scheme and

relate that to the generic scheme in Fig. 1(b). The whisker plant is

controlled by a PID controller and motor in a negative feedback

loop. We model the output of this control loop (whisker angle)

as the input to the follicle sensor. We model the contact signal

as an additive disturbance to the whisker; it is, therefore, within

the feedback loop. Hence, let us assume that each component

of the system can be represented by a linear filter, the observed

whisker sensory signal can be described as the sum of the two

input signals, filtered by follicle, whisker plant, and controller

dynamics

xt = G(q)ut + H(q)dt (5)

where q is the shift operator (qut = ut+1), dt is the object

contact input signal

G(q) =
F (q)C(q)P (q)

1 + C(q)P (q)
(6)

H(q) =
F (q)P (q)

1 + C(q)P (q)
(7)

and F (q), C(q), and P (q) are linear discrete-time filters repre-

senting the follicle, controller, and plant dynamics, respectively.

This scheme is shown in Fig. 1(d), which is clearly related to

the original noise-cancelation scheme in Fig. 1(a). In the con-

text of the noise-cancelation scheme, the contact signal corre-

sponds to st = H(q)dt , and the whisking signal corresponds to

vt = G(q)ut , which leads to an analogous expression of (2), for

the whisker signal cancelation scheme

zt = H(q)dt + G(q)ut − yt . (8)

The adaptive filter must, therefore, learn the dynamics of the

closed-loop expression G(q) using the whisking motor com-

mand input ut , which we assume is uncorrelated with the contact

signals H(q)dt .

B. Adaptive FIR Filter With Least-Mean-Square Learning Rule

Typically, an adaptive FIR filter is used to learn the noise

channel dynamics of the reference noise to signal noise trans-

formation, where the filter is described as follows:

yt =

n
∑

k=1

w
(k)
t ut−k+1 (9)

where yt is the filter output at sample time t (prediction of

self-generated noise), ut is the filter input (copy of motor com-

mand), the notation ut−k indicates tap delays of the input signal,

w
(k)
t is the kth time-varying filter weight, and n is the filter or-

der. The filter can be written compactly in vector notation as

follows:

yt = utwt (10)

where ut = [ut , . . . , ut−n+1 ], and wt = [w1 , . . . , wn ]T .

The parameters of the adaptive FIR filter are adapted here by

the least-mean-square (LMS) rule of Widrow and Hoff [26] and

Widrow and Stearns [27]

wt+1 = wt + µutet (11)

where µ is a learning rate parameter, et is the filter prediction

error, and the product term utet is a sample estimate of the

squared-filter prediction error gradient vector. The learning rate

term µ can be a constant, but here, we use normalized LMS

(NLMS), where µ = β/‖ut‖2 and where β is a constant. The

NLMS rule typically increases the rate of convergence [27]. Re-

garding convergence, subject to the stability of the implementa-

tion, the NLMS rule converges to the Wiener filter solution [28].

C. Reducing Model Order of the FIR Filter Using LFs

The FIR filter implemented with a TDL normally requires a

large number of parameters, which is undesirable due to exces-

sive computational complexity. The reason for this is that the

true system impulse response often decays slowly with respect

to the sample rate, requiring many tapped-delays and associated

parameters. One method for reducing the order of the FIR filter

is to decompose the description of the impulse response into a

weighted sum of linear basis functions [29]

yt =

p
∑

k=1

w
(k)
t Lk (q,γ)ut (12)
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Fig. 2. Various possible structures of the adaptive FIR filter. (a) Standard TDL implementation of the adaptive FIR filter. (b) LF implementation of the adaptive
FIR filter. (c) Cascaded LF implementation of the adaptive FIR filter.

where the number of filter weights is p, Lk (q,γ) is a basis

function that is a linear discrete-time filter, and γ is the vector

of filter parameters. The adaptive filter output can be compactly

expressed as follows:

yt = ψtwt (13)

ψt = [L1(q,γ)ut , . . . , Lp(q,γ)ut ] . (14)

The basis functions replace the TDL and, importantly, can

greatly reduce the number of model parameters, which are there-

fore, typically p ≪ n. The basis functions that we use here have

been extensively investigated in the system identification and

signal processing literature, namely LFs [30]–[33]. The LFs are

attractive for dynamic system descriptions because they form

an orthonormal basis for white noise inputs (as do TDLs), yet

they are insensitive to the choice of sample rate (unlike TDLs).

The sequence of LFs is defined as follows:

Lk (q,γ) =

√

(1 − a2)

1 − aq−1

(

q−1 − a

1 − aq−1

)k−1

for k = 1, . . . , p

(15)

where q−1 is the backward-shift operator, and the filter pa-

rameter vector γ is composed of only a single element γ = a.

In principle, other basis functions may be used to describe

the FIR filter, such as Kautz functions [31] and generalized

bases [34]. However, as will be seen in Section III, LFs describe

the data accurately and have the advantage of a simple param-

eterization (requiring the selection of only one unknown filter

parameter a).

The LF parameter a was selected here by use of a separable

least-squares algorithm [35]. Separable least squares is com-

monly applied to optimization problems, where the variables

naturally separate into linear and nonlinear sets, improving con-

vergence rate and numerical conditioning [36]. In the case of

LFs, the adaptive filter weights w comprise the linear set of

parameters and the filter parameter a is defined as the (only)

nonlinear parameter. The optimal filter weights can be estimated

(in a batch mode offline, from N samples) by least squares for

any given value of a

wLS = Ψ(a)†x (16)

where Ψ(a) =
[

ψ1(a)T , . . . ,ψN (a)T
]T

, x = [x1 , . . . , xN ]T ,

and † indicates the pseudoinverse. As an outline, the weights

wLS were estimated by least squares within each iteration of a

nonlinear optimization of the parameter a, thus avoiding their

explicit inclusion in the nonlinear search. The cost function used

to optimize the parameter a was the rms filter prediction error.

The Nelder–Mead simplex algorithm was applied to solve the

nonlinear optimization problem (using the MATLAB function

fminsearch).

Regarding the online implementation of the LFs in a robotic

system, the LFs can be implemented as a cascade of first-order

filters. In fact the LFs in (15) are naturally defined as the product

of first-order filters; hence, a cascade is simple to implement

directly from inspection of (15) in terms of a single parameter

a, where the first LF is as follows:

Λ1(q,γ) =

√
1 − a2

1 − aq−1
(17)

and the subsequent filters are each defined as follows:

Λ2(q,γ) =
q−1 − a

1 − aq−1
. (18)

A cascade of first-order filters has two distinct advantages in

comparison with separately implementing each LF (the direct-

form). First, the number of multiplications is reduced from

2p(p + 1)/2 in the case of separate LFs to just 2p for the cascade

form. Second, the cascade form of an infinite-impulse response

filter (such as an LF) typically has improved numerical robust-

ness compared with the direct form for finite-word-length im-

plementations [37]. Different possible structures of the adaptive

filter are compared in Fig. 2(a)–(c).

D. ANC Algorithm

The ANC algorithm, incorporating the cascade of first-order

LF filters and parameter adaptation by NLMS, is described in

Algorithm 1. The algorithm requires the specification of three

parameters before implementation online, which are 1) the LF

filter parameter a; 2) the number of LFs p; and 3) the learning

rate parameter β. Selection of these parameters is task specific

and is discussed for the whisking robot application in Section III.

The computational complexity of Algorithm 1 isO(p), where

p is the number of LF weights, which is typical of LMS al-

gorithm implementations [27]. This linearity in computational

complexity is an attractive feature of LMS adaptation and is
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TABLE I
COMPUTATIONAL COMPLEXITY (NUMBER OF MULTIPLICATIONS AND

DIVISIONS PER ITERATION) FOR ADAPTIVE FILTERING VIA A TDL
IMPLEMENTATION COMPARED WITH A CASCADE OF LFS (ALGORITHM 1)

Fig. 3. Whisking robot. SCRATCHbot.

particularly suited to applications in robotic systems, where it

is important to minimize computational requirements.

The total computational complexity of Algorithm 1 (using a

cascade of LFs) is compared with a TDL equivalent in Table I.

We note that although the complexity would be higher for LFs if

p = n, in fact, for a TDL and LF filter implementation of similar

accuracy, typically, p ≪ n [31]. Hence, we suggest that use of

LFs will often be an attractive option with regard to reducing

computational complexity. This point is specifically addressed

for the whisking robot application in Section III.

E. Whisking Robot

The whisking robot utilized in this study is a development of

the prototype described in [2] and [3]; see Fig. 3. The new whisk-

ing robot, i.e., SCRATCHbot [8], has 18 whiskers arranged in

three columns of three whiskers per column on each side of

the robot head (i.e., nine on each side). Each of the columns

are independently actuated using dc motors, providing 120◦ of

rotation (see Fig. 4).

The reference trajectory of each column is currently specified

by the operator and controlled using a PID position control al-

Fig. 4. Diagram of SCRATCHbot head. (a) (Front view) Front two columns
of whiskers are illustrated. The three rows of whiskers on each side of the head
are spread by 30◦. The movement of each whisker activates a Hall effect sensor
that gives a measure of whisker displacement. (b) (Top-down view) All six
columns of whiskers are illustrated. Each column of whiskers is independently
actuated by a dc motor under PID control. Each column can move through 120◦

of rotation. The lengths of the whiskers decrease from front to back of the head
(100–200 mm).

gorithm implemented in a local microcontroller (with a sample

rate of 200 Hz). Each of the plastic whiskers [made from acry-

lonitrile butadiene styrene (ABS)] has a small magnet bonded

to the base that, in turn, is mounted into a flexible polymer

follicle. Any movement of the magnet is monitored in two di-

mensions using a Hall effect sensor located inside the follicle.

Therefore, any deflections of the whisker shaft are represented

as displacement vectors at the base.

By taking inspiration from mammalian vibrissal fields, the

lengths and thicknesses of the whiskers vary across the array,

with the longer thicker whiskers located toward the rear. The

results of this study were taken from a 200-mm-long whisker

shaft with a circular cross section of 2 mm diameter at the base,

tapering linearly to 0.6 mm diameter at the tip.

F. Experiment Design

A single whisker on the robot (rear column, middle row of

the 3 × 3 array) was driven in two separate experiments, with-

out contacts (free-whisking) and with contacts, where each run

was of 2 min in duration. Each dataset was collected under

head fixed conditions. The free-whisking data was used to de-

sign the LFs prior to the contact detection task. In the contact

detection experiment, the contact object (a flexible plastic rod

that is 80 mm long and 1.5 mm in diameter) was held in the

path of the whisker at random times and removed after contact.

Contact times of the whisker were obtained with coarse accu-

racy (to the nearest second) by use of a video recording of the
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Fig. 5. Robotic whisker input–output signals (desired whisker angle and follicle sensor output, respectively). (a) Desired whisker angle signal, zoomed on the
time-axis to a typical 10-s segment. The desired whisker angle signal was obtained from real-rat whisking recorded by Towal and Hartmann [38]. (b) Follicle sensor
output signal, zoomed on the time-axis to a typical 10-s segment. (c) Desired whisker angle amplitude spectrum. (d) Follicle sensor output amplitude spectrum.
(e) Robotic whisker transfer function amplitude spectrum obtained from the ETFE.

experiment. Precise contact times of the whisker were obtained

from applying the noise cancelation algorithm to the data and

visually inspecting the resulting “clean” signal, with reference

to the contact times obtained from the video recording. Each

input–output dataset was processed and analyzed offline using

MATLAB.

We drove the whiskers of the robot with an input signal (de-

sired whisker angle) obtained from real-rat whisking recorded

by Towal and Hartmann [38]. Two typical free-whisking trials

of ∼1.5 s in duration were concatenated together to form an

input signal of ∼3 s. The original signals had a strong periodic

component in the whisking at ∼8 Hz. We scaled the whisking

signal to reflect the larger size of the robot rat (compared with

an actual rat). Therefore, we lowered the whisking rate by re-

defining the sample rate from 250 to 100 Hz, thereby shifting

the whisking rate down by a factor of 2.5 so that the strong pe-

riodic component of whisking occurred at ∼3 Hz. The resulting

signal, of duration ∼7.5 s, was looped for 2 min to form the

input signal used in the free-whisking and contact experiments.

The characteristics of the input–output data from the robot

whisker plant (desired whisker angle and follicle sensor output,

respectively) are shown in Fig. 5(a)–(d) from free-whisking.

The dynamic characteristics of the robot whisker plant, which

are equivalent to the transfer function G(q) defined in (6), are

described in Fig. 5(e) by the empirical transfer function estimate

(ETFE) [29]. The ETFE is the ratio between the Fourier trans-

forms of the output and input and was obtained in this case by the

MATLAB function tfestimate, which uses Welch’s method to

obtain the estimate [29]. The input–output signals were sam-

pled from the robot at 200 Hz and low-pass filtered at 5 Hz to

attenuate nonlinear harmonics in the output signal. In principle,

it would be possible to describe these nonlinearities with a non-

linear FIR filter that was outside the scope of this investigation

and did not affect the main result of enhancing contact detection.

III. RESULTS

This section presents results for the adaptive filter design

and application to the task of enhancing whisker contacts in

the presence of self-generated noise. The task was to dynami-

cally model the whisker plant (desired whisker angle to folli-

cle sensor output transformation) and use this model to cancel

the self-generated sensory signal using an adaptive FIR filter

(see Algorithm 1). The results are divided into three sections:

LF selection, prediction of sensory consequences of movement,

and contact detection.

A. LF Structure Detection

The LF structure detection task was composed of selecting

two parameters: the filter parameter a and the number of LFs p.

The number of LFs p was selected first by comparing the FIR

filter prediction of the follicle sensor output signal for different

numbers of LFs. The optimal fit of each LF filter was obtained in

a batch mode using least squares. We fitted 1 to 6 LFs (using the

free-whisking data) with the filter parameter a systematically

varied from 0.5 to 0.96. The rms fit error was compared across
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Fig. 6. Structure detection for the LFs. (a) Comparison of FIR filters composed of two to six LFs in terms of rms fit error along with the fit error of a TDL FIR
filter (40 taps), where the LF parameter a was varied systematically between 0.5 and 0.96. (b) Comparison of LF FIR filters in terms of minimum rms fit error.
(c) Impulse responses of the Laguerre basis functions 1 to 5, which are weighted and summed to form the whisker plant impulse response (where a = 0.75).
(d) Whisker plant impulse response described by the LF filter (5 LFs) obtained from the separable least-squares fit to the free-whisking data (where a = 0.75).

the different numbers of basis functions and selected results are

shown in Fig. 6(a). We found that at least four LFs were required

to model the dynamics of the whisker plant, based on inspection

of the knee-point in Fig. 6(b). Although the accuracy of 4 LFs

was similar to five LFs, we found that the fit error was more

sensitive to the choice of a when using four LFs. Hence, we

selected p = 5.

After selecting the number of LFs, the parameter a was esti-

mated using a separable least-squares algorithm as described in

Section II (where the choice of the single parameter a defined

the dynamics of all LFs). The optimal parameter estimate was

a = 0.75. The impulse responses of the five selected LFs with

optimal parameter estimate a = 0.75 are shown in Fig. 6(c).

The impulse response of the whisker plant (identified by the

separable least-squares algorithm) is plotted in Fig. 6(d), which

shows that the response is mildly oscillatory and decays after

200 ms.

Only five LFs were required here to model the whisker plant

dynamics. A comparable filter length implemented by a TDL

would require 40 taps. Hence, the LF implementation resulted

in a significant reduction in model order with a corresponding

reduction in computational complexity. For this case, the com-

putational complexity of the LF implementation was just 31

multiplications and divisions compared with 121 for the TDL

(calculated from the totals in Table I). This reduction in num-

ber of operations of 74% scales with the number of whiskers

(due to the fact that each whisker requires a separate instance

of the cancelation algorithm). To illustrate the benefit of using

the LFs, recalling that SCRATCHbot has 18 whiskers in total,

in the time it would take to process just four whiskers using a

TDL, it would be possible to process all 18 whiskers using the

LF implementation of Algorithm 1.

B. Prediction of Sensory Consequences of Movement

The adaptive filter was required to learn the whisker plant

dynamics online (as opposed to the offline identification used to

select the LFs, discussed earlier). For the case of free-whisking

(i.e., no contacts), the adaptive filter output yt should closely

match the output of the follicle sensor xt . Therefore, after defin-

ing the LFs, we ran the ANC algorithm (see Algorithm 1) on

the free-whisking data to confirm that the adaptive filter could

accurately learn the whisker plant dynamics. The user-defined

parameters in Algorithm 1 were set to a = 0.75, p = 5, and

β = 0.01. The adaptive filter weights were initialized to zero.

We found that after filter convergence on the free-whisking

data the prediction accuracy of the self-generated noise was

high. Fig. 7(a) and (b) compares the filter output yt with the

follicle output xt , at the beginning and end of learning, respec-

tively. The variance accounted for2 (VAF) obtained from the

final 20 s of free-whisking data was VAF = 0.94.

C. Contact Detection

Apart from the choice of LF function parameter a and

the number of LFs p, the only other user-defined parameter

2The VAF metric is a measure of model-fit quality, where VAF = 1–
var(e)/var(y), where e is the fit error, and y is the target data. Hence, a VAF≈ 1
implies that the model fit is good because the normalized error variance is close
to zero. The VAF is also known as the coefficient of determination or r-squared
value.
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Fig. 7. Prediction of the sensory consequences of active whisking, where the adaptive filter learns over time to predict the whisker follicle sensor output. (a)
Start of learning (first 5 s), where adaptive filter prediction is in black and follicle sensory signal is in grey. (b) End of learning (final 5 s), where adaptive filter
prediction is in black, and follicle sensory signal is in grey. (c) Normalized variance of the adaptive filter prediction error (where each sample of the variance is
taken over 1 s).

Fig. 8. Variation in SNR for different rates of learning in the ANC scheme
with baseline comparison with the SNR obtained from the follicle sensor output.
Results were obtained from one presentation of the contact data to the noise
cancelation algorithm.

necessary to implement Algorithm 1 was the learning rate con-

stant β. We investigated choice of learning rate parameter with

respect to performance in the contact detection task. The metric

used to measure performance was SNR. The signal power in

the SNR measure Ps was defined as the variance of the signal

segment 200 ms before and after a contact. The noise power in

the SNR measure Pn was defined as the variance of the remain-

der of the signal after removing the contact segments. Hence,

SNR was defined as SNR = 10 log10(Ps/Pn ). The SNR mea-

sure was obtained after applying Algorithm 1 to the contact data,

varying the learning rate between 10−4 and 10−1 . The optimal

learning rate parameter that maximized SNR was found to be

β ≈ 0.004 (see Fig. 8). The limiting factor on faster learning

(i.e., for β > 0.004) appeared to be due to contacts disrupting

adaptation. However, stability was guaranteed, even in the pres-

ence of these contacts because the filter input was stationary and

uncorrelated with object contacts [27].

After selecting the learning parameter β, we ran

Algorithm 1 on the contact data (described in Section II-F) to

assess the utility of the noise-cancelation scheme. The contact

detection experiment was of duration 2 min, corresponding to

N = 24 000 samples at the sample rate of 200 Hz. Parameter

adaptation took place at each sample time. Separate analysis

on contact-free data showed that at this learning rate prediction

accuracy was over 90% within 2 s of adaptation. Contacts in the

whisking signal were well amplified (compared with the raw

sensory signal) as errors in prediction, as shown in Fig. 9(a) and

(b). It is apparent from a visual inspection of Fig. 9(a) that many

of the contacts are effectively hidden within the self-generated

noise. By comparison, a visual inspection of Fig. 9(b) empha-

sizes the utility of the noise cancelation scheme by revealing the

location of contacts in the ANC output.

The purpose of the noise cancelation scheme was to enhance

contact detection in comparison to using the raw follicle output

signal. The method we used for detecting contacts was to apply

a threshold to both the follicle output and noise cancelation

scheme output. Signal values that exceeded the threshold were

classified as contacts. In order to assess the improvement in

detecting contacts by the noise cancelation scheme, we used a

measure known as the receiver operating characteristic (ROC)

curve, which is widely used in classification problems [39]. The

ROC curve plots the false positive rate against the true positive

rate (where the false and true positive rates are the normalized

number of true positives and false positives, respectively). We

defined the maximum possible number of false positives as the

number of forward whisks (due to the fact that each whisk could

have potentially signalled a contact). We obtained the ROC

curve by systematically varying the contact detection threshold

from 0 to 1.1, applying each threshold to the absolute values of

the normalized follicle output and cancelation scheme output

(i.e., the signals shown in Fig. 9) and counting the number of

resulting true and false positives corresponding to each signal.

The ROC curve showed that for the raw signal (follicle sensor

output), a true positive rate of 0.95 could only be obtained at

the expense of a false positive rate of ∼0.53 (see Fig. 10),

which is poor performance. By contrast, the clean signal (noise
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Fig. 9. ANC scheme applied to the problem of contact detection from the robot whisker sensory signal. (a) Absolute value of the whisker follicle sensor output,
normalized by the peak signal value. (b) Absolute value of the ANC scheme output, normalized by the peak signal value.

Fig. 10. ROC curve that describes false positive versus true positive rates of
contacts detected at varying threshold levels from 1) the raw follicle sensor
output signal and 2) the clean signal generated by the ANC scheme.

cancelation scheme output) gave a true positive rate of 0.95 for

a false positive rate of only ∼0.04 (see Fig. 10). Hence, the use

of the cancelation scheme greatly enhanced contact detection

for this dataset.

IV. DISCUSSION

A. Improved Contact Detection by ANC

We found that the noise cancelation scheme based on the bi-

ological principle of using copy of the motor command worked

as expected from the theory. The adaptive filter successfully

learnt a model of the robot whisker controller-plant dynam-

ics (demonstrated by the adaptive filter learning to predict the

sensory consequences of movement during free-whisking). We

showed that the particular adaptive FIR filter implementation

we chose (cascaded LFs) reduced computational complexity in

comparison with a TDL. We tested the algorithm on contact

detection during active robot whisking, where we showed that

the use of the noise-cancelation scheme led to a much improved

ratio of true positives to false positives in comparison with using

the raw sensory signal.

Hence, the algorithm (see Algorithm 1) that we have de-

veloped here is well suited to applications in autonomous

robotics because 1) it should lead to improved discrimination be-

tween self-generated and externally generated signals in general

robotic tasks (i.e., not limited to whisking); 2) the implementa-

tion is adaptive and, hence, suitable for online learning; and 3)

the algorithm is relatively computationally inexpensive (linear

in the model order, where order will typically be small due to the

use of LFs). As in the case of generic LMS adaptation schemes,

the instance of the noise-cancelation algorithm presented here

is stable and convergent, provided the learning rate is within

acceptable bounds and able to track slowly time-varying sys-

tems [28].

B. Computationally Efficient Algorithm for Mobile

Robotic Platforms

The SCRATCHbot platform, like all autonomous mobile

robotic platforms, has a limited onboard power supply. A con-

siderable amount of this power is required by the actuators and

processors distributed across the platform to control each de-

gree of freedom as well as the single board computer (SBC) and

field-programmable gate array (FPGAs) used for signal pro-

cessing, higher level planning, and control. Consequently, the

chosen SBC represents a compromise between power consump-

tion and computational performance. To overcome the compu-

tational constraints of the platform, external processors could be

employed and integrated using wireless communication. How-

ever, the data bandwidths and latencies of conventional wire-

less protocols do not currently satisfy the requirement for the
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proposed noise-cancelation scheme. Computational efficiency

of onboard signal processing algorithms is, therefore, of utmost

importance. Here, we have developed a noise cancelation algo-

rithm that focused on reduction of computational complexity

by the use of LFs, rather than the commonly used TDL. The

number of computations in this case was reduced by 74% (from

121 to 31 for one whisker output), which is a highly beneficial

improvement for onboard processing.

C. Possible Neural Substrates of a Contact Detection

Scheme in the Rat

Given the success of the cancelation scheme considered here,

based on adaptive filtering, it is natural to ask whether there ex-

ists a comparable functional system in whisking animals, such

as rat. It has been reported that rat free-whisking (i.e., with no

contacts) generates a sensory signal [40], [41]. This signal is

analogous to the self-generated signal observed in our whisking

robot. Therefore, it is possible that a similar problem of discrim-

ination between self- and externally generated signals exists in

the rat.

In a parallel theme of work, we are currently investigating

the possibility that the cerebellum is involved in a biological

cancelation scheme, where the cerebellum is the structure that

performs the role of the adaptive filter [24], [42]. The cerebellum

is a natural candidate for this role because of the resemblance

of the cerebellar microcircuit to the adaptive filter [43], [44].

The cerebellum has also been particularly associated with the

concept of learning internal dynamical models [12], [13], [45].

The adaptive filter is a widely used model of cerebellar pro-

cessing and the nature of the basis functions used in biological

systems is an area of active research. Marr and Albus originally

proposed that the granule cell layer implemented a basis that

performed a massive expansion recoding of cerebellar (mossy

fiber) inputs [46], [47]. An important question is whether the

Marr–Albus hypothesis of granule cell layer function is consis-

tent with recent electrophysiological evidence thought to sug-

gest a modest role for granular layer transformation (references

in [48]). If this proves to be the case, then bases, such as the

LFs used here, which are much more efficient (as well as more

biologically plausible) than TDLs, may have applications to

biological systems.

V. SUMMARY

This investigation has addressed the problem of canceling

self-generated robotic sensory signals in a generic framework.

The choice of reference noise as input to the adaptive filter in

the cancelation scheme was motivated by the biological obser-

vation that one may use a copy of motor commands as input

to an internal model in order to predict sensory consequences

of movement. The algorithm was based on adaptive FIR filter-

ing, where the filter input was first transformed by LFs (rather

than TDLs) to reduce the filter order and, in turn, the com-

putational complexity. The cancelation scheme was applied to

self-generated sensory signals in a whisking robot. We showed

that the cancelation scheme greatly enhanced contact detection

on signals recorded from robot whisker contacts, dramatically

reducing the false positive rate.
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