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Abstract: In the past, the reprofiling intervals of railway vehicle steel wheels have been scheduled 

according to designers’ experience. Today, more reliable and accurate tools in predicting wheel 

wear evolution and wheelset lifetime can be used in order to achieve economical and safety 

benefits. In this work, a computational tool that is able to predict the evolution of the wheel 

profiles for a given railway system, as a function of the distance run, is presented. The strategy 

adopted consists of using a commercial multibody software to study the railway dynamic problem 

and a purpose-built code for managing its pre and post-processing data in order to compute the 

wear. The tool is applied here to realistic operation scenarios in order to assess the effect of some 

service conditions on the wheel wear progression. 

 

Keywords: Railway dynamics, Multibody systems, Wheel profile wear, 

Traction/braking forces. 

 

1 Introduction 

The increase of the railway transport competitiveness requires the development of 

sophisticated railway systems that answer to the increasing demands of modern 

societies. For short and medium distances, high speed trains are able to compete 

with the air transportation, having several advantages such as better energy 

efficiency and less impact on the environment (e.g. CO2 footprint). The increase 

of the railway share of persons and freight transport also relies on a more efficient 

transport system. In order to improve its competitiveness, railway industrial 
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integrators and research centres are investing large resources in research and 

development activities. These studies contribute decisively to the development of 

new design concepts by using advanced simulation techniques, modern 

production methods and innovative optimization procedures. 

 

One of the most sensible issues in the railway industry is the impact on 

infrastructure of train operations and the damage on vehicles provoked by the 

track conditions. These issues have a significant impact on the life cycle costs of 

the railway networks. The consequence is that the prices billed by the 

infrastructure managers to the railway operators are being defined according to the 

damage that the trainsets are supposed to cause to the track. Therefore, the study 

of vehicle-track interaction is important in reducing the operation and 

maintenance costs, by increasing the life cycle of both vehicles and tracks, and 

increasing the speed, safety and comfort indexes of the railway systems. In this 

regard, these studies have a significant role to play in promoting the 

competitiveness of the railway transportation. 

 

During trainset operation, the wheels of railway vehicles are subjected to wear. 

When the worn state of the profiles reaches a limit value defined by international 

standards [1], the wheels have to be reprofiled. In the railway community it is well 

known that there are mission profiles (operation conditions, track geometry, 

wheel-rail profiles, etc.) where some trainsets require the reprofiling of their 

wheelsets after only 80.000 km of service, whereas others are able to operate in 

similar conditions for more than 400.000 km without need such maintenance 

procedure. Furthermore, the railway wheels can only be reprofiled 3 or 4 times 

and the wheelset substitution is very expensive. The excessive wheel wear implies 

that, conversely, also the rails are subjected to premature deterioration. Thus, the 

complete characterization of the wheel wear problem allows tackling the rail wear 

problem as well. It is, therefore, essential to acquire a better understanding on how 

the wheel wear evolution is affected by the mission profile of the trainsets and 

what is the impact of the wear growth on the dynamic behaviour of railway 

vehicles. Such evaluation is an important contribution to optimise the rolling stock 

design and to enhance the construction features of the railway infrastructure. 
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Up to now there are no commercial computational tools able to study, according 

to the trainset operation conditions, the wear evolution on railway wheels and to 

predict the intervals between the reprofiling procedures. The work presented here 

resulted from a Transfer of Knowledge (ToK) project between Industry and 

Academia, which aimed to contribute to the development of such a tool. The 

objective is to improve the modelling capabilities of the tools used to study the 

dynamic response of railway systems in order to enhance the wheel wear 

prediction techniques. This ToK project was called AWARE (ReliAble Prediction 

of the WeAr of Railway WhEels) and it was funded by the EU to meet its 

transport policy objectives for improvement of efficiency and competitiveness of 

the European railway transportation networks. 

 

The capability of the computational tool for wheel wear prediction, developed in 

the scope of project AWARE, is demonstrated here in several realistic scenarios 

of operation. The purpose is to evaluate the influence on the wheel wear growth of 

some physical parameters related to the vehicle characteristics and to the trainset 

service conditions. Special emphasis is given to study how the wear progression is 

sensitive to the primary suspension stiffness, rail cant, rail profile, traction/braking 

forces and vehicle velocity. The assessment of the wear sensitivity to each one of 

these railway dynamic parameters is made in terms of predicted reprofiling 

intervals. 

 

2 Overview of the wear prediction tool 

The computational tool developed here to predict the wear of railway wheels 

consists of a commercial Multibody Software (MBS) to study the railway 

dynamic problem [2-4] and a purpose-built code for managing its pre and post-

processing data in order to compute the wheel wear [5-13]. According to this 

strategy, an initial wheel profile is provided and the MBS runs a simulation for a 

pre-defined travel distance. Then, the wear prediction tool collects the necessary 

data from the dynamic analysis results and calculates the wear, i.e., the amount of 

material to be removed from the wheel surfaces. The resulting updated profiles 

are then used as input for a new dynamic analysis in the MBS. This methodology, 
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represented in Figure 1, is repeated as many times as necessary until reaching the 

distance required for the wear study. 
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Figure 1: Schematic representation of the wear prediction tool 

 

In real situations trainsets are operated on different tracks. Therefore, when 

predicting the wear evolution on the wheels of a railway vehicle, this issue has to 

be considered and the wear studies should be performed using track models 

(geometry and characteristics) that represent the real operation conditions. In the 

wear computational tool presented here, there are no limitations with respect to 

the length of the track models or to the number of models to use. In fact, after 

each simulation with the MBS, the wheel profiles are updated and used as input 

for a new dynamic analysis in the MBS. This new dynamic analysis can be 

performed with the same track model or with a different one. This approach 

allows computation of the wheel wear with more precision by reproducing the real 

conditions that the railway vehicles experience during their operation. The result 

is thus the wheel profile evolution, in respect of distance run, for the vehicle 

mission specified by the user. 

 

A schematic representation of the wear computational tool is presented in Figure 1 

and it consists of the following steps [7,10-13]: 1) Prepare the input data for the 

computation; 2) Obtain the wheel-rail contact table; 3) Run the multibody 

dynamic analysis; 4) Read the dynamic analysis output data; 5) Compute the 

quantity of worn material; 6) Update the wheel profiles. The wear prediction 

study ends when the total simulated distance matches the total distance defined by 

the user. 
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The wear computation block, represented in Figure 1, is the core of the wear 

prediction tool as it computes the amount of worn material to be removed from 

the wheel surfaces, starting from the MBS dynamic results. It is divided into 3 

parts: i) Contact model; ii) Wear function; iii) Wear distribution. The contact 

model processes the dynamic analysis results to obtain the wheel-rail contact 

parameters [14-20]. The wear function uses these contact parameters as input to 

compute the quantity of worn wheel material [5,6,13,21-23]. The wear 

distribution allocates the quantity of worn material along the wheel profile. 

 

The wear functions relate the energy dissipated in the wheel-rail contact patch 

with the amount of worn material to be removed. In general, these wear laws use 

the normal and tangential forces and the relative slip velocities (creepages), as 

input to compute the wear. In the literature [5,6,10-13,21-31] different methods 

for estimating wear of railway wheels can be found. These methods are based on 

real wear data acquired using different experimental techniques. 

 

In this work, the wear function developed by the University of Sheffield [5,13,21-

23] is used. It is based on twin disk experimental data acquired from the contact 

between discs made of R8T wheel material and UIC60 900A rail material. These 

experimental tests have identified three wear regimes, mild, severe and 

catastrophic [5-13], for the contact between wheel and rail materials. Notice that 

these materials are the ones used to assemble the vehicles and tracks considered 

here in performing the wear studies. 

 

3 Wear parameters for steel railway wheels 

During service, the steel wheels of railway vehicles are subjected to wear. These 

changes in the profile geometry affect the dynamic behaviour of the whole trainset 

and, consequently, their evolution has to be assessed. A common method for 

wheel wear geometric analysis is provided in the UIC 510-2 leaflet [1]. According 

to this standard, a good and pragmatic approach for the geometric characterisation 

of the wheels wear is based on the measurement of the profile parameters Sh, Sd 

and qR. These parameters are represented in Figure 2, where Sh is the flange 

height, Sd represents the flange thickness, qR is the flange slope quota, D is the 
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wheel diameter, ∆D represents the deviation of roundness and d is the wheelset 

external gauge. The quantities L1, L2 and L3 are the reference quotas for the 

measurement of the wheel wear parameters. 
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Figure 2: Wear parameters for railway steel wheels 

 

The wheel wear characterization based on programmed measurements of the 

geometrical parameters Sh, Sd and qR is widely used by the railway industry. 

Such assessment is a relevant criterion to evaluate the wear state of the wheels. 

This approach consists of monitoring periodically the geometrical parameters of 

the wheel profiles in order to check if they have reached the safety limit values 

defined by the technical specifications. When that happens, it means that the 

wheels have to be reprofiled. According to the UIC 510-2 [1], the admissible 

values for parameters Sh, Sd and qR are defined in Table 1. 

 

Table 1: Admissible values for wheel wear parameters 

Wheel Profile 
S1002 

Wear Parameters (mm) Reference Quota (mm) Flange 
Angle Sh Sd qR L1 L2 L3 

New Profile (mm) 
(760 < D < 1000) 28 32.5 10.8 

2 70 10 
70º 

Allowable (mm) 
(840 < D < 1000) ≤ 36 ≥ 22 > 6.5 – 

 

The measurement of the wear parameters Sd and qR allows predicting the 

influence of the wear state of the wheel profiles on the dynamic behaviour of the 

railway vehicles. For example, the flange thickness Sd is very important as it 

limits the lateral clearance of wheelset with respect to the track, which influences 

the vehicle stability. The flange slope quota qR is also an important parameter. If 

it is too small, the wheel flange will be almost vertical, which implies that the 
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transitions (switches crossing) and the flange contacts will occur abruptly. Such a 

situation originates very high contact forces that damage both vehicle and 

infrastructure. From Table 1 it is also noticeable that the difference between the 

new and the allowable values for the flange height Sh reveals that the maximum 

wear depth admissible in the wheel tread is 8 mm. 

 

4 Wheel wear studies 

In the following sections, several comparative studies are performed in order to 

evaluate the sensitivity of the wear evolution to some physical parameters related 

to the vehicle characteristics and to the trainset service conditions. 

4.1 Influence of primary suspension stiffness 

The trainset considered to study the influence on wear growth of the primary 

suspension stiffness is a three-vehicle articulated trainset with Jacobs’s bogies 

represented in Figure 3. It is composed of four bogies, with the two bogies of the 

extremities being motorized (wheelsets are represented in black), and the two 

middle bogies being trailers (with wheelsets represented in white). Due to its 

configuration, the dynamic behaviour of each vehicle of the trainset affects the 

performance of the others. Therefore, the whole trainset has to be considered 

when building the vehicle model, which is used by the MBS to run the dynamic 

analyses during the wear studies. Hereafter it is named as Vehicle 1. 

 

TrailerMotor MotorTrailerMotor Motor

 

Figure 3: Vehicle 1 – Articulated trainset with Jacob’s bogies 

 

The 3D model of Vehicle 1 is built using a multibody approach [32-37], as 

depicted in Figure 4. This methodology allows accurate representation of the mass 

and inertia properties of the structural elements that compose the vehicle. It also 

includes the kinematic joints, which control the relative motion between the 

bodies, and the force elements, that represent suspension components of vehicle. 
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Figure 4: Multibody model of Vehicle 1 

 

Vehicle 1 has two levels of suspension, the primary and the secondary. The 

primary suspension elements connect the bogie frame to the axleboxes of the 

wheelsets and are the main responsible for the steering capabilities and stability 

behaviour of the whole trainset. The carbody is supported by the bogies through 

secondary suspension elements. Their main function is to minimize the vibrations 

induced by the track on the passenger compartment, improving the comfort and 

reducing the problems associated with structural fatigue. 

 

The multibody model of the railway vehicle represented in Figure 4 is composed 

by 15 rigid bodies. These are used to represent 3 carbodies, 4 bogie frames and 8 

wheelsets. The rigid bodies are connected by elastic and viscous components, 

having linear and non-linear characteristics. 

 

One of the main issues in railway dynamics is the compromise between running 

on straight tracks and negotiating curves. In a straight track it is advantageous to 

have a rigid primary suspension as it improves the vehicle stability. In a bogie 

with these characteristics, the yaw motions of the wheelsets relative to the bogie 

frame are very restricted. Such bogies have good ride stability properties and 

originate a rather high critical speed, but their performance in curves is poor 

[14,38]. 

 

In a curve, it is useful to have a flexible primary suspension in order to improve 

the curve negotiation performance of the trainset. This design principle allows a 

significant yaw motion of the wheelsets relative to the bogie frame and a good 
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curving performance is achieved, as represented in Figure 5. However, instability 

may occur on tangent track if the longitudinal stiffness is too low [14,38]. 

 

 

Figure 5: Yaw motion of wheelsets when negotiating a curve 

 

The influence of the primary suspension stiffness on wheel wear progression is 

studied here by considering Vehicle 1 assembled with two different values for the 

longitudinal stiffness Kx. The primary suspension parameter Kx, represented in 

Figure 6, is changed in both motor and trailer bogies as follows: 

• Reference value: Kx = K 

• Modified value: Kx = K / 2 

 

KXKX

 

Figure 6: Representation of the primary suspension elements 

 

The comparative wear study is made on the track between the cities of Cuneo and 

Ventimiglia, from the Italian railway network. This track has about 96 km length 

and it is particularly curved, with 61% of its curves having radii with less than 450 

m, as represented in Figure 7. The vehicle is initially equipped with new wheels, 

with S1002 profile [1], and the track model is assembled with UIC60 rails [39] 

with 1/20 cant. 
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Figure 7: Curve radii distribution of the track 

 

The wear computation is carried out by performing several outward and return 

journeys on the Cuneo-Ventimiglia track until reaching the total distance of 5000 

km. The velocity of Vehicle 1 is varied between 80 and 95 km/h along the track 

length, which is in conformity with the service conditions on this track. 

 

 

 a) b) 

Figure 8: Wear results with different stiffness values of primary suspension on: a) Left wheel; b) 

Right wheel 

 

In Figure 8, the wear results for the first wheelset of Vehicle 1, assembled with 

different stiffness values for the primary suspension, are presented. On the top of 

the figure, the comparison between the wear depth values is shown. These results 

are presented as a percentage of the maximum wear depth value obtained. The 
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new and the worn profiles, on the left and right wheels, are given on the bottom of 

Figure 8. The results show that the levels of wear on both tread and flange zones 

are higher with the stiffer primary suspension. It is also observed that the wear 

distribution along the profiles is similar in the two cases. 

 

In order to assess how the primary suspension stiffness affects the reprofiling 

intervals of the wheelsets of Vehicle 1, the worn profiles of all wheels are 

analysed. This evaluation is made by studying the evolution of the wheel wear 

parameters Sh, Sd and qR and by comparing them with the admissible values 

defined in Table 1. Such an approach can be used to predict when the profile 

parameters reach the limit values and, consequently, to estimate the corresponding 

reprofiling intervals. The results obtained with this methodology are summarized 

in Table 2. It is observed that the vehicle assembled with the softer primary 

suspension has an interval between reprofiling maintenance procedures that is 

16.5% larger than the one of the vehicle equipped with the stiffer suspension. 

 

Table 2: Summary of the influence of primary suspension stiffness on wear 

Primary Suspension Longitudinal Stiffness Reprofiling Interval Variation 

Reference Suspension K 
+ 16.5 % 

Modified Suspension K / 2 
 

4.2 Influence of rail cant 

In modern railway networks, the rail profiles are shaped to fit together with the 

geometry of the wheels, especially when they are worn. In most cases, rails are 

mounted with an inclination inwards, as shown in Figure 9, because the wheel 

profiles are coned. Usually the rail cant varies between 1/40 and 1/20 but, in some 

turnouts, rails may be mounted without inclination. In the Italian railway network 

a 1/20 rail cant is usually used, whereas the German tracks are in general 

assembled with a rail cant of 1/40. 
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ββ

 

Figure 9: Rails mounted with an inclination inwards 

 

The purpose of this case study is to evaluate the wheel wear sensitivity to the rail 

inclination. For this purpose, two wear computations are performed considering 

exactly the same service conditions, except the rail cant that has the following 

values: 

• Reference rail cant 1/20: β = 0.050 rad = 2.86º; 

• Alternative rail cant 1/40: β = 0.025 rad = 1.43º. 
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 a) b) 

Figure 10: UIC 60 rails mounted with an inclination of 1/20 and 1/40: a) Left; b) Right 

 

In Figure 10 the UIC 60 rails mounted with an inclination inwards of 1/20 and 

1/40 are represented. Despite the rail profiles being the same, the different cant 

influences the wheel-rail contact geometry and, consequently, the equivalent 

conicity [14,40,41], which is an important parameter used to evaluate the running 

stability of railway vehicles. The importance of the equivalent conicity results 

from the fact that the steering mechanism of a wheelset is not due to conicity, or 

change in rolling radius of one wheel, but due to the difference in rolling radii 

between left and right wheels. 
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Figure 11: Equivalent conicity for wheel profile S1002 and rails UIC 60 with cant of 1/20 and 1/40 

 

In general, the equivalent conicity is a nonlinear function of the wheelset lateral 

displacement and it depends on the geometric combination of both wheel and rail 

profiles. It also depends on the wheelset inside gauge, flange thickness, rail cant 

and track gauge. In Figure 11 the evolution of the equivalent conicity for a 

wheelset assembled with S1002 wheels and for UIC 60 rails with cant of 1/20 and 

of 1/40 is presented. It is observed that, for example, for 3 mm wheelset lateral 

shift with respect to the track centerline, the equivalent conicity for 1/20 rail cant 

is 0.01 whereas, for 1/40 rail cant, it has a value of 0.2. As the rail cant originates 

differences in the equivalent conicity, it will also affect the dynamic behaviour of 

the railway vehicles. This fact has repercussions on the wear evolution of the 

wheels. 

 

The trainset considered here to study the consequences of the rail cant on the 

wheel wear growth is a non-articulated conventional trainset composed of seven 

vehicles interconnected by linking elements, as represented in Figure 12. 

 

 

Figure 12: Non-articulated conventional trainset 

 

Due to the trainset configuration, it is assumed that, concerning the wear studies 

performed here, the dynamic behaviour of each vehicle has a non-significant 
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influence on the others. According to this assumption, each vehicle of the trainset 

can be studied independently, as shown in Figure 13. In this way, the vehicle 

model considered is composed only by one unit of the trainset, called hereafter as 

Vehicle 2. This composition is a motor vehicle that is assembled with two trailer 

wheelsets, represented in white, and two motor wheelsets, represented in black. 

 

1234 1234  

Figure 13: Vehicle 2 – Motor vehicle of non-articulated conventional trainset 

 

The 3D model of Vehicle 2 is built using a multibody approach, as depicted in 

Figure 14. The vehicle model is composed by 1 carbody, 2 bogie frames, 2 

carbody bolsters, 4 traction rods and 4 wheelsets. It also includes the kinematic 

joints, which control the relative motion between the bodies, and the force 

elements, that represent suspension components of vehicle. 
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Figure 14: Multibody model of Vehicle 2 

 

The primary suspension of Vehicle 2 is composed of two vertical coil springs, 

assembled laterally at each side of the axleboxes, and one vertical damper. It also 

includes an axle guide link system to transmit the longitudinal forces between the 

wheelsets and the bogie frame. The vertical displacements of the primary 

suspension elements are limited by a bumpstop and a liftstop, mounted at each 

axlebox. 
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The carbody is sprung against each bogie frame via a bolster and four flexi-coils. 

At both sides of the bogies, and assembled in parallel with each pair of coil 

springs, there is a vertical hydraulic damper. These elements are used for 

stabilization and also work as the vertical bumpstop and liftstop device of the 

secondary suspension. In order to guarantee a small roll coefficient, the bolsters 

are controlled in their roll movement by one anti-roll bar. The yaw movement of 

the bogies is limited through two anti yaw dampers assembled between the 

carbody and each side of the bogie frames. 

 

In Vehicle 2, the connection between the carbody and each one of the bogies is 

realized by a pivot shaft. This element is rigidly fixed to the carbody and is 

assembled vertically, passing through the bolster and bogie frame without 

contacting them directly. A centre plate is rigidly fixed to the extremity of the 

pivot and it is hinged to the bogie frame by two longitudinal traction rods. This 

subsystem only ensures the vehicle steering functions, transmitting the in-plane 

loads between the carbody and bogie, but not the vertical loads, which are 

transmitted through the secondary suspension elements. The low attachment 

position between carbody and bogies minimizes the wheel load changes that 

develop during the vehicle traction and braking. The traction rods are assembled 

with rubber bushings at their extremities in order to ensure a better performance 

when the vehicle travels in small radius curved tracks. The lateral stabilization of 

the carbody is achieved through two pairs of transversal hydraulic dampers, 

assembled between the bogie frames and the carbody. The relative lateral 

displacement between the carbody and each bogie is limited by two transversal 

rubber bumpstops. 

 

The track considered here is the one between the Italian cities of Cuneo and 

Ventimiglia that was described previously and which characteristics are shown in 

Figure 7. The comparative wear study is carried out by performing several 

outward and return journeys on the track until reaching the total distance of 5000 

km. In agreement with the service conditions on this track, the velocity of Vehicle 

2 is varied between 80 and 95 km/h. 
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 a) b) 

Figure 15: Wear results with rail cant of 1/20 and of 1/40 on: a) Left wheel; b) Right wheel 

 

In Figure 15, the wear results for the first wheelset of Vehicle 2 are presented. On 

the top, the comparison between the wear depth values is shown, being the results 

presented as a percentage of the maximum wear depth value obtained. On the 

bottom of the figure, the new and the worn profiles are given. The results show 

that a rail cant of 1/20 produces more wear on the tread zone of the wheel profiles. 

On the other hand, a rail inclination of 1/40 originates more wear on the flange 

zone. 

 

The results from Figure 15 can be explained by the fact that the wheels with a 

S1002 profile have the main part of the tread with a 1/40 cone. In such conditions, 

the rail with a 1/40 cant has its vertical axis perpendicular to the wheel tread, 

which implies that the contact area will be bigger than when using a rail with an 

inclination of 1/20. In order to study this issue in more detail, the variation of the 

contact patch on the left wheel of Vehicle 2 is shown in Figure 16. It is observed 

that for a positive lateral displacement of the wheelset with respect to the track, 

corresponding to a tread contact, the contact patch area is bigger with a 1/40 rail 

cant than with a 1/20. As the contact area is larger when using a 1/40 rail 

inclination, the stresses developed in the contact patch are smaller and, 

consequently, less wear will arise on the wheel tread. 
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Figure 16: Contact area on the left wheel of Vehicle 2 

 

The different rail cant also influences the wheel-rail contact geometry on the 

flange zone of the wheel profile. In fact, the results from Figure 16 show that, for 

a wheelset lateral shift lower than - 4 mm, the contact between wheel and rail 

occurs on the flange zone of the wheel profile. On that zone the contact area is 

smaller when using a UIC 60 rail with 1/40 cant. This implies that higher stresses 

and, consequently, more wear will appear on the wheel flange when using a rail 

inclination of 1/40. 

 

With the purpose of assessing how the rail cant affects the reprofiling intervals of 

Vehicle 2, the worn profiles of all wheels are analysed. This evaluation is made as 

explained previously, i.e., by studying the evolution of the wheel wear parameters 

Sh, Sd and qR and by comparing them with the admissible values defined in Table 

1. The results obtained in this way are summarized in Table 3, where the values of 

the equivalent conicity correspond to a wheelset lateral shift of 3 mm. It is 

observed that the use of a rail cant of 1/40 instead of 1/20 increases by 10.6% the 

reprofiling interval of the wheelsets of Vehicle 2. 

 

Table 3: Summary of the influence of rail cant on wear 

Rail Cant Equivalent Conicity Reprofiling Interval Variation 

Reference cant (1/20) 0.01 
+ 10.6 % 

Alternative cant (1/40) 0.20 
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4.3 Influence of rail profile 

The objective now is to investigate the wheel wear sensitivity to the rail profile 

used to assemble the track. For this purpose, two wear studies are performed 

considering the same operating conditions, except the rail profiles that are: 

• Reference rail profile: UIC 60 (1/20); 

• Alternative rail profile: UIC 50 (1/20). 
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 a) b) 

Figure 17: Comparison of UIC 60 and UIC 50 rail profiles 

 

In Figure 17 a comparison between the UIC 60 and UIC 50 rail profiles is 

presented. It is observed that the geometry of both rails is nearly the same, with 

the UIC 60 rails being slightly wider. From this comparison it is evident that the 

wheel-rail contact geometry with both rail profiles will be similar. This statement 

can be verified in Figure 18 where the equivalent conicity is presented for a 

wheelset assembled with wheels having a S1002 profile and for rail profiles UIC 

60 and UIC 50. 
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Figure 18: Equivalent conicity for wheel profile S1002 and rail profiles UIC 60 and UIC 50 
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As the two rail profiles considered here do not originate meaningful variations in 

the equivalent conicity, no relevant differences are expected in the dynamic 

behaviour of the railway vehicle since all other service conditions are equal. 

Consequently, it is expected that the wheel wear evolution will reveal no 

sensitivity to the variation of the rail profiles. In order to check these statements, 

two comparative wear studies are carried out by performing several outward and 

return journeys on the Cuneo-Ventimiglia track, which is characterized in Figure 

7, until reaching the total distance of 5000 km. The vehicle model used is Vehicle 

2, represented in Figure 14, and its velocity is varied between 80 and 95 km/h 

along the track length. 

 

Following the same procedure described in the previous case studies, the analysis 

of the worn profiles of all wheels of Vehicle 2 allows the prediction of the 

reprofiling intervals of the wheelsets. The results obtained in this manner are 

summarized in Table 4. It is observed that the use of rail profile UIC 50 instead of 

UIC 60 originates a variation in the reprofiling interval that is less than 1%. 

 

Table 4: Summary of the influence of rail profile on wear 

Rail Profile Reprofiling Interval Variation 

Reference profile: UIC 60 (1/20) 
– 0.7 % 

Alternative profile: UIC 50 (1/20) 
 

4.4 Influence of traction/braking forces 

The aim of this case study is to evaluate the wheel wear sensitivity to the traction 

and braking forces that are applied on the wheelsets of the railway vehicles during 

their operation. For this purpose, two wear computations are performed. In one 

case, no traction/braking forces are considered whereas, in the other case, these 

loads are applied to the vehicle wheelsets during the dynamic analysis. All other 

service conditions and analysis parameters required for the wear studies remain 

unchanged. 
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Figure 19: Characterization of the traction and braking forces: a) Velocity profile; b) Traction 

forces; c) Electrical braking forces; d) Mechanical braking forces 
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The wear evolution studies are executed by performing several outward and return 

journeys on the Cuneo-Ventimiglia track, which is characterized in Figure 7, until 

reaching the total distance of 5000 km. The vehicle model considered here is 

Vehicle 2. The velocity profile along the track length and the traction and braking 

forces that are applied during the wear computation are presented in Figure 19. 

This information is collected by the railway operator and it includes the braking 

and accelerations resultant from the train stops in the railway stations that exist in 

the Cuneo-Ventimiglia track. 

 

The traction and braking forces are accounted for by applying the following 

torques on wheelsets of Vehicle 2, which is represented in Figure 13: 

• Traction Forces: Applied on the motor wheelsets; 

• Electrical Braking Forces: Applied on the motor wheelsets; 

• Mechanical Braking Forces: Applied on motor and trailer wheelsets since 

both are equipped with brake discs. 

 

In the comparative wear study performed here, only the motor wheelsets (2 and 3 

in Figure 13) are studied due to the fact that they are applied with traction forces, 

electrical braking forces and mechanical braking forces, whereas the trailer 

wheelsets (1 and 4) are only subjected to the mechanical brakes. In addition, 

Figure 19d) reveals that this braking system is only used four times during trainset 

operation and for very short periods. Therefore, the traction/braking forces will 

have negligible consequences on the wear growth of the trailer wheelsets when 

compared with the repercussions on the motor ones. In Figure 20, the wear depth 

results and the new and worn wheel profiles are presented for the second wheelset 

of Vehicle 2. The results show that the levels of wear are slightly higher when 

considering the traction/braking forces. 
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 a) b) 

Figure 20: Wear results with and without traction/braking forces on: a) Left wheel; b) Right wheel 

 

In order to characterize, in a more fundamental way, the influence of the 

traction/braking forces on the wheel wear growth, the geometry of the worn 

profiles is analysed through the wear parameters Sh, Sd and qR. The comparison 

of these geometric parameters with the limit values defined by the international 

standards allows estimating the reprofiling intervals of the wheelsets. The results 

obtained, using this approach, are summarized in Table 5. 

 

Table 5: Summary of the influence of traction/braking forces on wear 

Traction/Braking 
Reprofiling Intervals according to Wear Parameters 

Flange Height Flange Thickness Flange Slope Quota 

No (Reference) 
– 10.6 % + 4.5 % + 2.5 % 

Yes (Comparison) 
 

With reference to Figure 2, the flange height (Sh) is the geometrical parameter 

used to evaluate the wear depth on the wheel tread. On this basis, the variation of 

the reprofiling intervals based on the analysis of Sh indicates that the 

traction/braking forces are prejudicial for the tread wear. In fact, when considering 

these forces, the reprofiling intervals due to problems related to tread wear 

decrease more than 10%. On the other hand, the analysis of the two geometrical 

parameters associated to the flange wear (Sd and qR) reveals that the 
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traction/braking forces are slightly advantageous for the wear progression on this 

zone of the profiles. It is observed that these forces originate an increase of 4.5% 

in the reprofiling intervals due to problems related to the flange thickness and a 

marginal enhancement regarding the issues related to the flange slope quota. In 

any case, it should be noted that the negative influence of the traction/braking 

forces on the tread wear is much more relevant than the small benefits obtained 

for the flange wear. 

 

4.5 Influence of vehicle velocity / cant deficiency 

The objective of this case study is to analyse the wheel wear sensitivity to the 

service velocity and, consequently, the cant deficiency of the railway vehicles. 

When travelling in curves, the vehicles are subjected to centrifugal accelerations 

which originate forces that tend to displace them towards outside of the curve. In 

railway industry, this effect is counteracted by the track cant, i.e., by raising the 

outer rail with respect to the inner one. This solution reduces the perceived lateral 

acceleration when negotiating a curve and the respective forces. 

 

The equilibrium cant, for a given curve radius and vehicle speed, corresponds to 

the value that originates zero track plane acceleration. In general, the track curves 

are designed to have an equilibrium cant for the nominal velocity conditions of 

the vehicles that operate on that line. Running in such conditions is advantageous 

for the passengers since they do not feel the centrifugal accelerations on curves. In 

addition, the vehicles produce a resultant vertical force through the centreline of 

the track. Thus, the vertical wheel-rail interaction forces are equal, so that 

maximum utilization of traction effort and minimum wear on wheels and rails can 

be realized [15]. 

 

A railway vehicle is running with cant deficiency when the track cant is not 

sufficient to assure zero track plane acceleration. In this case, a resultant force FC 

pointing towards the outside of the curve arises, the passengers are pushed in that 

direction due to the centrifugal force and the vertical contact forces are higher on 

the outer wheels of the wheelsets, as depicted in Figure 21. 
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Figure 21: Vehicle running with cant deficiency 

 

The study on the influence of the cant deficiency is performed here by running 

two wear computations considering the same operation conditions, except the 

vehicle speed, that has the following values: 

• Reference velocity: Varied between 80 and 95 km/h along the track length, 

which is in conformity with the service conditions but originates cant 

deficiency in the majority of the curves; 

• Reduced velocity: 45 km/h along the whole track length. 

 

The two comparative wear studies are carried out by performing several outward 

and return journeys on the Cuneo-Ventimiglia track, which is characterized in 

Figure 7, until reaching the total distance of 5000 km. The vehicle model used is 

Vehicle 2, represented in Figure 14. 

 

Following the methodology described in the previous case studies, the analysis of 

the worn profiles of all wheels of Vehicle 2 allows predicting its reprofiling 

intervals. The results, obtained using this approach, are summarized in Table 6. It 

is observed that the reduction to half of the vehicle velocity originates an 

increment of more than 20% in the reprofiling intervals of the vehicle wheelsets. 

 

Table 6: Summary of the influence of vehicle velocity on wear 

Vehicle Velocity Reprofiling Interval Variation 

Reference velocity: 80 to 95 km/h 
+ 22.7 % 

Reduced velocity: 45 km/h 
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5 Conclusions 

In this work a computational tool that is able to study the dynamic behaviour of 

railway vehicles in realistic operation scenarios and to predict the wheel wear 

evolution according to those service conditions is presented. The objective is to 

analyse how the wheel wear progression is sensitive to some physical parameters 

related to the vehicle characteristics and to the trainset service conditions. The 

assessment of the wear sensitivity to these parameters is made according to the 

international standards. Hence, the wheel wear representation is based on the 

profile parameters Sd, Sh and qR. The measurement of these geometrical 

parameters and its comparison with the limit values allows predicting the 

reprofiling intervals of the wheelsets. 

 

The comparative study performed here to evaluate the wear sensitivity to the 

primary suspension stiffness reveals that the vehicle assembled with the softer 

primary suspension tends to produce less wheel wear on both tread and flange 

zones. This fact enables it to operate for larger distances before requiring the 

reprofiling of the wheelsets. These numerical results are in line with the 

expectations as the track considered here is particularly curved. 

 

The study on how the wheel wear growth is influenced by the rail cant reveals that 

the reprofiling intervals obtained when running on the track with a rail cant of 

1/40 are larger than when travelling on a track with a rail inclination of 1/20. This 

is a consequence of using a railway vehicle assembled with wheels having a 

S1002 profile. In fact, this wheel profile has a tread inclination of 1/40 that fits 

together with the UIC 60 (1/40) rail. In such conditions, the use of a rail cant of 

1/40 is advantageous in terms of wheel wear progression. These results are in line 

with expectations and experience. 

 

The influence of the rail profiles UIC 50 and UIC 60 on wear progression is also 

analysed here. This comparative study shows that the rail profiles have a 

negligible influence on the predicted reprofiling intervals. This is due to the fact 

that the profiles UIC 50 and UIC 60 have nearly the same geometry in the contact 

region, which implies that the wheel-rail contact geometry and the equivalent 

conicity are similar. As the other service conditions do not change, no significant 
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differences are expected in the dynamic behaviour of the railway vehicle and, 

consequently, on the wheel wear evolution. 

 

The characterization on how the traction/braking forces affect the wheel wear 

growth reveals that these forces originate more wear on the tread zone of the 

profiles and less wear on the wheel flange. Nevertheless, the wear computations 

also show that the negative influence of the traction/braking forces on the tread 

wear evolution is more relevant than the small benefits obtained for the flange 

wear. 

 

The influence on wheel wear evolution of the vehicle velocity / cant deficiency is 

also studied in this work. The results obtained show that the reduction to half of 

the vehicle service speed originates an increment of more than 20% in the distance 

that the railway vehicle is able to run before requiring the reprofiling of its 

wheelsets. This is related to the fact that running at higher speeds originates cant 

deficiency. In such situation, unequal vertical wheel-rail interaction forces will 

arise, originating an overload of the outer wheels and, consequently, higher 

stresses and more wear. 
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