
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Lecture Notes in
Computer Science.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/42729/

Published paper
Dranidis, Dimitris, Metzger, Andreas and Kourtesis, Dimitrios (2010) Enabling
Proactive Adaptation through Just-in-time Testing of Conversational Services. In:
Towards a Service-Based Internet – Third European Conference, ServiceWave
2010. Lecture Notes in Computer Science (6481/2010). Springer , Berlin /
Heidelberg, pp. 63-75.
http://dx.doi.org/10.1007/978-3-642-17694-4_6

http://eprints.whiterose.ac.uk/42729/�
http://dx.doi.org/10.1007/978-3-642-17694-4_6�
http://dx.doi.org/10.1007/978-3-642-17694-4_6�

Enabling Proactive Adaptation through
Just-in-time Testing of Conversational Services

Dimitris Dranidis1, Andreas Metzger2 and Dimitrios Kourtesis1

1 South East European Research Centre (SEERC)
Research Centre of the University of Sheffield and CITY College

Thessaloniki, Greece
dranidis@city.academic.gr, dkourtesis@seerc.org
2 Paluno (The Ruhr Institute for Software Technology)

University of Duisburg-Essen, Essen, Germany
andreas.metzger@sse.uni-due.de

Abstract. Service-based applications (SBAs) will increasingly be com-
posed of third-party services available over the Internet. Reacting to
failures of those third-party services by dynamically adapting the SBAs
will become a key enabler for ensuring reliability. Determining when to
adapt an SBA is especially challenging in the presence of conversational
(aka. stateful) services. A conversational service might fail in the middle
of an invocation sequence, in which case adapting the SBA might be
costly; e.g., due to the necessary state transfer to an alternative service.
In this paper we propose just-in-time testing of conversational services
as a novel approach to detect potential problems and to proactively
trigger adaptations, thereby preventing costly compensation activities.
The approach is based on a framework for online testing and a formal
test-generation method which guarantees functional correctness for con-
versational services. The applicability of the approach is discussed with
respect to its underlying assumptions and its performance. The benefits
of the approach are demonstrated using a realistic example.

Keywords: service testing, online testing, stateful services, test gener-
ation, proactive adaptation

1 Introduction

Service-based applications (SBAs) are increasingly composed of third party ser-
vices available over the Internet [22]. Third party services are owned and con-
trolled by organizations different from the service consumers and thus can change
or evolve in ways not anticipated by the service consumer. This means that even
if third-party services have shown to work during design-time, they need to be
(re-)checked during the operation of the SBA to detect failures. Such failures
then should trigger the adaptation of an SBA to ensure that it maintains its
expected functionality and quality.

1.1 Problem Statement

Determining when to trigger an adaptation is especially challenging if conversa-
tional services are employed in a service composition. A conversational service
is one that only accepts specific sequences of operation invocations. This is be-
cause some operations may have preconditions which depend on the state of the
service. The set of all acceptable invocation sequences is called the protocol (or
choreography) [10] of the service. An example is the shopping basket of an online
store. The shopping basket is initialized first. Then, some items are added to the
basket, some might be removed, until a checkout is performed.

The first invocation of a conversational service can work as expected. How-
ever, the invocation of that service at a later stage of the interaction sequence
could fail due to the service not conforming to the expected protocol. Adapting
the SBA to react to such a failure could be very costly: First, the state of the
conversational service (e.g., the items in the shopping basket) might need to be
transferred to an alternative service. Second, compensation actions might need
to be initiated (e.g., if the items have been marked as reserved in a warehouse
service, those reservations need to be revoked).

1.2 Contributions of the Paper

This paper introduces an automated technique to determine when to proac-
tively trigger adaptations in the presence of conversational services, thus avoiding
costly compensation actions. The proposed technique builds on previous work
on testing and monitoring of conversational services [9, 10] and on online testing
for proactive adaptation [13, 19].

We advocate performing just-in-time online tests of the relevant operation
sequences of the constituent services of the SBA. Here, just-in-time means that
“shortly” before a conversational service is invoked for the first time within the
service composition, the service is tested to detect potential deviations from the
specified protocol.

The generation of the test cases is grounded in the formal theory of Stream
X-machines (SXMs). SXMs have been utilised [9] for the automated generation
of test cases, which, under well defined conditions, guarantee to reveal all incon-
sistencies among the implementation of a service and its expected behaviour.

To ensure that just-in-time testing can be done with feasible cost and effort,
as well as in reasonable time, we propose a new way of reducing the number
of test cases, such that we can still guarantee that the conversational service
behaves as expected in the context of the concrete SBA. In addition, we propose
executing most of the “costly” test preparation activities during deployment
time.

The remainder of the paper is structured as follows. In Sect. 2, we discuss
related work. Sect. 3 introduces a running example to illustrate our technique
for just-in-time online testing. Sect. 4 provides an introduction to the formal
underpinnings as well as the available tool support. Based on these foundations,
Sect. 5 describes our technique, which is then critically discussed in Sect. 6,
focusing on its applicability in realistic settings.

2 Related Work

Various approaches have been introduced in the literature to determine when to
trigger the adaptation of SBAs. Typically, in such a setting, monitoring is used to
identify failures of the constituent services (see [2] for a comprehensive survey) by
observing SBAs during their actual use and operation [5]. However, monitoring
only allows for a reactive approach to adaptation (cf. [13]), i.e., the application is
modified after a failure has been monitored. To support pro-active adaptation,
prediction of the future functionality and quality of the SBA is needed. Initial
solutions are available for predicting the violation of SLAs (e.g., [18]). However,
the focus of that work is on quality attributes and not on protocol conformance.

In our previous work, we have introduced online testing as an approach to
predict the future quality of the SBA and thus to trigger pro-active adapta-
tion [13, 19]. Online testing means that the constituent services of an SBA are
systematically fed with test inputs in parallel to the normal use and operation
of the SBA. Although our approach [19]—different from other uses of online
testing (cf. [23, 6, 3, 1])—has shown how to employ online testing for triggering
pro-active adaptation, it has only focused on stateless services and violations
of quality contracts (such as performance). Thus, those techniques, are not yet
capable of addressing the challenges introduced by predicting whether conversa-
tional services will violate their functional contracts in the context of an SBA.

Our proposed online testing approach also differs from existing testing and
monitoring techniques for services (see [20] for a comprehensive survey). Those
techniques only perform tests before or during deployment, whereas after de-
ployment, they resort to monitoring to assess the quality (e.g., see [12] where an
approach for protocol testing and monitoring of services is introduced).

3 The e-Shop Example

The example presented in this paper concerns an e-Shop SBA which is composed
of three services: CartService, ShipmentService and PaymentService. Clients se-
lect the items they wish to purchase, then provide the shipment details, and
finally pay. The composition has the following workflow (i.e., main flow of ser-
vice invocations):

– An order is created by adding items to the order via the CartService.
– Using the ShipmentService, a shipment is created given the origin, destina-

tion, date and weight of the order; the shipment rate is calculated based on
delivery type.

– The customer is charged the total cost by the PaymentService.

There are many alternative third-party services which could provide the Ship-
mentService, such as UPS, FedEx, and DHL. There are also alternative third-
party services which could provide the PaymentService, such as Paypal, and
VISA payment. Therefore, we consider this composition as a realistic example
for demonstrating our approach for just-in-time testing for proactive adaptation.

Since we will use the ShipmentService as an example for how to perform
just-in-time online testing, we describe that service and its operations in more
detail. Table 1 lists the complete interface of the service.

Table 1. The interface of the ShipmentService

Operations Inputs Outputs

create origin, destination, shipmentDate, weight -
getShipmentRate shipmentType rate
oneStepShipment shipmentType -
cancel - -
confirm - -
getConfirmedRate - rate

The ShipmentService is initiated by calling the create operation with the
origin and the destination of the delivery, the date of the shipment and the total
weight of the package as arguments. The shipment cost is calculated for different
types of delivery (e.g. normal or express) via the getShipmentRate operation.
The confirm operation finalizes the shipment. Once confirmed, the operation
getConfirmedRate is used instead of the getShipmentRate operation for getting
informed about the cost of the shipment. The shipment can be canceled with the
cancel operation, unless it has been confirmed. The ShipmentService provides
also the oneStepShipment operation, which does not expect a confirmation from
the client.

The ShipmentService is a typical example of a conversational service in which
only specific sequences of operation invocations (protocol) are allowed. The fol-
lowing restrictions specify the protocol:

– initially no operation can be called except the create operation;
– confirm can only be called after at least one getShipmentRate call;
– getShipmentRate can be called many times to get different rates for different

types of delivery but not after confirm or oneStepShipment;
– getConfirmedRate can only be called after confirm or oneStepShipment;
– cancel cannot be called after confirm, nor after oneStepShipment;
– no operation can be called after cancel.

4 Fundamentals

4.1 Stream X-Machines

A Stream X-Machine (SXM) [17, 14] is a computational model capable of mod-
eling both the data and the control of a system. An SXM is like a finite state
machines but with two important differences: (a) the machine has some internal

Fig. 1. State transition diagram of the conversational interface of ShipmentService

store, called memory ; and (b) the transition labels are not simple symbols, but
processing functions that represent elementary operations that the machine can
perform. A processing function reads inputs and produces outputs while it may
also change the value of the memory.

An SXM [14] is defined as the tuple (Σ,Γ,Q,M,Φ, F, q0,m0) where:

– Σ is the finite input alphabet and Γ is the finite output alphabet ;
– Q is the finite set of states;
– M is a (possibly) infinite set called memory ;
– Φ is a finite set of partial functions φ (called processing functions) that map

input-memory pairs to output-memory pairs, φ : Σ ×M → Γ ×M ;
– F is the next state partial function that given a state and a processing

function it provides the next state, F : Q× Φ→ Q;
– q0 and m0 are the initial state and initial memory respectively.

Parallels can be drawn between an SXM and a stateful Web service: SXM
inputs correspond to SOAP request messages, outputs correspond to SOAP re-
sponse messages, and processing functions correspond to Web service operation
invocations [10, 9].

Example. The conversational behavior of the ShipmentService (see Sect. 3)
can be modelled with an SXM. The diagram in Fig. 1 shows the state transition
diagram of the SXM (i.e., the next state function F). Each processing func-
tion (e.g., cancelPF) is triggered by the corresponding operation (e.g., cancel).
The memory of the SXM consists of a single numeric variable: the cost of the
shipment.

4.2 Test Case Generation

SXMs have the significant advantage of offering a testing method [16, 15, 14]
that ensures the conformance of an implementation under test (IUT) to a spec-
ification. The production of a finite test set is based on a generalization of the
W-method [4]. It is proved that only if the specification and the IUT are behav-
iorally equivalent, the test set produces identical results when applied to both

of them. The testing method rests on certain assumptions and conditions which
will be explained and discussed in Sect. 6.

The first step of the method consists of applying the W-method on the asso-
ciated finite automaton A = (Φ,Q, F, q0) of the SXM and produces a set X ⊆ Φ∗
of sequences of processing functions:

X = S
(
Φk+1 ∪ Φk ∪ . . . ∪ Φ ∪ {ε}

)
W

where W is a characterization set and S a state cover of A and k is the estimated
difference of states between the IUT and the specification. A characterization
set is a set of sequences for which any two distinct states of the automaton are
distinguishable and a state cover is a set of sequences such that all states are
reachable from the initial state.

Finally, the test set T ⊆ Σ∗ is constructed by converting each sequence of
processing functions in X to a sequence of inputs. For this purpose, appropriate
input data sequences need to be generated, that trigger the corresponding pro-
cessing function sequences. The input sequences and the corresponding output
sequences produced by the model animation (the model acts as an oracle) provide
the test cases that guarantee the equivalence of the IUT to the specification.

Due to space limitations, more information about the test generation method,
its application on the specific example, and the generated test cases can be found
online at [11].

4.3 Tool Support

A tool suite for the specification of SXMs and automated test case generation [8]
is available in Java (JSXM). The JSXM language for modeling SXMs is based
on XML and Java inline code. The XML-based specifications in JSXM facilitate
easier integration with Web technologies and related XML-based Web service
standards. JSXM supports animation of SXM models, model-based test case
generation and test transformation. The test case generation implements the
testing method introduced in Sect. 4.2 and generates a set of test cases in XML.
As such, the test cases are independent of the programming language of the
IUT. Test transformation is then used for transforming the XML test cases to
concrete test cases in the underlying technology of the IUT. Currently, both a
Java test transformer and a Web Service test transformer are available, which
automatically generate JUnit and XMLUnit test cases respectively.

Example. Due to space limitations, the corresponding code for representing
the SXM of the example in JSXM can be found online at [11].

5 Just-in-time Online Testing

As motivated in Sect. 1.2, we want to check that all constituent services will
behave according to their contract before they are invoked in the context of the
SBA, thus increasing confidence that the execution will not be aborted due to a

Fig. 2. Just-in-time online testing during composition deployment and execution.

failure at a later point. We achieve this by means of just-in-time online testing,
which means that the protocol of the service is tested “shortly” before the service
is actually invoked from the service composition (the SBA).

Example. In our running example, the execution of the composition begins
with invoking the CartService. This leaves some time3 for on-line testing of the
ShipmentService and the PaymentService. In the case, for example, that the
ShipmentSevice is not functionally correct, an adaptation will be triggered. A
possible adaptation might suggest to choose a ShipmentService from an alterna-
tive provider.

5.1 Test Generation during Composition Deployment

Test generation is a time-consuming process which could slow down the execu-
tion of the service composition if tests were generated during the operation of
the SBA. Therefore, we propose performing the test case generation during the
design or deployment of the service composition.

During the definition of the business process (or workflow) and the deploy-
ment of the service composition, specific service providers for each constituent
service are chosen and bound to the composition (step 1 in Fig. 2).

The provider provides both the service implementation (possibly as a Web
service) and the service specification (as an SXM model) and claims that the
implementation conforms to the specification.4 Applying the test generation

3 This is especially feasible when a user takes some time to enter the items via a GUI.
4 A method to derive an SXM specification from a semantically annotated Web service

utilizing ontology-based and rule-based descriptions is proposed in [21].

method to the SXM model generates a complete test set for the whole pro-
tocol. This test set will thus also include invocations of services not used by the
current composition. Testing these operations is unnecessary and increases the
testing time during test execution.

Determining the Composition Context. The context of the service w.r.t
the composition (shortly called the composition context) is defined as the subset
of all operations of the constituent service which are invoked by the composed
service (step 2 in Fig. 2).

Example. If the composition uses only the 2-step shipment facility and more-
over without ever using the option to cancel a shipment, then the operations
oneStepShipment and cancel do not belong to the composition context, which
in that case consists of the following operations: create, getShipmentRate,
confirm, and getConfirmedRate.

Reducing the Model. To improve the efficiency of on-line testing our tech-
nique reduces the number of test-cases to those which will guarantee the correct-
ness of the behavior in the current composition context. To this end, the original
SXM model is retrieved from the provider (step 3 in Fig. 2) and it is reduced to
an SXM model for the composition context (step 4 in Fig. 2).5

The reduced model (Σr, Γr, Qr,M,Φr, Fr, q0,m0) is constructed from the
original model (Σ,Γ,Q,M,Φ, F, q0,m0) as follows:

1. Σr : Inputs from the input alphabet Σ which correspond to service opera-
tions not in the composition context are removed;

2. Φ′r : Processing functions triggered by removed inputs are removed from Φ;

3. F ′r : Transitions labeled with removed functions are removed from F ;

4. Qr : States which are not reachable from the initial state via the transitions
in F ′r are removed from Q;

5. Fr : Transitions starting from a removed state or ending to a removed state
are removed from F ′r;

6. Φr : Processing functions which do not label any remaining transitions in Fr

are removed from Φ′r;

7. Γr : Outputs which are not the result of any remaining processing functions
in Φr are removed from Γ .

M, q0, and m0 remain the same.

Example. Fig. 3 illustrates the state transition diagram of the reduced SXM.
Removed states, transitions, and processing functions are shown in gray.

5 Although filtering the set of test cases (generated from the original SXM model)
would be possible in theory, this leads to practical problems if the state cover and
characterization sets contain operations which are not part of the operational context
(as in such a situation, relevant test cases might be filtered out).

Fig. 3. State transition diagram of the reduced SXM for the composition context

Generating the Test Cases. The test generation method (Sect. 4.2) is applied
to the reduced SXM resulting to a reduced test set (step 5 in Fig. 2). For the
test generation, both the state cover and the characterization sets need to be
calculated for the reduced SXM, as, in the general case, they will be different
from the respective sets of the original model.

Example. Test sets for the complete and the reduced SXMs for the Ship-
mentService example can be found online at [11].

Testing during Deployment. The final step during deployment involves test-
ing the service (step 6 in Fig. 2). This ensures that the service behaves according
to its specification, at least concerning the part of its interface which belongs
to the composition context and thus ensures that a “correct” SBA is being de-
ployed. However, as motivated in Sect. 1, even if a service was shown to work
during design-time, it needs to be (re-)checked during the operation of the SBA
to detect deviations (especially if such a service is provided by a third party).

5.2 Just-in-time Testing after Deployment

After deployment, when the client starts executing the composition (step a in
Fig. 2), the testing engine is invoked to perform online tests.

To this end, the testing engine will read the stored, reduced test set and
execute the test cases (step b in Fig. 2) until all the tests have passed or one of
them has failed. In the latter case an adaptation is triggered.

6 Critical Discussion

This section reflects on the applicability of our proposed technique in realis-
tic settings by discussing its underlying assumptions, as well as scalability and
efficiency.

6.1 Assumptions of the Testing Approach

As mentioned in Sect. 4.2, the SXM test case generation relies on certain as-
sumptions to guarantee its results. Specifically, the testing method assumes that
the implementation of the individual processing functions is correct, and, based
on this assumption, ensures that the system correctly implements their integra-
tion. As suggested in [16] this assumption could be checked in practice through
a separate quality assurance process (e.g., using traditional black-box testing
techniques or formal verification).

Additionally, the testing method relies on the following “design for test” con-
ditions [16]: controllability and observability. Controllability (also called input-
completeness) requires that any processing function can be exercised from any
memory value using some input. Observability requires that any two different
processing functions will produce different outputs if applied on the same mem-
ory/input pair.

In our case observability can be achieved by having each operation providing
a distinct response (which is usually the case with SOAP Web services).

Controllability depends on the model. The ShipmentService used as an ex-
ample in this paper is an input-complete (thus controllable) model. Further-
more, the proposed model reduction preserves completeness, since processing
functions are not modified but merely removed from the model. If the initial
processing functions were input-complete, then the remaining functions are also
input-complete.

Moreover, a fundamental premise for the just-in-time online testing approach
presented here—as well as for service testing in general— is that service providers
offer some practical way for their services to be tested without triggering real
world side effects, such as shipping items or charging credit cards.

There are several ways that this can be realised from a technical point of
view. In general, it is accomplished by allowing services to be executed in a
special testing environment or configuration mode, often called a “sandbox”,
which allows the functionality of services to be fully exercised in isolation from
the real production environment and databases. The sandbox environments of
Paypal and Amazon Web Services are typical examples.

A requirement that logically follows, if we are to increase our confidence
for some service which is tested under such a “non-production” mode, is that
the special test-mode instance of the service which is actually executed during
testing is identical to the actual production instance that will be invoked shortly
after.

6.2 Scalability and Efficiency

Table 2 shows the sizes and the lengths of the test set for different values of k,
both for the complete and the reduced model. The actual numbers are much
smaller than the (theoretically estimated) maximums.6

6 Based on [16], the maximum number of test sequences, i.e., card(X), is less than
n2 · rk+2/(r − 1), where n = card(Q), r = card(Φ), and (continued on next page)

The complete SXM models a service with an interface of 6 operations whereas
the reduced SXM models an interface of 4 operations. The time savings from
the reduction range between 55–60%.

As it has been discussed above, even if only the reduced set of test cases is
executed, testing still takes some time to complete and thus might take longer
than the time that is available before the conversational service is invoked for
the first time.7

A possible solution to this problem is to perform some kind of gradual testing:
Online testing can begin with the execution of test cases for k = 0. If there is
still time available execution of test cases for k = 1 can begin, and so on. This
gradually increases the confidence that the implementation is correct.

In the worst case scenario there might be not enough time even for the
execution of the k = 0 test set. In that case there are two possibilities: (1) delay
the service execution in order to complete testing, or (2) stop the testing and start
service execution. Those choices could be offered in a framework configuration
and left to the designer of the composition to take the decision.

To take a more informed decision, the framework could provide some mea-
surements from previous test executions. During test at deployment, gradual
testing may be performed and the required times for the test execution for dif-
ferent values of k could be measured and stored. These values could be used for
deciding how the framework should behave in cases there is not sufficient time to
test. For example, the designer of the composition could decide that even when
there is not enough time, tests for k = 0 should always be executed first before
service execution.

In addition to time, testing costs can become a critical factor for the appli-
cability of our technique, as the invocation of third-party services can be costly.
Furthermore, intense online testing can have an adverse effect on the provisioning
of the services, as testing might reduce the resources available on the provider’s

(continued from previous page) k the estimated number of extra states in the imple-
mentation. The total length l of the test set is less than card(X)·n′, where n′ = k+n.
Actual numbers are much lower than these maximums, mainly due to the fact that
JSXM removes all those sequences which are prefixes of other sequences in the test
set.

7 Indicatively, it took about 0.5 seconds to execute the test set of length 98 to a Web
service implementation of the ShipmentShervice in a LAN.

Table 2. The sizes and the lengths of the test set for the complete and reduced model
for different k values

card(X), l
k

0 1 2 3 4

complete SXM 38 122 61 234 89 398 122 624 160 922
reduced SXM 17 54 25 98 36 168 50 270 67 410

savings % 55 56 59 58 60 58 59 57 58 56

side and thus could, for instance, impact on performance (cf. [7]). This means
that the number of online test cases that can be executed is limited by economic
and technical considerations. Especially if more than one SBA instance is run-
ning, applying our technique to each of those SBA instances individually can
lead to redundant online tests, which should be avoided. One solution would be
to use a “central” component in our framework that governs the online testing
activities and, for instance, does not execute a test if an identical test has al-
ready been performed (provided that it can be assumed that its outcomes are
still representative of the current situation).

7 Conclusions

This paper introduced a novel technique for just-in-time online testing of con-
versational services, which enables proactively triggering adaptations of service-
based applications. Such a technique is especially relevant in the setting of the
“Internet of Services”, where applications will increasingly be composed from
third party services, which are not under the control of the service consumer
and thus require that they are (re-)checked during the operation of the SBA to
detect failures.

We are currently integrating the presented technique into the PROSA frame-
work (PRO-active Self-Adaptation [13]) in the context of the S-Cube project.
Although, possible adaptation strategies have not been in the focus of this paper,
they can be considered to further extend our proposed techniques. For example,
if an alternative service is chosen to replace a faulty one, the alternative ser-
vice may be (pre-)tested to ensure it provides the same functionality before the
actual adaptation will be performed.

Acknowledgments. We cordially thank the anonymous reviewers for their con-
structive and detailed comments on improving the paper.

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube). For further information please visit http://www.s-cube-network.eu/.

References

1. Bai, X., Chen, Y., Shao, Z.: Adaptive web services testing. In: 31st Annual Int’l
Comp. Software and Applications Conf. (COMPSAC). pp. 233–236 (2007)

2. Benbernou, S.: State of the art report, gap analysis of knowledge on prin-
ciples, techniques and methodologies for monitoring and adaptation of SBAs.
Deliverable PO-JRA-1.2.1, S-Cube Consortium (July 2008), http://www.s-cube-
network.eu/results/

3. Chan, W., Cheung, S., Leung, K.: A metamorphic testing approach for online test-
ing of service-oriented software applications. International Journal of Web Services
Research 4(2), 61–81 (2007)

4. Chow, T.S.: Testing software design modelled by finite state machines. IEEE Trans-
actions on Software Engineering 4, 178–187 (1978)

5. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. IEEE Trans. Softw. Eng. 30(12), 859–872 (2004)

6. Deussen, P., Din, G., Schieferdecker, I.: A TTCN-3 based online test and validation
platform for Internet services. In: Proceedings of the 6th International Symposium
on Autonomous Decentralized Systems (ISADS). pp. 177–184 (2003)

7. Di Penta, M., Bruno, M., Esposito, G., et al.: Web Services Regression Testing.
In: Baresi, L., Di Nitto, E. (eds.) Test and Analysis of Web Services, pp. 205 – 234.
Springer (2007)

8. Dranidis, D.: JSXM: A suite of tools for model-based automated test generation:
User manual. Tech. Rep. WPCS01-09, CITY College (2009)

9. Dranidis, D., Kourtesis, D., Ramollari, E.: Formal verification of web service be-
havioural conformance through testing. Annals of Mathematics, Computing &
Teleinformatics 1(5), 36–43 (2007)

10. Dranidis, D., Ramollari, E., Kourtesis, D.: Run-time verification of behavioural
conformance for conversational web services. In: Seventh IEEE European Confer-
ence on Web Services. pp. 139–147. IEEE (2009)

11. Dranidis, D., Metzger, A., Kourtesis, D.: Enabling proactive adaptation through
just-in-time testing of conversational services (supplementary material). Tech. rep.,
S-Cube (2010), http://www.s-cube-network.eu/results/techreport/sw2010

12. Hallé, S., Bultan, T., Hughes, G., Alkhalaf, M., Villemaire, R.: Runtime verification
of web service interface contracts. IEEE Computer 43(3), 59–66 (2010)

13. Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A framework for proactive
self-adaptation of service-based applications based on online testing. In: Service-
Wave 2008. No. 5377 in LNCS, Springer (10-13 December 2008)

14. Holcombe, M., Ipate, F.: Correct Systems: Building Business Process Solutions.
Springer Verlag, Berlin (1998)

15. Ipate, F.: Theory of X-machines with Applications in Specification and Testing.
Ph.D. thesis, University of Sheffield (1995)

16. Ipate, F., Holcombe, M.: An integration testing method that is proven to find all
faults. International Journal of Computer Mathematics 63, 159–178 (1997)

17. Laycock, G.: The Theory and Practice of Specification Based Testing. Ph.D. thesis,
University of Sheffield (1992)

18. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring, prediction
and prevention of SLA violations in composite services. In: IEEE International
Conference on Web Services (ICWS) Industry and Applications Track (2010)

19. Metzger, A., Sammodi, O., Pohl, K., Rzepka, M.: Towards pro-active adaptation
with confidence augmenting service monitoring with online testing. In: Proceed-
ings of the ICSE 2010 Workshop on Software Engineering for Adaptive and Self-
managing Systems (SEAMS ’10). Cape Town, South Africa (2-8 May 2010)

20. Pernici, B., Metzger, A.: Survey of quality related aspects relevant for service-
based applications. Deliverable PO-JRA-1.3.1, S-Cube Consortium (July 2008),
http://www.s-cube-network.eu/results/

21. Ramollari, E., Kourtesis, D., Dranidis, D., Simons, A.: Leveraging semantic web
service descriptions for validation by automated functional testing. The Semantic
Web: Research and Applications pp. 593–607 (2009)

22. Tselentis, G., Domingue, J., Galis, A., Gavras, A., Hausheer, D.: Towards the
Future Internet: A European Research Perspective. IOS Press, Amsterdam, The
Netherlands (2009)

23. Wang, Q., Quan, L., Ying, F.: Online testing of Web-based applications. In: Pro-
ceedings of the 28th Annual Int’l Comp. Software and Applications Conference
(COMPSAC). pp. 166–169 (2004)

